[1] |
邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689-701.
Zou Caineng, Dong Dazhong, Wang Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (I)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. |
[2] |
邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发,2016,43(2):166-178.
Zou Caineng, Dong Dazhong, Wang Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. |
[3] |
杨跃明,陈玉龙,刘燊阳,等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业,2021,41(1):42-58.
Yang Yueming, Chen Yulong, Liu Shenyang, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(1): 42-58. |
[4] |
郭旭升,腾格尔,魏祥峰,等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报,2022,43(4):453-468.
Guo Xusheng, Tenger B, Wei Xiangfeng, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 453-468. |
[5] |
刘树根,文龙,宋金民,等. 四川盆地中二叠统构造—沉积分异与油气勘探[J]. 成都理工大学学报(自然科学版),2022,49(4):385-413.
Liu Shugen, Wen Long, Song Jinmin, et al. Sedimentary topography and tectonic differentiation on the Midlle Permian platform and hydrocarbon exploration in Sichuan Basin, SW China[J]. Journal of Chengdu University of Technology(Science & Technology Edition ), 2022, 49(4): 385-413. |
[6] |
何登发,包洪平,高山林,等. 构造—沉积分异原理及其地质意义[J]. 古地理学报,2022,24(5):920-936.
He Dengfa, Bao Hongping, Gao Shanlin, et al. Principles of tectonic-depositional differentiation and its geological significance[J]. Journal of Palaeogeography, 2022, 24(5): 920-936. |
[7] |
刘树根,孙玮,罗志立,等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版),2013,40(5):511-520.
Liu Shugen, Sun Wei, Luo Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520. |
[8] |
汪泽成,赵文智,胡素云,等. 克拉通盆地构造分异对大油气田形成的控制作用:以四川盆地震旦系—三叠系为例[J]. 天然气工业,2017,37(1):9-23.
Wang Zecheng, Zhao Wenzhi, Hu Suyun, et al. Control of tectonic differentiation on the formation of large oil and gas fields in craton basins: A case study of Sinian-Triassic of the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 9-23. |
[9] |
程建,郑伦举. 川南地区金页1井早寒武世烃源岩沉积地球化学特征[J]. 石油与天然气地质,2020,41(4):800-810.
Cheng Jian, Zheng Lunju. Sedimentary geochemical characteristics of the Early Cambrian source rocks in well Jinye 1 in southern Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(4): 800-810. |
[10] |
王同,熊亮,董晓霞,等. 川南地区筇竹寺组新层系页岩储层特征[J]. 油气藏评价与开发,2021,11(3):443-451.
Wang Tong, Xiong Liang, Dong Xiaoxia, et al. Characteristics of shale reservoir in new strata of Qiongzhusi Formation in southern Sichuan[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 443-451. |
[11] |
熊亮,葛忠伟,王同,等. 川南寒武系筇竹寺组勘探潜力研究[J]. 油气藏评价与开发,2021,11(1):14-21,55.
Xiong Liang, Ge Zhongwei, Wang Tong, et al. Exploration potential of Cambrian Qiongzhusi Formation in southern Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(1): 14-21, 55. |
[12] |
Yang W, Zuo R S, Jiang Z X, et al. Effect of lithofacies on pore structure and new insights into pore-preserving mechanisms of the over-mature Qiongzhusi marine shales in Lower Cambrian of the southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 98: 746-762. |
[13] |
Liu R Y, Zhou W, Xu H, et al. Impact of minerals and sealing systems on the pore characteristics of the Qiongzhusi Formation shale in the southern Sichuan Basin[J]. ACS Omega, 2022, 7(18): 15821-15840. |
[14] |
Zhao L, Liu S G, Li G Q, et al. Sedimentary environment and enrichment of organic matter during the deposition of Qiongzhusi Formation in the upslope areas:A case study of W207 well in the Weiyuan area, Sichuan Basin, China[J]. Frontiers in Earth Science, 2022, 10: 867616. |
[15] |
梁霄,李香华,徐剑良,等. 从优质烃源岩到储层:构造—沉积分异格局下的四川盆地中西部下寒武统页岩气勘探前景[J]. 天然气工业,2021,41(5):30-41.
Liang Xiao, Li Xianghua, Xu Jianliang, et al. Exploration prospects of Lower Cambrian shale gas in the central-western Sichuan Basin under the pattern of tectonic-depositional differentiation: From high-quality source rocks to reservoirs[J]. Natural Gas Industry, 2021, 41(5): 30-41. |
[16] |
魏国齐,杨威,杜金虎,等. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业,2015,35(1):24-35.
Wei Guoqi, Yang Wei, Du Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35. |
[17] |
刘树根,王一刚,孙玮,等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版),2016,43(1):1-23.
Liu Shugen, Wang Yigang, Sun Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 1-23. |
[18] |
汪泽成,姜华,陈志勇,等. 中上扬子地区晚震旦世构造古地理及油气地质意义[J]. 石油勘探与开发,2020,47(5):884-897.
Wang Zecheng, Jiang Hua, Chen Zhiyong, et al. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the Middle-Upper Yangtze region, South China[J]. Petroleum Exploration and Development, 2020, 47(5): 884-897. |
[19] |
吴和源. 朝向层序地层学标准化:层序地层学研究的一个重要科学命题[J]. 沉积学报,2017,35(3):425-435.
Wu Heyuan. Towards the standardization of sequence stratigraphy: An important scientific proposition of sequence stratigraphy[J]. Acta Sedimentologica Sinica, 2017, 35(3): 425-435. |
[20] |
姜在兴. 沉积体系及层序地层学研究现状及发展趋势[J]. 石油与天然气地质,2010,31(5):535-541.
Jiang Zaixing. Studies of depositional systems and sequence stratigraphy: The present and the future[J]. Oil & Gas Geology, 2010, 31(5): 535-541. |
[21] |
吴靖,姜在兴,吴明昊. 细粒岩层序地层学研究方法综述[J]. 地质科技情报,2015,34(5):16-20.
Wu Jing, Jiang Zaixing, Wu Minghao. Summary of research methods about the sequence stratigraphy of the fine grained rocks[J]. Bulletin of Geological Science and Technology, 2015, 34(5): 16-20. |
[22] |
刘忠宝,杜伟,高波,等. 层序格架中富有机质页岩发育模式及差异分布:以上扬子下寒武统为例[J]. 吉林大学学报(地球科学版),2018,48(1):1-14.
Liu Zhongbao, Du Wei, Gao Bo, et al. Sedimentary model and distribution of organic-rich shale in the sequence stratigraphic framework: A case study of Lower Cambrian in Upper Yangtze region[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1): 1-14. |
[23] |
Embry A F, Johannessen E P. T-R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession, western Sverdrup Basin, Arctic Canada[J]. Norwegian Petroleum Society Special Publications, 1993, 2: 121-146. |
[24] |
龚承林, Steel R J,彭旸,等. 深海碎屑岩层序地层学50年(1970—2020)重要进展[J]. 沉积学报,2022,40(2):292-318.
Gong Chenglin, Steel R J, Peng Yang, et al. Major advances in deep-marine siliciclastic sequence stratigraphy, 1970 to 2020[J]. Acta Sedimentologica Sinica, 2022, 40(2): 292-318. |
[25] |
刘犟,张克银. 井研—犍为地区麦地坪组—筇竹寺组沉积相特征[J]. 科学技术与工程,2018,18(2):20-25.
Liu Jiang, Zhang Keyin. Sedimentary facies characteristics of Maidiping-Qiongzhusi Formation in Jingyan-Qianwei area[J]. Science Technology and Engineering, 2018, 18(2): 20-25. |
[26] |
周杨,金思丁,刘岩,等. 川西南下寒武统筇竹寺组页岩旋回地层学研究[J/OL]. 沉积学报,doi:10.14027/j.issn.1000-0550.2022.013 .
Zhou Yang, Jin Siding, Liu Yan, et al. Cyclostratigraphy research on well-logging of the Lower Cambrian Qiongzhusi Formation in southwestern Sichuan Basin[J/OL]. Acta Sedimentologica Sinica, doi:10.14027/j.issn.1000-0550.2022.013 . |
[27] |
Liu S G, Yang Y, Deng B, et al. Tectonic evolution of the Sichuan Basin, Southwest China[J]. Earth-Science Reviews, 2021, 213: 103470. |
[28] |
Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. |
[29] |
李献华,李武显,何斌. 华南陆块的形成与Rodinia超大陆聚合—裂解:观察、解释与检验[J]. 矿物岩石地球化学通报,2012,31(6):543-559.
Li Xianhua, Li Wuxian, He Bin. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 543-559. |
[30] |
钟勇,李亚林,张晓斌,等. 四川盆地下组合张性构造特征[J]. 成都理工大学学报(自然科学版),2013,40(5):498-510.
Zhong Yong, Li Yalin, Zhang Xiaobin, et al. Features of extensional structures in pre-Sinian to Cambrian strata, Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 498-510. |
[31] |
杜金虎,汪泽成,邹才能,等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报,2016,37(1):1-16.
Du Jinhu, Wang Zecheng, Zou Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16. |
[32] |
刘忠宝,王鹏威,聂海宽,等. 中上扬子地区寒武系页岩气富集条件及有利区优选[J]. 中南大学学报(自然科学版),2022,53(9):3694-3707.
Liu Zhongbao, Wang Pengwei, Nie Haikuan, et al. Enrichment conditions and favorable prospecting targets of Cambrian shale gas in Middle-Upper Yangtze[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3694-3707. |
[33] |
周进高,沈安江,张建勇,等. 四川盆地德阳—安岳台内裂陷与震旦系勘探方向[J]. 海相油气地质,2018,23(2):1-9.
Zhou Jingao, Shen Anjiang, Zhang Jianyong, et al. Deyang-Anyue interplatform rift in Sichuan Basin and its direction of exploration in Sinian[J]. Marine Origin Petroleum Geology, 2018, 23(2): 1-9. |
[34] |
熊添. 井研—犍为地区筇竹寺组页岩孔隙结构特征及其影响因素[D]. 北京:中国石油大学(北京),2017.
Xiong Tian. Characteristics of shale pore structure and its influencing factors of Qiongzhusi Formation shale in Jingyan—Qianwei[D]. Beijing: China University of Petroleum, 2017. |
[35] |
赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.
Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715. |
[36] |
王同. 川南地区下寒武统麦地坪组—筇竹寺组储层特征及形成机理研究[D]. 成都:成都理工大学,2016.
Wang Tong. Reservoir characteristics and formation mechanism of the Lower Cambrian Maidiping-Qiongzhusi formation in southern Sichuan[D]. Chengdu: Chengdu University of Technology, 2016. |
[37] |
汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3):305-312.
Wang Zecheng, Jiang Hua, Wang Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312. |
[38] |
邢凤存,侯明才,林良彪,等. 四川盆地晚震旦世—早寒武世构造运动记录及动力学成因讨论[J]. 地学前缘,2015,22(1):115-125.
Xing Fengcun, Hou Mingcai, Lin Liangbiao, et al. The records and its dynamic genesis discussion of tectonic movement during the Late Sinian and the Early Cambrian of Sichuan Basin[J]. Earth Science Frontiers, 2015, 22(1): 115-125. |
[39] |
王玉满,沈均均,邱振,等. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学,2021,32(9):1308-1323.
Wang Yuman, Shen Junjun, Qiu Zhen, et al. Characteristics and environmental significance of concretion in the Lower Cambrian Qiongzhusi Formation in the Middle-Upper Yangtze area[J]. Natural Gas Geoscience, 2021, 32(9): 1308-1323. |
[40] |
贠浩. 寒武纪开腔骨动物的分类与演化[D]. 西安:西北大学,2019.
Yun Hao. Taxonomy and evolution of the Cambrian animal chancelloriids[D]. Xi'an: Northwest University, 2019. |
[41] |
Zhang Y Y, He Z L, Jiang S, et al. Factors affecting shale gas accumulation in overmature shales case study from Lower Cambrian shale in western Sichuan Basin, South China[J]. Energy & Fuels, 2018, 32(3): 3003-3012. |
[42] |
丁海峰. 川西南地区下寒武统麦地坪组及筇竹寺组页岩储层特征研究[D]. 成都:成都理工大学,2016.
Ding Haifeng. The research of the shale group of Lower Cambrian Maidiping Formation and Qingzhusi Formation in southwestern Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2016. |
[43] |
Gao P, Li S J, Lash G G, et al. Stratigraphic framework, redox history, and organic matter accumulation of an Early Cambrian intraplatfrom basin on the Yangtze Platform, South China[J]. Marine and Petroleum Geology, 2021, 130: 105095. |
[44] |
Wang N, Wen L, Li M J, et al. The origin of abnormally 13C-depleted organic carbon isotope signatures in the Early Cambrian Yangtze Platform[J]. Marine and Petroleum Geology, 2021, 128: 105051. |
[45] |
赵立可,李文皓,和源,等. 四川盆地麦地坪组—筇竹寺组沉积充填规律及勘探意义[J]. 天然气勘探与开发,2020,43(3):30-38.
Zhao Like, Li Wenhao, He Yuan, et al. Sedimentation and filling laws of Maidiping-Qiongzhusi Formations in Sichuan Basin and their significance of oil and gas geological exploration[J]. Natural Gas Exploration and Development, 2020, 43(3): 30-38. |
[46] |
王承红. 井研—犍为地区下寒武统筇竹寺组海相页岩孔隙演化[D]. 成都:成都理工大学,2017.
Wang Chenghong. The Lower Cambrain marine shale porosity evolution of Qiongzhusi Formation in Jingyan-Qianwei area[D]. Chengdu: Chengdu University of Technology, 2017. |
[47] |
王鹏威,刘忠宝,金之钧,等. 川西南地区下寒武统筇竹寺组页岩气纵向差异富集主控因素[J]. 地球科学,2019,44(11):3628-3638.
Wang Pengwei, Liu Zhongbao, Jin Zhijun, et al. Main control factors of shale gas differential vertical enrichment in Lower Cambrian Qiongzhusi Formation, southwest Sichuan Basin, China[J]. Earth Science, 2019, 44(11): 3628-3638. |
[48] |
邱振,韦恒叶,刘翰林,等. 异常高有机质沉积富集过程与元素地球化学特征[J]. 石油与天然气地质,2021,42(4):931-948.
Qiu Zhen, Wei Hengye, Liu Hanlin, et al. Accumulation of sediments with extraordinary high organic matter content: Insight gained through geochemical characterization of indicative elements[J]. Oil & Gas Geology, 2021, 42(4): 931-948. |
[49] |
周国晓,魏国齐,胡国艺,等. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学,2020,31(4):498-506.
Zhou Guoxiao, Wei Guoqi, Hu Guoyi, et al. The development setting and the organic matter enrichment of the Lower Cambrian shales from the western rift trough in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 498-506. |
[50] |
刘建清,何利,何平,等. 康滇古陆东缘筇竹寺组地球化学特征及意义:以云南省昭通市昭阳区锌厂沟剖面为例[J]. 沉积学报,2021,39(5):1305-1319.
Liu Jianqing, He Li, He Ping, et al. Geochemical characteristics and significance of the Qiongzhusi Formation on the eastern margin of the ancient Kangding-Yunnan land: Taking the Xinchanggou section of Zhaoyang district, Zhaotong city, Yunnan province as an example[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1305-1319. |
[51] |
易婷,周文,杨璠,等. 四川盆地龙马溪组页岩气储层石英类型与特征[J]. 矿物学报,2020,40(2):127-136.
Yi Ting, Zhou Wen, Yang Fan, et al. Types and characteristics of quartzs in shale gas reservoirs of the Longmaxi Formation, Sichuan Basin, China[J]. Acta Mineralogica Sinica, 2020, 40(2): 127-136. |
[52] |
蒋柯,周文,邓乃尔,等. 四川盆地五峰组—龙马溪组页岩储层中黄铁矿特征及地质意义[J]. 成都理工大学学报(自然科学版),2020,47(1):50-64.
Jiang Ke, Zhou Wen, Deng Naier, et al. Characteristics and geological significance of pyrites in Wufeng and Longmaxi Formation reservoir shale in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(1): 50-64. |
[53] |
Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200. |
[54] |
胡东风,张汉荣,倪楷,等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业,2014,34(6):17-23.
Hu Dongfeng, Zhang Hanrong, Ni Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23. |
[55] |
郭旭升,赵永强,申宝剑,等. 中国南方海相页岩气勘探理论:回顾与展望[J]. 地质学报,2022,96(1):172-182.
Guo Xusheng, Zhao Yongqiang, Shen Baojian, et al. Marine shale gas exploration theory in southern China: Review and prospects[J]. Acta Geologica Sinica, 2022, 96(1): 172-182. |
[56] |
周慧,李伟,张宝民,等. 四川盆地震旦纪末期—寒武纪早期台盆的形成与演化[J]. 石油学报,2015,36(3):310-323.
Zhou Hui, Li Wei, Zhang Baomin, et al. Formation and evolution of Upper Sinian to Lower Cambrian intraplatformal basin in Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(3): 310-323. |
[57] |
周文,徐浩,余谦,等. 四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J]. 岩性油气藏,2016,28(5):18-25.
Zhou Wen, Xu Hao, Yu Qian, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5): 18-25. |
[58] |
刘若冰. 超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J]. 沉积学报,2015,33(4):817-827.
Liu Ruobing. Analyses of influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in the south-eastern part of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 817-827. |
[59] |
曹茜,温真桃,徐浩,等. 川南D区龙马溪组页岩有机质孔隙发育特征及影响因素[J]. 成都理工大学学报(自然科学版),2021,48(5):599-609,625.
Cao Qian, Wen Zhentao, Xu Hao, et al. Development characteristics and influencing factors of organic matter pores in Longmaxi Formation shale in D area, southern Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(5): 599-609, 625. |