[1] Pomar L. Carbonate systems[M]//Scarselli N, Jurgen A, Chiarella D, et al. Regional geology and tectonics: Principles of geologic analysis. 2nd ed. Netherlands: Elsevier, 2020: 235-311.
[2] 颜佳新, 孟琦, 王夏, 等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253.

Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 232-253.
[3]

Pomar L, Haq B U. Decoding depositional sequences in carbonate systems: Concepts vs experience[J]. Global and Planetary Change, 2016, 146: 190-225.
[4] Wilson J L. Carbonate facies in geologic history[M]. New York: Springer, 2012: 1-417.
[5]

James N P. Facies models 7. Introduction to carbonate facies models[J]. Geoscience Canada, 1977, 4(3): 123-125.
[6]

Betzler C, Brachert T C, Nebelsick J H. The warm temperate carbonate province: A review of the facies, zonations, and delimitations[J]. Courier Forschungsinstitut Senckenberg, 1997, 201(201): 83-99.
[7]

Halfar J, Godinez-Orta L, Mutti M, et al. Nutrient and temperature controls on modern carbonate production: An example from the gulf of California, Mexico[J]. Geology, 2004, 32(3): 213-216.
[8]

Michel J, Borgomano J, Reijmer J J G. Heterozoan carbonates: When, where and why? A synthesis on parameters controlling carbonate production and occurrences[J]. Earth-Science Reviews, 2018, 182(1): 50-67.
[9] 李飞, 武思琴, 刘柯. 鲕粒原生矿物识别及对海水化学成分变化的指示意义[J]. 沉积学报, 2015, 33(3): 500-511.

Li Fei, Wu Siqin, Liu Ke. Identification of ooid primary mineralogy: A clue for understanding the variation in paleo-oceanic chemistry[J]. Acta Sedimentologica Sinica, 2015, 33(3): 500-511.
[10]

Opdyke B N, Wilkinson B H. Carbonate mineral saturation state and cratonic limestone accumulation[J]. American Journal of Science, 1993, 293(3): 217-234.
[11]

Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169.
[12] Schlager W. Carbonate sedimentology and sequence stratigraphy[M]. Tulsa: SEPM, 2005: 1-208.
[13] Schlager W. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems[M]//Insalaco E, Skelton P W, Palmer T J. Carbonate platform systems: Components and interactions. London: Geological Society, London, Special Publications, 2000, 178(1): 217-227.
[14]

Schlager W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464.
[15]

Allwood A C, Walter M R, Kamber B S, et al. Stromatolite reef from the Early Archaean era of Australia[J]. Nature, 2006, 441(7094): 714-718.
[16]

Burne R V, Moore L S. Microbialites: Organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3): 241-254.
[17] Grey K, Awramik S M. Handbook for the study and description of microbialites[M]. East Perth: Geological Survey of Western Australia, 2020: 1-278.
[18]

Suosaari E P, Reid R P, Mercadier C, et al. The microbial carbonate factory of Hamelin Pool, Shark Bay, Western Australia[J]. Scientific Reports, 2022, 12(1): 12902.
[19]

Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
[20]

Li X, Li F, Wang J G, et al. Formation and preservation of Eocene lacustrine microbialites in the western Qaidam Basin (northeastern Qinghai-Tibetan Plateau, China): Petrological, mineralogical, and geochemical constraints[J]. Sedimentary Geology, 2022, 440: 106257.
[21]

Feldmann M, McKenzie J A. Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas[J]. Palaios, 1998, 13(2): 201-212.
[22]

Jahnert R J, Collins L B. Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia[J]. Marine Geology, 2012, 303-306: 115-136.
[23]

Grotzinger J P, Knoll A H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?[J]. Annual Review of Earth and Planetary Sciences, 1999, 27: 313-358.
[24] Grotzinger J P, James N P. Precambrian carbonates: Evolution of understanding[M]//Grotzinger J P, James N P. Carbonate sedimentation and diagenesis in the evolving Precambrian world. Tulsa: SEPM Special Publication, 2000: 3-20.
[25] 李雅兰, 李飞, 吕月健, 等. 陕南勉县寒武系仙女洞组生物礁岩相学及古环境分析[J]. 沉积学报, 2024,42(2):608-618.

Li Yalan, Li Fei, Yuejian Lü, et al. Petrographic features and paleoenvironmental significance of the Lower Cambrian reef in the Xiannüdong Formation, Mian county, southern Shaanxi[J]. Acta Sedimentologica Sinica, 2024, 42(2): 608-618.
[26] 李杨凡, 李飞. 前寒武—寒武纪重大转折期生物礁是如何演化的?[J]. 地球科学, 2022, 47(10):3853-3855.

Li Yangfan, Li Fei. How did reefs evolve during the Precambrian-Cambrian transition?[J]. Earth Science, 2022, 47(10): 3853-3855.
[27]

Li F, Deng J T, Kershaw S, et al. Microbialite development through the Ediacaran-Cambrian transition in China: Distribution, characteristics, and paleoceanographic implications[J]. Global and Planetary Change, 2021, 205: 103586.
[28] 邓嘉婷, 李飞, 龚峤林, 等. 埃迪卡拉纪—寒武纪之交微生物岩特征对比及古海洋学意义:以汉南—米仓山地区为例[J]. 古地理学报, 2021, 23(5): 919-936.

Deng Jiating, Li Fei, Gong Qiaolin, et al. Characteristics and palaeoceanographic significances of microbialite development in the Ediacaran-Cambrian transition: A case study from Hannan-Micangshan area[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(5): 919-936.
[29]

Chen Z Q, Tu C Y, Pei Y, et al. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic[J]. Earth-Science Reviews, 2019, 189: 21-50.
[30]

Kershaw S, Crasquin S, Li Y, et al. Microbialites and global environmental change across the Permian-Triassic boundary: A synthesis[J]. Geobiology, 2012, 10(1): 25-47.
[31]

Collins L B, Jahnert R J. Stromatolite research in the Shark Bay world heritage area[J]. Journal of the Royal Society of Western Australia, 2014, 97(1): 189-219.
[32]

Papineau D, Walker J J, Mojzsis S J, et al. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia[J]. Applied and Environmental Microbiology, 2005, 71(8): 4822-4832.
[33] Logan B W, Davies G R, Read J F, et al. Carbonate sedimentation and environments, Shark Bay, Western Australia[M]. Tulsa: AAPG, 1970: 1-205.
[34]

Tang H, Kershaw S, Liu H, et al. Permian-Triassic boundary microbialites (PTBMs) in Southwest China: Implications for paleoenvironment reconstruction[J]. Facies, 2017, 63(1): 1-23.
[35]

Tang H, Kershaw S, Tan X C, et al. Sedimentology of reefal buildups of the Xiannüdong Formation (Cambrian Series 2), SW China[J]. Journal of Palaeogeography, 2019, 8: 11.
[36]

Mata S A, Bottjer D J. Microbes and mass extinctions: Paleoenvironmental distribution of microbialites during times of biotic crisis[J]. Geobiology, 2012, 10(1): 3-24.
[37]

Wan B, Tang Q, Pang K, et al. Repositioning the Great Unconformity at the southeastern margin of the North China Craton[J]. Precambrian Research, 2019, 324: 1-17.
[38] 牟传龙, 周恳恳, 陈小炜, 等. 中国岩相古地理图集(埃迪卡拉纪志留纪)[M]. 北京: 地质出版社, 2016: 1-154.

Mou Chuanlong, Zhou Kenken, Chen Xiaowei, et al. Atlas of lithofacies and paleogeography in China, Ediacaran-Silurian[M]. Beijing: Geological Publishing House, 2016: 1-154.
[39] 刘印环, 王建平, 张海清, 等. 河南的寒武系和奥陶系[M].北京: 地质出版社, 1991: 1-254.

Liu Yinhuan, Wang Jianping, Zhang Haiqing,et al. The Cambrian and Ordovician systems of Henan province [M]. Beijing: Geological Publishing House, 1991: 1-254.
[40]

Xin H, Chen J T, Gao B, et al. Spatio-temporal distribution of the Cambrian maceriate reefs across the North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 614: 111429.
[41] 裴放, 张海清, 阎国顺, 等. 河南省地层古生物研究(第三分册)早古生代(华北型)[M]. 郑州: 黄河水利出版社, 2008: 1-302.

Pei Fang, Zhang Haiqing, Yan Guoshun, et al. The Third Paleozoic study of stratigraphic paleontology in Henan province (Early Paleozoic)[M]. Zhengzhou: The Yellow River Water Conservancy Press, 2008: 1-302.
[42]

Shapiro R S. A comment on the systematic confusion of thrombolites[J]. Palaios, 2000, 15(2): 166-169.
[43]

Michel J, Laugié M, Pohl A, et al. Marine carbonate factories: A global model of carbonate platform distribution[J]. International Journal of Earth Sciences, 2019, 108(6): 1773-1792.
[44] 李飞, 易楚恒, 李红,等. 微生物成因鲕粒研究进展[J]. 沉积学报, 2022, 40(2): 319-334.

Li Fei, Yi Chuheng, Li Hong, et al. Recent advances in ooid microbial origin: A review[J]. Acta Sedimentologica Sinica, 2022, 40(2): 319-334.
[45]

Jiang L Q, Feely R A, Carter B R, et al. Climatological distribution of aragonite saturation state in the global oceans[J]. Global Biogeochemical Cycles, 2015, 29(10): 1656-1673.
[46] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer, 2010: 1-984.
[47]

Millero F J, Lee K, Roche M. Distribution of alkalinity in the surface waters of the major oceans[J]. Marine Chemistry, 1998, 60(1/2): 111-130.
[48]

Arp G, Reimer A, Reitner J. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia[J]. Journal of Sedimentary Research, 2003, 73(1): 105-127.
[49]

Schultze L K P, Merckelbach L M, Carpenter J R. Storm-induced turbulence alters shelf sea vertical fluxes[J]. Limnology and Oceanography Letters, 2020, 5(3): 264-270.
[50]

Rumyantseva A, Lucas N, Rippeth T, et al. Ocean nutrient pathways associated with the passage of a storm[J]. Global Biogeochemical Cycles, 2015, 29(8): 1179-1189.
[51]

Hoover R S, Hoover D, Miller M, et al. Zooplankton response to storm runoff in a tropical estuary: Bottom-up and top-down controls[J]. Marine Ecology Progress Series, 2006, 318: 187-201.
[52]

Mutti M, Hallock P. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints[J]. International Journal of Earth Sciences, 2003, 92(4): 465-475.
[53] Hallock P. Coral reefs, carbonate sediments, nutrients, and global change[M]//Stanley G D. The history and sedimentology of ancient reef systems. Boston: Springer, 2001: 387-427.
[54]

Hallock P, Schlager W. Nutrient excess and the demise of coral reefs and carbonate platforms[J]. Palaios, 1986, 1(4): 389-398.
[55]

Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 144(1/2): 3-19.
[56]

Li H, Li F, Li X, et al. Development and collapse of the Early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583: 110665.
[57]

Lee J H, Riding R. Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs[J]. Earth-Science Reviews, 2018, 181: 98-121.
[58] 李杨凡, 李飞, 王夏, 等. 上扬子北缘寒武纪早期后生动物礁特征及古环境意义[J]. 地球科学,2023,48(11):4321-4334.

Li Yangfan, Li Fei, Wang Xia, et al. Sedimentary characteristics and paleoenvironmental significance of Early Cambrian metazoan reefs in northern margin of Upper Yangtze Block[J]. Journal of Earth Science, 2023,48(11):4321-4334.
[59]

Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.
[60]

Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
[61]

Chen J T, Chough S K, Han Z Z, et al. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian Formations (late Middle Cambrian to Furongian), Shandong province, China: Sequence-stratigraphic implications[J]. Sedimentary Geology, 2011, 233: 129-149.