[1] |
Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26. |
[2] |
Tholen K, Pähtz T, Yizhaq H, et al. Megaripple mechanics: Bimodal transport ingrained in bimodal sands[J]. Nature Communications, 2022, 13(1): 162. |
[3] |
Liang J, Liu J, Xu, G, et al. Grain-size characteristics and net transport patterns of surficial sediments in the Zhejiang nearshore area, East China Sea[J]. Oceanologia, 2020, 62(1): 12-22. |
[4] |
Vandenberghe J, Sun Y, Wang X, et al. Grain-size characterization of reworked fine-grained aeolian deposits[J]. Earth-Science Reviews, 2018, 177: 43-52. |
[5] |
Zhang P, Yao W Y, Liu G B, et al. Experimental study of sediment transport processes and size selectivity of eroded sediment on steep Pisha sandstone slopes[J]. Geomorphology, 2020, 363: 107211. |
[6] |
McLaren P. An interpretation of trends in grain size measures[J]. Journal of Sedimentary Petrology, 1981, 51(2): 611-624. |
[7] |
Gao S, Collins M. A critique of the “McLaren method” for defining sediment transport paths: Discussion[J]. Journal of Sedimentary Petrology, 1991, 61(1): 143-146. |
[8] |
Gao S, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”[J]. Sedimentary Geology, 1992, 81(1/2): 47-60. |
[9] |
Oakey R J, Green M, Carling P A, et al. Grain-shape analysis: A new method for determining representative particle shapes for populations of natural grains[J]. Journal of Sedimentary Research, 2005, 75(6): 1065-1073. |
[10] |
Blott S J, Pye K. Particle shape: A review and new methods of characterization and classification[J]. Sedimentology, 2008, 55(1): 31-63. |
[11] |
Suzuki K, Fujiwara H, Ohta T. The evaluation of macroscopic and microscopic textures of sand grains using elliptic Fourier and principal component analysis: Implications for the discrimination of sedimentary environments[J]. Sedimentology, 2015, 62(4): 1184-1197. |
[12] |
Woronko B, Dłużewski M, Woronko D. Sand-grain micromorphology used as a sediment-source indicator for Kharga Depression dunes (western Desert, S Egypt) [J]. Aeolian Research, 2017, 29: 42-54. |
[13] |
Sandeep C S, He H, Senetakis K. An experimental micromechanical study of sand grain contacts behavior from different geological environments[J]. Engineering Geology, 2018, 246: 176-186. |
[14] |
van Hateren J A, van Buuren U, Arens S M, et al. Identifying sediment transport mechanisms from grain size–shape distributions, applied to Aeolian sediments[J]. Earth Surface Dynamics, 2020, 8(2): 527-553. |
[15] |
Bridge J S, Bennett S J. A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities[J]. Water Resources Research, 1992, 28(2): 337-363. |
[16] |
Domokos G, Jerolmack D J, Sipos A Á, et al. How river rocks round: resolving the shape-size paradox[J]. PLoS One, 2014, 9(2): e88657. |
[17] |
Sun R, Xiao H, Sun H L. Realistic representation of grain shapes in CFD–DEM simulations of sediment transport with a bonded-sphere approach[J]. Advances in Water Resources, 2017, 107: 421-438. |
[18] |
Novák-Szabó T, Sipos A Á, Shaw S, et al. Universal characteristics of particle shape evolution by bed-load chipping[J]. Science Advances, 2018, 4(3): eaao4946. |
[19] |
Jain R, Tschisgale S, Fröhlich J. Effect of particle shape on bedload sediment transport in case of small particle loading[J]. Meccanica, 2020, 55(2): 299-315. |
[20] |
Komar P D, Reimers C E. Grain shape effects on settling rates[J]. The Journal of Geology, 1978, 86(2): 193-209. |
[21] |
Dietrich W E. Settling velocity of natural particles[J]. Water Resources Research, 1982, 18(6): 1615-1626. |
[22] |
Shang Y, Kaakinen A, Beets C J, et al. Aeolian silt transport processes as fingerprinted by dynamic image analysis of the grain size and shape characteristics of Chinese Loess and red clay deposits[J]. Sedimentary Geology, 2018, 375: 36-48. |
[23] |
McCarthy G R. The rounding of beach sands[J]. American Journal of Science, 1933, s5-25(147): 205-224. |
[24] |
Williams A T, Morgan P. Quartz grain S.E.M. textural variations of the beach/dune interface, Long Island, U.S.A.[J]. Journal of Coastal Research, 1988 (Special.3): 37-45. |
[25] |
Shepard F P, Young R. Distinguishing between beach and dune sands[J]. Journal of Sedimentary Petrology, 1961, 31(2): 196-214. |
[26] |
程武风,陈沈良,胡进. 海南万宁岬湾海岸海滩稳定性研究[J]. 海洋工程,2017,35(1):121-128.
Cheng Wufeng, Chen Shenliang, Hu Jin. Stability of headland bay beaches on the east coast of Hainan Island[J]. The Ocean Engineering, 2017, 35(1): 121-128. |
[27] |
严国柱,吴学益,杨树康,等. 海南岛主要构造体系的划分及其与石碌式富铁矿成矿关系的探讨[J]. 中山大学学报,1979, 18(3):103-122.
Yan Guozhu, Wu Xueyi, Yang Shukang, et al. A discussion on major tectonic systems and their relation to the formation of the ferro-ferriginous ore of Shilu type in Hainan Island[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1979, 18(3): 103-122. |
[28] |
薛玉龙,王雪木,杨凡. 海南万宁浅海表层沉积物粒度及地球化学特征对浅海砂矿的指示[J]. 中国矿业,2017,26(增刊1):220-226.
Xue Yulong, Wang Xuemu, Yang Fan. Characteristics of sediment granularity and geochemistry indicate the Ti-Zr placer at Wanning, Hainan province[J]. China Mining Magazine, 2017, 26(Suppl.1): 220-226. |
[29] |
王宝灿,陈沈良,龚文平,等. 海南岛港湾海岸的形成与演变[M]. 北京:海洋出版社,2006.
Wang Baocan, Chen Shenliang, Gong Wenping, et al. Formation and evolution of the embayment coast of Hainan Island[M]. Beijing: China Ocean Press, 2006. |
[30] |
罗章,蔡斌,陈沈良. 动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较[J]. 沉积学报,2016,34(5):881-891.
Luo Zhang, Cai Bin, Chen Shenliang. Grain size and shape analysis of beach sediment using dynamic image analysis and comparison with sieving method[J]. Acta Sedimentologica Sinica, 2016, 34(5): 881-891. |
[31] |
Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. |
[32] |
Cox E P. A method of assigning numerical and percentage values to the degree of roundness of sand grains[J]. Journal of Paleontology, 1927, 1(3): 179-183. |
[33] |
Campaña I, Benito-Calvo A, Pérez-González A, et al. Assessing automated image analysis of sand grain shape to identify sedimentary facies, Gran Dolina archaeological site (Burgos, Spain) [J]. Sedimentary Geology, 2016, 346: 72-83. |
[34] |
Szabó T, Domokos G, Grotzinger J P, et al. Reconstructing the transport history of pebbles on Mars[J]. Nature Communications, 2015, 6: 8366. |
[35] |
Joo Y J, Soreghan A M, Madden M E E, et al. Quantification of particle shape by an automated image analysis system: A case study in natural sediment samples from extreme climates[J]. Geosciences Journal, 2018, 22(4): 525-532. |
[36] |
王国庆,石学法,刘焱光,等. 粒径趋势分析对长江南支口外沉积物输运的指示意义[J]. 海洋学报,2007,29(6):161-166.
Wang Guoqing, Shi Xuefa, Liu Yanguang, et al. Grain-size trend analysis on the south branch of the Changjiang Estuary in China and its implication to sediment transportation[J]. Acta Oceanologica Sinica, 2007, 29(6): 161-166. |
[37] |
MacCarthy G R, Huddle J W. Shape-sorting of sand grains by wind action[J]. American Journal of Science, 1938, s5-35(205): 64-73. |
[38] |
国家海洋局908专项办公室. 海洋底质调查技术规程[M]. 北京:海洋出版社,2006.
Project Office908of the State Oceanic Administration. Technical manual for submarine surface sediment survey[M]. Beijing: China Ocean Press, 2006. |
[39] |
López M, López I, Aragonés L, et al. The erosion on the east coast of Spain: Wear of particles, mineral composition, carbonates and Posidonia oceanica[J]. Science of the Total Environment, 2016, 572: 487-497. |
[40] |
Aragonés L, Pagán J I, López M P, et al. The impacts of Segura River (Spain) channelization on the coastal seabed[J]. Science of the Total Environment, 2016, 543: 493-504. |
[41] |
Masselink G, Puleo J A. Swash-zone morphodynamics[J]. Continental Shelf Research, 2006, 26(5): 661-680. |
[42] |
Salman A D, Verba A. New aproximate equations to estimate the drag coefficient of different particles of regular shape[J]. Periodica Polytechnica: Chemical Engineering, 1988, 32(4): 261-276 |
[43] |
Moran P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1/2): 17-23. |
[44] |
Lee J, Li S W. Extending Moran's Index for measuring spatiotemporal clustering of geographic events[J]. Geographical Analysis, 2017, 49(1): 36-57. |
[45] |
Tepanosyan G, Sahakyan L, Zhang C S, et al. The application of Local Moran's I to identify spatial clusters and hot spots of Pb, Mo and Ti in urban soils of Yerevan[J]. Applied Geochemistry, 2019, 104: 116-123. |
[46] |
Poizot E, Anfuso G, Méar Y, et al. Confirmation of beach accretion by grain-size trend analysis: Camposoto beach, Cádiz, SW Spain[J]. Geo-Marine Letters, 2013, 33(4): 263-272. |
[47] |
Shang Y, Beets C J, Tang H, et al. Variations in the provenance of the Late Neogene red clay deposits in northern China[J]. Earth and Planetary Science Letters, 2016, 439: 88-100. |
[48] |
Schulte P, Lehmkuhl F. The difference of two laser diffraction patterns as an indicator for post-depositional grain size reduction in loess-paleosol sequences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 126-136. |
[49] |
Torre G, Gaiero D M, Cosentino N J, et al. The paleoclimatic message from the polymodal grain-size distribution of Late Pleistocene-Early Holocene Pampean loess (Argentina)[J]. Aeolian Research, 2020, 42: 100563. |
[50] |
Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202(3): 409-424. |
[51] |
Chen J, Yang T B, Qiang M R, et al. Interpretation of sedimentary subpopulations extracted from grain size distributions in loess deposits at the sea of Azov, Russia[J]. Aeolian Research, 2020, 45: 100597. |
[52] |
Jiang Q D, Hao Q Z, Peng S Z, et al. Grain-size evidence for the transport pathway of the Xiashu loess in northern subtropical China and its linkage with fluvial systems[J]. Aeolian Research, 2020, 46: 100613. |
[53] |
López M, Baeza-Brotons F, López I, et al. Factors influencing the rate of beach sand wear: Activation layer thickness and sediment durability[J]. Science of the Total Environment, 2019, 658: 367-373. |
[54] |
Chmielowska D, Woronko B, Dorocki S. Applicability of automatic image analysis in quartz-grain shape discrimination for sedimentary setting reconstruction[J]. CATENA, 2021, 207: 105602. |
[55] |
Li D M, Li Y Y, Wang Z C, et al. Quantitative, SEM-based shape analysis of sediment particles in the Yellow River[J]. International Journal of Sediment Research, 2016, 31(4): 341-350. |