[1] Behar F and Vandenbroucke M. Chemical modelling of kerogens. Organic Geochemistry, 1987, 11:15~24
[2] Faulon J F, Vandenbroucke M, Drappier J M, et al. 3D Chemical model for geological macromolecules. Organic Geochemistry, 1990, 16: 981~993
[3] Jose V Ibarra, Edgar Munoz and Rafael Moliner. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry, 1996, 24: 725~735
[4] Painter P, Sobkowiak M, Heidary S, Coleman M. Current status of FTIR in the analysis of coal structure. Am. Chem.Soc. Div. Fuel Chem., 1994, 39(1): 49~53
[5] Roxhet P G, Robin P L, Nicaise G. Characterization of kerogens and of their evaluation by infrared spectroscopy. In: Durand B, ed. Kerogen, Editions Technip-Paris, 1980. 163~189
[6] Landiais P and Rochdi A. Reliability of semi-quantitative data extracted from transmission microscopy Fourier transform infrared spectra of coal. Energy & Fuels, 1990, 4(3): 290~295
[7] Oberlin A, Boulmier J L, Villay M. Electron microscopy studies of kerogen micro-structure. In: Durand B, ed. Kerogen. 1980. 218~294
[8] 傅家谟, 秦匡宗. 干酪根地球化学. 广州:广东科技出版社,1995[Fu Jiamo, Qing Kuangzong. Kerogen Geochemistry. Guangzhou: Guangdong Science & Technology Press, 1995]
[9] Ganz H and kalkrenth W. kerogen-type and the evaluation of source rock and oil shale potentials. Fuel, 1987, 66:708~711
[10] Ganz H,and Kalkreuth W. The potential of infrared spectroscopy for the classification of kerogen,coal and bituem. Wissenschaft & Technik, 1990, 43(3): 116~117
[11] Landais P, Rochdi A. Reliability of Semi-quantitative data extracted from transmission microscopy-fuorier transform infrared spectra of coal. Energy & Fuels, 1990, 4(3):290~295
[12] 杜朗B主编. 干酪根--沉积岩中的不溶有机质. 石油实验地质编委会[Dulang B ed. Kerogen- insoluable matter in sedimentary rock. Committee of Petroleum and Geology]
[13] 王宗贤,刘雁来,等. 用红外光谱表征干酪根和煤的芳碳量. 石油大学学报(自然科学版),1992,16(4):66~71[Wang Zongxian, Liu Yanlai, et al., Description of kerogen and aromaticcarbon amount using ultra red spectra. Journal of Petroleum University(Natural Science), 1992,16(4):66~71]
[14] 蒙琪,孙启帮. 应用红外光谱法划分生油岩有机质类型. 石油实验地质,1985,7(3):193~189[Meng Qi, Sun Qibang. Classification of source rock organic matter type using ultra red spectra. Petroleum Experimental Geology, 1985,7(3):193~189]
[15] 杨志琼,章玲. 利用红外光谱剖析干酪根三类主要原子团的演化. 石油与天然气地质,1989,10(1):53~58[Yang Zhiqiong, Zhang Ling. Analysis on the evolution of three main atomic groups in kerogen by use of ultra red spectra. Oil & Gas Geology, 1989,10(1):53~58]
[16] Ganz H, Kalkreuth W. Application of infrared spectroscopy to the classification of kerogen type and the evaluation of source rock and oil shale potentials. Fuel, 1987, 66: 708~711
[17] Kister J, Guiliano M, Largeau C, Deronne S and Casadevall E. Characterization of chemical structure, degree of maturation and oil potential of torbanites (type I kerogens) by quantitative FTIR spectroscopy. Fuel, 1990, 69: 1356~1361
[18] 黄第藩,李晋超,王会祥. 在成烃作用中干酪根的结构演化图解. 科学通报, 1987,(16):1226~1229[Huang Difan, Li Jinchao, Wang Huixiang. Figuration of structural evolution of kerogen during hydrocarbon generation. Chinese Science Bulletin, 1987,(16):1226~1229]
[19] 王新洲,宋一涛,王学军. 石油成因与排油物理模拟--方法、机理及应用. 山东东营: 石油大学出版社,1996[Wang Xinzhou, Wang Xuejun. Origin of petroleum and oil expulsion physical simulation-method, mechanism and application. Dongying Shandong: Petroleum University Press, 1996]