[1] 姜鹏飞,吴建发,朱逸青,等. 四川盆地海相页岩气富集条件及勘探开发有利区[J]. 石油学报,2023,44(1):91-109.

Jiang Pengfei, Wu Jianfa, Zhu Yiqing, et al. Enrichment conditions and favorable areas for exploration and development of marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(1): 91-109.
[2] 杨跃明,陈玉龙,刘燊阳,等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业,2021,41(1):42-58.

Yang Yueming, Chen Yulong, Liu Shenyang, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(1): 42-58.
[3] 胡德高,周林,包汉勇,等. 川东红星地区HY1井二叠系页岩气勘探突破及意义[J]. 石油学报,2023,44(2):241-252.

Hu Degao, Zhou Lin, Bao Hanyong, et al. Breakthrough and significance of Permian shale gas exploration of well HY1 in Hongxing area, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2023, 44(2): 241-252.
[4] 谢通,潘诗洋,王亿,等. 鄂西恩地1井上二叠统大隆组页岩气富集主控因素分析[J]. 资源环境与工程,2022,36(2):149-153,197.

Xie Tong, Pan Shiyang, Wang Yi, et al. Analysis on main controlling factors of shale gas enrichment in Upper Permian Dalong Formation in well Endi 1, western Hubei[J]. Resources Environment & Engineering, 2022, 36(2): 149-153, 197.
[5] 姜振学,宋岩,唐相路,等. 中国南方海相页岩气差异富集的控制因素[J]. 石油勘探与开发,2020,47(3):617-628.

Jiang Zhenxue, Song Yan, Tang Xianglu, et al. Controlling factors of marine shale gas differential enrichment in southern China[J]. Petroleum Exploration and Development, 2020, 47(3): 617-628.
[6] 邱振,韦恒叶,刘翰林,等. 异常高有机质沉积富集过程与元素地球化学特征[J]. 石油与天然气地质,2021,42(4):931-948.

Qiu Zhen, Wei Hengye, Liu Hanlin, et al. Accumulation of sediments with extraordinary high organic matter content: Insight gained through geochemical characterization of indicative elements[J]. Oil & Gas Geology, 2021, 42(4): 931-948.
[7]

Berner R A. Atmospheric carbon dioxide levels over Phanerozoic times[J]. Science, 1990, 249(4975): 1382-1386.
[8]

Ridgwell A, Zeebe R E. The role of the global carbonate cycle in the regulation and evolution of the Earth system[J]. Earth and Planetary Science Letters, 2005, 234(3/4): 299-315.
[9]

Burdige D J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485.
[10]

Müller P J, Suess E. Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1979, 26(12): 1347-1362.
[11]

Canfield D E. Sulfate reduction and oxic respiration in marine sediments: Implications for organic carbon preservation in euxinic environments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(1): 121-138.
[12]

Betts J N, Holland H D. The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen[J]. Global and Planetary Changes, 1991, 5(1/2): 5-18.
[13]

Ibach L E J. Relationship between sedimentation rate and total organic carbon content in ancient marine sediments[J]. AAPG Bulletin, 1982, 66(2): 170-188.
[14]

Pedersen T F, Calvert S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks[J]. AAPG Bulletin, 1990, 74(4): 454-466.
[15]

Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. Organic Geochemistry, 1980, 2(1): 9-31.
[16]

Lee C. Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3323-3335.
[17] Canfield D E. Organic matter oxidation in marine sediments[M]//Wollast R, Mackenzie F T, Chou L. Interactions ofC, N, P and S biogeochemical cycles and global change. Berlin Heidelberg: Springer, 1993: 333-363.
[18]

Jessen G L, Lichtschlag A, Ramette A, et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea)[J]. Science Advances, 2017, 3(2): e1601897.
[19]

Howell M W, Thunell R C. Organic carbon accumulation in Bannock Basin: Evaluating the role of productivity in the formation of eastern Mediterranean sapropels[J]. Marine Geology, 1992, 103(1/2/3): 461-471.
[20]

Klinkhammer G P, Lambert C E. Preservation of organic matter during salinity excursions[J]. Nature, 1989, 339(6222): 271-274.
[21]

Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81-115.
[22]

Hartnett H E, Keil R G, Hedges J I, et al. Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J]. Nature, 1998, 391(6667): 572-575.
[23]

Dale A W, Sommer S, Lomnitz U, et al. Organic carbon production, mineralisation and preservation on the Peruvian margin[J]. Biogeosciences, 2015, 12(5): 1537-1559.
[24]

Meyers S R. Production and preservation of organic matter: The significance of iron[J]. Paleoceanography, 2007, 22(4): PA4211.
[25]

Thomas D J, Tilghman D S. Geographically different oceanographic responses to global warming during the Cenomanian-Turonian interval and Oceanic Anoxic Event 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411: 136-143.
[26]

Ramanampisoa L, Disnar J R. Primary control of paleoproduction on organic matter preservation and accumulation in the Kimmeridge rocks of Yorkshire (UK)[J]. Organic Geochemistry, 1994, 21(12): 1153-1167.
[27]

Bertrand P, Lallier-Vergès E. Past sedimentary organic matter accumulation and degradation controlled by productivity[J]. Nature, 1993, 364(6440): 786-788.
[28]

Calvert S E. Oceanographic controls on the accumulation of organic matter in marine sediments[J]. Geological Society, London, Special Publications, 1987, 26: 137-151.
[29]

Gardner W S, Chandler J F, Laird G A. Organic nitrogen mineralization and substrate limitation of bacteria in Lake Michigan[J]. Limnology and Oceanography, 1989, 34(2): 478-485.
[30]

Gale P M, Reddy K R, Graetz D A. Mineralization of sediment organic matter under anoxic conditions[J]. Journal of Environmental Quality, 1992, 21(3): 394-400.
[31]

Arthur M A, Dean W E. Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea[J]. Paleoceanography, 1998, 13(4): 395-411.
[32]

Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 13-1-13-29.
[33]

Uematsu M, Toratani M, Kajino M, et al. Enhancement of primary productivity in the western North Pacific caused by the eruption of the Miyake-Jima volcano[J]. Geophysical Research Letters, 2004, 31(6): L06106.
[34]

Hamme R C, Webley P W, Crawford W R, et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific[J]. Geophysical Research Letters, 2010, 37(19): L19604.
[35]

Achterberg E P, Moore C M, Henson S A, et al. Natural iron fertilization by the Eyjafjallajökull volcanic eruption[J]. Geophysical Research Letters, 2013, 40(5): 921-926.
[36] Jones M T. The environmental and climatic impacts of volcanic ash deposition[M]//Schmidt A, Fristad K E, Elkins-Tanton L T. Volcanism and global environmental change. Cambridge: Cambridge University Press, 2015: 260-274.
[37]

Longman J, Palmer M R, Gernon T M, et al. The role of tephra in enhancing organic carbon preservation in marine sediments[J]. Earth-Science Reviews, 2019, 192: 480-490.
[38] Catuneanu O. Sequence stratigraphy[M]//Scarselli N, Chiarella D, Bally A W, et al. Regional geology and tectonics: Principles of geologic analysis. 2nd ed. Amsterdam: Elsevier, 2020: 605-686.
[39] Tucker M E. Sedimentary rocks in the field[M]. 3rd ed. Chichester: Wiley, 2003: 1-229.
[40]

Puga-Bernabéu Á, Martín J M, Braga J C, et al. Offshore remobilization processes and deposits in low-energy temperate-water carbonate-ramp systems: Examples from the Neogene basins of the Betic Cordillera (SE Spain)[J]. Sedimentary Geology, 2014, 304: 11-27.
[41]

Zhong Y T, He B, Mundil R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province[J]. Lithos, 2014, 204: 14-19.
[42]

Shen S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334(6061): 1367-1372.
[43]

He B, Xu Y G, Wang Y M, et al. Sedimentation and lithofacies paleogeography in southwestern China before and after the Emeishan flood volcanism: New insights into surface response to mantle plume activity[J]. The Journal of Geology, 2006, 114(1): 117-132.
[44]

Calvert S E, Pedersen T F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application[J]. Developments in Marine Geology, 2007, 1: 567-644.
[45]

Algeo T J, Tribovillard N. Environmental analysis of paleoceano-graphic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
[46]

Bishop J K B. The barite-opal-organic carbon association in oceanic particulate matter[J]. Nature, 1988, 332(6162): 341-343.
[47]

Racki G, Mazur S, Narkiewicz K, et al. A waning Saxothuringian Ocean evidenced in the Famennian tephra-bearing siliceous succession of the Bardo Unit (Central Sudetes, SW Poland)[J]. GSA Bulletin, 2022, 134(9/10): 2373-2398.
[48]

Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity[J]. Sedimentary Geology, 1986, 47(1/2): 125-148.
[49] Simoneit B R T. Hydrothermal activity and its effects on sedimentary organic matter[M]//Parnell J, Kucha H, Landais P. Bitumens in ore deposits. Berlin, Heidelberg: Springer, 1993: 81-96.
[50]

Chen H, Xie X N, Hu C Y, et al. Geochemical characteristics of Late Permian sediments in the Dalong Formation of the Shangsi section, northwest Sichuan Basin in South China: Implications for organic carbon-rich siliceous rocks formation[J]. Journal of Geochemical Exploration, 2012, 112: 35-53.