[1] |
Flügel E.Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin: Springer, 2010. |
[2] |
Schlager W.Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464. |
[3] |
Lees A.Possible influence of salinity and temperature on modern shelf carbonate sedimentation[J]. Marine Geology, 1975, 19(3): 159-198. |
[4] |
Lees A, Buller A T.Modern temperate-water and warm-water shelf carbonate sediments contrasted[J]. Marine Geology, 1972, 13(5): M67-M73. |
[5] |
Nelson C S.An introductory perspective on non-tropical shelf carbonates[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 3-12. |
[6] |
Carannante G, Esteban M, Milliman J D, et al.Carbonate lithofacies as paleolatitude indicators: Problems and limitations[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 333-346. |
[7] |
James N P, Clarke J A D.Cool-water carbonates[M]. Tulsa: SEPM Society for Sedimentary Geology, 1997. |
[8] |
Pomar L.Types of carbonate platforms: A genetic approach[J]. Basin Research, 2001, 13(3): 313-334. |
[9] |
Schlager W.Carbonate sedimentology and sequence stratigraphy[M]. Tulsa: SEPM Society for Sedimentary Geology, 2005. |
[10] |
Reijmer J J G.Carbonate factories[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 80-84. |
[11] |
Li F, Gong Q L, Burne R V, et al.Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354. |
[12] |
李飞.二叠纪—三叠纪之交鲕粒结构特征及时空分布对古海洋环境的指示[D]. 武汉:中国地质大学,2016.
Li Fei.The spatial and temporal distributions of ooids and their petrological and geochemical compositions: Implications for paleoceanographic conditions in the Permian-Triassic transition[D]. Wuhan: China University of Geosciences, 2016. |
[13] |
Pomar L, Hallock P.Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169. |
[14] |
Michel J, Laugié M, Pohl A, et al.Marine carbonate factories: A global model of carbonate platform distribution[J]. International Journal of Earth Sciences, 2019, 108(6): 1773-1792. |
[15] |
Laugié M, Michel J, Pohl A, et al.Global distribution of modern shallow-water marine carbonate factories: A spatial model based on environmental parameters[J]. Scientific Reports, 2019, 9(1): 16432. |
[16] |
Taviani M, Angeletti L, Ceregato A, et al.The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): Chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage[J]. Biogeosciences, 2013, 10(7): 4653-4671. |
[17] |
Reijmer J J G.Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796. |
[18] |
Joseph A.Seafloor hot chimneys and cold seeps: Mysterious life around them[M]//Joseph A. Investigating seafloors and oceans. Amsterdam: Elsevier, 2017: 307-375. |
[19] |
Chen D F, Cathles L M.On the thermal impact of gas venting and hydrate crystallization[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11): B11204. |
[20] |
Feng D, Chen D F.Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 74-83. |
[21] |
Paull C K, Hecker B, Commeau R, et al.Biological communities at the Florida escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226(4677): 965-967. |
[22] |
Feng D, Qiu J W, Hu Y, et al.Cold seep systems in the South China Sea: An overview[J]. Journal of Asian Earth Sciences, 2018, 168: 3-16. |
[23] |
Suess E.Marine cold seeps: Background and recent advances[M]//Wilkes H. Hydrocarbons, oils and lipids: Diversity, origin, chemistry and fate. Cham: Springer, 2020: 1-21. |
[24] |
吴一帆,管红香,许兰芳,等.南海北部海马冷泉区表层沉积物的AOM生物标志化合物特征及意义[J]. 地球科学,2022,47(8):3005-3015.
Wu Yifan, Guan Hongxiang, Xu Lanfang, et al.Characteristics and significance of biomarkers related to AOM in surface sediments of the Haima cold seep in the northern South China Sea[J]. Earth Science, 2022, 47(8): 3005-3015. |
[25] |
陈多福,陈先沛,陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报,2002,20(1):34-40.
Chen Duofu, Chen Xianpei, Chen Guangqian.Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1): 34-40. |
[26] |
Campbell K A.Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 362-407. |
[27] |
Orange D L, Greene H G, Reed D, et al.Widespread fluid expulsion on a translational continental margin: Mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California[J]. Geological Society of America Bulletin, 1999, 111(7): 992-1009. |
[28] |
Boetius A, Ravenschlag K, Schubert C J, et al.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. |
[29] |
Hendry J P, Pearson M J, Trewin N H, et al.Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis[J]. Sedimentology, 2006, 53(3): 537-565. |
[30] |
Matveeva T, Savvichev A S, Semenova A, et al.Source, origin, and spatial distribution of shallow sediment methane in the Chukchi Sea[J]. Oceanography, 2015, 28(3): 202-217. |
[31] |
Dong J, Zhang S H, Jiang G Q, et al.Early diagenetic growth of carbonate concretions in the Upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock[J]. Science in China Series D: Earth Sciences, 2008, 51(9): 1330-1339. |
[32] |
Beal E J, House C H, Orphan V J.Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937): 184-187. |
[33] |
冯东,宫尚桂.海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展[J]. 矿物岩石地球化学通报,2019,38(6):1047-1056.
Feng Dong, Gong Shanggui.Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(6): 1047-1056. |
[34] |
Neretin L N, Böttcher M E, Jørgensen B B, et al.Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2081-2093. |
[35] |
Liu C, An X Y, Algeo T J, et al.Hydrocarbon-seep deposits in the Lower Permian Angie Formation, central Lhasa block, Tibet[J]. Gondwana Research, 2021, 90: 258-272. |
[36] |
韩喜球,杨克红,黄永样.南海东沙东北冷泉流体的来源和性质:来自烟囱状冷泉碳酸盐岩的证据[J]. 科学通报,2013,58(19):1865-1873.
Han Xiqiu, Yang Kehong, Huang Yongyang.Origin and nature of cold seep in northeastern Dongsha area, South China Sea: Evidence from chimney-like seep carbonates[J]. Chinese Science Bulletin, 2013, 58(19): 1865-1873. |
[37] |
Lash G G, Blood D.Geochemical and textural evidence for early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York[J]. Chemical Geology, 2004, 206(3/4): 407-424. |
[38] |
de Boever E, Swennen R, Dimitrov L.Lower Eocene carbonate cemented chimneys (Varna, NE Bulgaria): Formation mechanisms and the (a)biological mediation of chimney growth?[J]. Sedimentary Geology, 2006, 185(3/4): 159-173. |
[39] |
冯东,陈多福.黑海西北部冷泉碳酸盐岩的沉积岩石学特征及氧化还原条件的稀土元素地球化学示踪[J]. 现代地质,2008,22(3):390-396.
Feng Dong, Chen Duofu.Petrographic characterization and rare earth elements as geochemical tracers for redox condition of seep carbonates from northwestern Black Sea[J]. Geoscience, 2008, 22(3): 390-396. |
[40] |
Agirrezabala L M.Mid-Cretaceous hydrothermal vents and authigenic carbonates in a transform margin, Basque-Cantabrian Basin (western Pyrenees): A multidisciplinary study[J]. Sedimentology, 2009, 56(4): 969-996. |
[41] |
Hryniewicz K, Miyajima Y, Amano K, et al.Formation, diagenesis and fauna of cold seep carbonates from the Miocene Taishu Group of Tsushima (Japan)[J]. Geological Magazine, 2021, 158(6): 964-984. |
[42] |
Peckmann J, Reimer A, Luth U, et al.Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177(1/2): 129-150. |
[43] |
Peckmann J, Thiel V.Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205(3/4): 443-467. |
[44] |
Peckmann J, Goedert J L, Thiel V, et al.A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA[J]. Sedimentology, 2002, 49(4): 855-873. |
[45] |
Feng D, Chen D F, Roberts H H.Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the gulf of Mexico[J]. Marine and Petroleum Geology, 2009, 26(7): 1190-1198. |
[46] |
Kocherla M.Authigenic gypsum in gas-hydrate associated sediments from the east coast of India (bay of Bengal)[J]. Acta Geologica Sinica, 2013, 87(3): 749-760. |
[47] |
Beauchamp B, Savard M.Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic[J]. PALAIOS, 1992, 7(4): 434-450. |
[48] |
Beales F.Carbonate sediments and their diagenesis. Developments in sedimentology, 12: R. G. C. Bathurst. Elsevier, Amsterdam, 1971, 649 pp., Dfl. 90.00[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1972, 12(4): 295. |
[49] |
Lin Z Y, Sun X M, Peckmann J, et al.How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440: 26-41. |
[50] |
冯东,陈多福,漆亮,等.墨西哥湾Alaminos Canyon冷泉碳酸盐岩地质地球化学特征[J]. 科学通报,2008,53(8):966-974.
Feng Dong, Chen Duofu, Qi Liang, et al.Geochemical characteristics of the Alaminos Canyon cold-seep carbonates in the gulf of Mexico [J]. Chinese Science Bulletin, 2008, 53(8): 966-974. |
[51] |
Amano K, Jenkins R G, Aikawa M, et al.A Miocene chemosynthetic community from the Ogaya Formation in Joetsu: Evidence for depth-related ecologic control among fossil seep communities in the Japan Sea back-arc basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286(3/4): 164-170. |
[52] |
Campbell K A, Francis D A, Collins M, et al.Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand[J]. Sedimentary Geology, 2008, 204(3/4): 83-105. |
[53] |
Whiticar M J.Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/2/3): 291-314. |
[54] |
Sackett W M.Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 571-580. |
[55] |
Roberts H H, Aharon P.Hydrocarbon-derived carbonate buildups of the northern gulf of Mexico continental slope: A review of submersible investigations[J]. Geo-Marine Letters, 1994, 14(2): 135-148. |
[56] |
Gautier D L, Claypool G E.Interpretation of methanic diagenesis in ancient sediments by analogy with processes in modern diagenetic environments[M]//McDonald D A, Surdam R C. Clastic diagenesis. American Association of Petroleum Geologists, 1984, 37: 111-123. |
[57] |
Hammer Ø, Nakrem H A, Little C T S, et al.Hydrocarbon seeps from close to the Jurassic-Cretaceous boundary, Svalbard[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306(1/2): 15-26. |
[58] |
Stakes D S, Orange D, Paduan J B, et al.Cold-seeps and authigenic carbonate formation in Monterey Bay, California[J]. Marine Geology, 1999, 159(1/2/3/4): 93-109. |
[59] |
Natalicchio M, Birgel D, Pierre F D, et al.Polyphasic carbonate precipitation in the shallow subsurface: Insights from microbially-formed authigenic carbonate beds in Upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330: 158-172. |
[60] |
Campbell K A, Farmer J D, Des Marais D.Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and palaeoenvironments[J]. Geofluids, 2000, 2(2): 63-94. |
[61] |
Naehr T H, Eichhubl P, Orphan V J, et al.Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/12/13): 1268-1291. |
[62] |
Roberts H H, Feng D, Joye S B.Cold-seep carbonates of the middle and lower continental slope, northern gulf of Mexico[J]. Deep Sea Research Part II Topical Studies in Oceanography, 2010, 57(21/22/23): 2040-2054. |
[63] |
Judd A, Hovland M.Seabed fluid flow: The impact on geology, biology and the marine environment[M]. Cambridge: Cambridge University Press, 2009. |
[64] |
赵若思.西藏申扎二叠系冷泉碳酸盐岩的沉积地球化学特征及微量元素富集机制[D]. 上海:上海海洋大学,2021.
Zhao Ruosi.Sedimentary geochemical characteristics and trace elements enrichment mechanism of Permian cold seep carbonates in Xianza, Tibet[D]. Shanghai: Shanghai Ocean University, 2021. |
[65] |
薛云松,黄俊华.冷泉沉积研究进展及环境意义[J]. 地质科技情报,2016,35(3):97-104.
Xue Yunsong, Huang Junhua.Advances in study of cold seep deposition and palaeoclimatic and palaeoenviromental significance[J]. Geological Science and Technology Information, 2016, 35(3): 97-104. |
[66] |
Hesse R.Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: What have we learned in the past decade?[J]. Earth-Science Reviews, 2003, 61(1/2): 149-179. |
[67] |
Suess E.Marine cold seeps and their manifestations: Geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1889-1916. |
[68] |
Bottrell S H, Newton R J.Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 59-83. |
[69] |
常鑫,张明宇,谷玉,等.黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展,2020,35(12):1306-1320.
Chang Xin, Zhang Mingyu, Gu Yu, et al.Formation mechanism and controlling factors of authigenic pyrite in mud sediments on the shelf of the Yellow Sea and the East China Sea[J]. Advances in Earth Science, 2020, 35(12): 1306-1320. |
[70] |
Antler G, Turchyn A V, Herut B, et al.A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane[J]. Geology, 2015, 43(7): 619-622. |
[71] |
Feng D, Roberts H H.Geochemical characteristics of the barite deposits at cold seeps from the northern gulf of Mexico continental slope[J]. Earth and Planetary Science Letters, 2011, 309(1/2): 89-99. |
[72] |
Fike D A, Bradley A S, Rose C V.Rethinking the ancient sulfur cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 593-622. |
[73] |
Canfield D E, Thamdrup B.The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266(5193): 1973-1975. |
[74] |
Rickard D, Morse J W.Acid volatile sulfide (AVS)[J]. Marine Chemistry, 2005, 97(3/4): 141-197. |
[75] |
Goldhaber M B.Sulfur-rich sediments[J]. Treatise on Geochemistry, 2003, 7: 257-288. |
[76] |
Canfield D E.Isotope fractionation by natural populations of sulfate-reducing bacteria[J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1117-1124. |
[77] |
Formolo M J, Lyons T W.Sulfur biogeochemistry of cold seeps in the Green Canyon region of the gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2013, 119: 264-285. |
[78] |
Pierre C.Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African margin[J]. Chemical Geology, 2017, 449: 158-164. |
[79] |
Masterson A, Alperin M J, Berelson W M, et al.Interpreting multiple sulfur isotope signals in modern anoxic sediments using a full diagenetic model (California-Mexico margin: Alfonso Basin)[J]. American Journal of Science, 2018, 318(5): 459-490. |
[80] |
Pellerin A, Bui T H, Rough M, et al.Mass-dependent sulfur isotope fractionation during reoxidative sulfur cycling: A case study from Mangrove Lake, Bermuda[J]. Geochimica et Cosmochimica Acta, 2015, 149: 152-164. |
[81] |
Liu J R, Pellerin A, Wang J S, et al.Multiple sulfur isotopes discriminate organoclastic and methane-based sulfate reduction by sub-seafloor pyrite formation[J]. Geochimica et Cosmochimica Acta, 2022, 316: 309-330. |
[82] |
Gong S G, Peng Y B, Bao H M, et al.Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters, 2018, 504: 13-20. |
[83] |
Feng D, Chen D F, Peckmann J.Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps[J]. Terra Nova, 2009, 21(1): 49-56. |
[84] |
Jakubowicz M, Berkowski B, López Correa M, et al.Stable isotope signatures of Middle Palaeozoic ahermatypic rugose corals-deciphering secondary alteration, vital fractionation effects, and palaeoecological implications[J]. PLoS One, 2015, 10(9): e0136289. |
[85] |
Soyol-Erdene T O, Huh Y.Rare earth element cycling in the pore waters of the Bering Sea slope (IODP Exp. 323)[J]. Chemical Geology, 2013, 358: 75-89. |
[86] |
Elderfield H, Upstill-Goddard R, Sholkovitz E R.The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 971-991. |
[87] |
Himmler T, Bach W, Bohrmann G, et al.Rare earth elements in authigenic methane-seep carbonates as tracers for fluid composition during early diagenesis[J]. Chemical Geology, 2010, 277(1/2): 126-136. |
[88] |
Birgel D, Feng D, Roberts H H, et al.Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern gulf of Mexico[J]. Chemical Geology, 2011, 285(1/2/3/4): 82-96. |
[89] |
Ge L, Jiang S Y, Swennen R, et al.Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: Evidence from trace and rare earth element geochemistry[J]. Marine Geology, 2010, 277(1/2/3/4): 21-30. |
[90] |
Wang S H, Yan W, Chen Z, et al.Rare earth elements in cold seep carbonates from the southwestern Dongsha area, northern South China Sea[J]. Marine and Petroleum Geology, 2014, 57: 482-493. |
[91] |
Sverjensky D A.Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1): 70-78. |
[92] |
Jakubowicz M, Dopieralska J, Belka Z.Tracing the composition and origin of fluids at an ancient hydrocarbon seep (Hollard Mound, Middle Devonian, Morocco): A Nd, REE and stable isotope study[J]. Geochimica et Cosmochimica Acta, 2015, 156: 50-74. |
[93] |
Turnipseed M, Knick K E, Lipcius R N, et al.Diversity in mussel beds at deep-sea hydrothermal vents and cold seeps[J]. Ecology Letters, 2003, 6(6): 518-523. |
[94] |
Levin L A.Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes[M]//Gibson R N, Atkinson R J A, Gordon J D M. Oceanography and marine biology: An annual review. Boca Raton: CRC Press, 2005: 1-46. |
[95] |
Callender R, Powell E N.Long-term history of chemoautotrophic clam-dominated faunas of petroleum seeps in the northwestern gulf of Mexico[J]. Facies, 2000, 43(1): 177-204. |
[96] |
Zezina O N.On the ecological, morphological, and evolutionary features of brachiopods living in marginal and extreme environments[J]. Paleontological Journal, 2003, 37(3): 263-269. |
[97] |
Zezina O N.Biogeography of the recent brachiopods[J]. Paleontological Journal, 2008, 42(8): 830-858. |
[98] |
Campbell K A, Bottjer D J.Brachiopods and chemosymbiotic bivalves in Phanerozoic hydrothermal vent and cold seep environments[J]. Geology, 1995, 23(4): 321-324. |
[99] |
Jakubowicz M, Hryniewicz K, Belka Z.Mass occurrence of seep-specific bivalves in the oldest-known cold seep metazoan community[J]. Scientific Reports, 2017, 7(1): 14292. |
[100] |
Hryniewicz K, Jakubowicz M, Belka Z, et al.New bivalves from a Middle Devonian methane seep in Morocco: The oldest record of repetitive shell morphologies among some seep bivalve molluscs[J]. Journal of Systematic Palaeontology, 2017, 15(1): 19-41. |
[101] |
Kiel S, Krystyn L, Demirtaş F, et al.Late Triassic mollusk-dominated hydrocarbon-seep deposits from Turkey[J]. Geology, 2017, 45(8): 751-754. |
[102] |
Kiel S.Three new bivalve genera from Triassic hydrocarbon seep deposits in southern Turkey[J]. Acta Palaeontologica Polonica, 2018, 63(2): 221-234. |
[103] |
Kiel S, Peckmann J.Resource partitioning among brachiopods and bivalves at ancient hydrocarbon seeps: A hypothesis[J]. PLoS One, 2019, 14(9): e0221887. |
[104] |
张艳平,罗敏,胡钰,等.海底有机质早期成岩和甲烷缺氧氧化数值模型研究进展[J]. 海洋地质与第四纪地质,2017,37(5):109-121.
Zhang Yanping, Luo Min, Hu Yu, et al.Progress of numerical modeling of early diagenesis and methane anaerobic oxidation[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 109-121. |
[105] |
Jahnke R A.The global ocean flux of particulate organic carbon: Areal distribution and magnitude[J]. Global Biogeochemical Cycles, 1996, 10(1): 71-88. |
[106] |
Hester K C, Brewer P G.Clathrate hydrates in nature[J]. Annual Review of Marine Science, 2009, 1(1): 303-327. |
[107] |
Dickens G R.Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 169-183. |
[108] |
Dickens G R, O'Neil J R, Rea D K, et al.Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10(6): 965-971. |
[109] |
Kennett J P, Cannariato K G, Hendy I L, et al.Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science, 2000, 288(5463): 128-133. |
[110] |
Jiang G Q, Kennedy M J, Christie-Blick N.Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates[J]. Nature, 2003, 426(6968): 822-826. |
[111] |
Berner R A.Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(7): 4172-4177. |
[112] |
Kim B, Zhang Y G.Methane hydrate dissociation across the Oligocene-Miocene boundary[J]. Nature Geoscience, 2022, 15(3): 203-209. |
[113] |
Reeburgh W S.Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513. |
[114] |
Luff R, Wallmann K.Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at hydrate ridge, Cascadia margin: Numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421. |
[115] |
Talukder A R.Review of submarine cold seep plumbing systems: Leakage to seepage and venting[J]. Terra Nova, 2012, 24(4): 255-272. |
[116] |
Kampschulte A, Strauss H.The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates[J]. Chemical Geology, 2004, 204(3/4): 255-286. |
[117] |
Mory A J, Redfern J, Martin J R, et al.A review of Permian-Carboniferous glacial deposits in western Australia[M]//Fielding C R, Frank T D, Isbell J L. Resolving the Late Paleozoic ice age in time and space. Geological Society of America, 2008: 29-40. |
[118] |
Zhang Y C, Shi G R, Shen S Z.A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai–Tibet Plateau[J]. Gondwana Research, 2013, 24(1): 55-76. |
[119] |
Haig D W, Mory A J, Mccartain E, et al.Late Artinskian-Early Kungurian (Early Permian) warming and maximum marine flooding in the east Gondwana interior rift, Timor and western Australia, and comparisons across east Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 88-121. |
[120] |
Liu C, Jarochowska E, Du Y S, et al.Prevailing anoxia in the Kungurian (Permian) of South China: Possible response to divergent climate trends between the tropics and Gondwana[J]. Gondwana Research, 2017, 49: 81-93. |
[121] |
Liu C, Du Y S, Jarochowska E, et al.A major anomaly in the carbon cycle during the Late Cisuralian (Permian): Timing, underlying triggers and implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491: 112-122. |