[1]
|
杜远生,殷鸿福,王治平. 秦岭造山带晚加里东—早海西期的盆地格局与构造演化[J]. 地球科学:中国地质大学学报,1997,22(4):401-405,410.
Du Yuansheng, Yin Hongfu, Wang Zhiping. The Late Caledonian-Early Hercynian basin’s framework and tectonic evolution of Qingling orogenic belt[J]. Earth Science: Journal of China University of Geosciences, 1997, 22(4): 401-405, 410. |
[2]
|
Muttoni G, Gaetani M, Kent D V, et al. Opening of the Neo-Tethys ocean and the Pangea B to Pangea A transformation during the Permian[J]. GeoArabia, 2009, 14(4): 17-48. |
[3]
|
Fielding C R, Frank T D, Birgenheier L P. A revised, Late Palaeozoic glacial time-space framework for eastern Australia, and comparisons with other regions and events[J]. Earth-Science Reviews, 2023, 236: 104263. |
[4]
|
Liu C, Jarochowska E, Du Y S, et al. Stratigraphical and δ13C records of Permo-Carboniferous platform carbonates, South China: Responses to Late Paleozoic icehouse climate and icehouse-greenhouse transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 113-129. |
[5]
|
Renne P R, Basu A R. Rapid eruption of the siberian traps flood basalts at the permo-Triassic boundary[J]. Science, 1991, 253(5016): 176-179. |
[6]
|
Burgess S D, Bowring S A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction[J]. Science Advances, 2015, 1(7): e1500470. |
[7]
|
Shen S Z, Cao C Q, Zhang H, et al. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in South China and Iran[J]. Earth and Planetary Science Letters, 2013, 375: 156-165. |
[8]
|
Yang J H, Cawood P A, Yuan X P, et al. Enhanced denudation of the emeishan large igneous province and precipitation forcing in the Late Permian[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(12): e2023JB027430. |
[9]
|
Wu Y Y, Chu D L, Tong J N, et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction[J]. Nature Communications, 2021, 12(1): 2137. |
[10]
|
Chen C S, Qin S F, Wang Y P, et al. High temperature methane emissions from large igneous provinces as contributors to Late Permian mass extinctions[J]. Nature Communications, 2022, 13(1): 6893. |
[11]
|
Shen S Z, Crowley J L, Wang Y, et al. Calibrating the end-Permian mass extinction[J]. Science, 2011, 334(6061): 1367-1372. |
[12]
|
Sun Y D, Farnsworth A, Joachimski M M, et al. Mega El Niño instigated the end-Permian mass extinction[J]. Science, 2024, 385(6714): 1189-1195. |
[13]
|
陈军,徐义刚. 二叠纪大火成岩省的环境与生物效应:进展与前瞻[J]. 矿物岩石地球化学通报,2017,36(3):374-393.
Chen Jun, Xu Yigang. Permian large igneous provinces and their impact on paleoenvironment and biodiversity: Progresses and perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(3): 374-393. |
[14]
|
沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135.
Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135. |
[15]
|
Dahl T W, Boyle R A, Canfield D E, et al. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J]. Earth and Planetary Science Letters, 2014, 401: 313-326. |
[16]
|
Saltzman M R, Edwards C T, Adrain J M, et al. Persistent oceanic anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations[J]. Geology, 2015, 43(9): 807-810. |
[17]
|
Liu M, Chen D Z, Jiang L, et al. Oceanic anoxia and extinction in the latest Ordovician[J]. Earth and Planetary Science Letters, 2022, 588: 117553. |
[18]
|
Zheng W, Gilleaudeau G J, Algeo T J, et al. Mercury isotope evidence for recurrent photic-zone euxinia triggered by enhanced terrestrial nutrient inputs during the Late Devonian mass extinction[J]. Earth and Planetary Science Letters, 2023, 613: 118175. |
[19]
|
Rong J Y, Harper D A T. A global synthesis of the latest Ordovician Hirnantian brachiopod faunas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1988, 79(4): 383-402. |
[20]
|
Méhay S, Keller C E, Bernasconi S M, et al. A volcanic CO2 pulse triggered the Cretaceous oceanic anoxic event 1a and a biocalcification crisis[J]. Geology, 2009, 37(9): 819-822. |
[21]
|
Yang J H, Cawood P A, Du Y S, et al. Early Wuchiapingian cooling linked to Emeishan basaltic weathering?[J]. Earth and Planetary Science Letters, 2018, 492: 102-111. |
[22]
|
沈树忠,张华,张以春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):160-193.
Shen Shuzhong, Zhang Hua, Zhang Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Scientia Sinica: Earth Sciences, 2019, 49(1): 160-193. |
[23]
|
Yuan D X, Shen S Z, Henderson C M. Revised Wuchiapingian conodont taxonomy and succession of South China[J]. Journal of Paleontology, 2017, 91(6): 1199-1219. |
[24]
|
金玉玕,沈树忠, Henderson C M,等. 瓜德鲁普统(Guadalupian)—乐平统(Lopingian)全球界线层型剖面和点(GSSP)[J]. 地层学杂志,2007,31(1):1-13.
Jin Yugan, Shen Shuzhong, Henderson C M, et al. The global stratotype section and point (GSSP) for the boundary between the Guadalupian and Lopingian series (Permian)[J]. Journal of Stratigraphy, 2007, 31(1): 1-13. |
[25]
|
Yuan D X, Shen S Z, Henderson C M, et al. Integrative timescale for the Lopingian (Late Permian): A review and update from Shangsi, South China[J]. Earth-Science Reviews, 2019, 188: 190-209. |
[26]
|
Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127. |
[27]
|
Tostevin R, Wood R A, Shields G A, et al. Low-oxygen waters limited habitable space for early animals[J]. Nature Communications, 2016, 7: 12818. |
[28]
|
Takahashi S, Yamasaki S I, Ogawa Y, et al. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction[J]. Earth and Planetary Science Letters, 2014, 393: 94-104. |
[29]
|
陈知,陈波. 三峡地区埃迪卡拉纪的浅海氧化还原环境变化:来自碳酸盐岩Ce异常的证据[J]. 地层学杂志,2022,46(2):109-117.
Chen Zhi, Chen Bo. Ediacaran shallow-marine redox conditions in the Yangtze Gorges area: Evidence from carbonate cerium anomalies[J]. Journal of Stratigraphy, 2022, 46(2): 109-117. |
[30]
|
Scotese C R. An atlas of Phanerozoic paleogeographic maps: The seas come in and the seas go out[J]. Annual Review of Earth and Planetary Sciences, 2021, 49: 679-728. |
[31]
|
Hou Z S, Fan J X, Henderson C M, et al. Dynamic palaeogeographic reconstructions of the Wuchiapingian stage (Lopingian, Late Permian) for the South China Block[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109667. |
[32]
|
殷鸿福,吴顺宝,杜远生,等. 华南是特提斯多岛洋体系的一部分[J]. 地球科学:中国地质大学学报,1999,24(1):1-12.
Yin Hongfu, Wu Shunbao, Du Yuansheng, et al. South China defined as part of tethyan archipelagic ocean system[J]. Earth Science: Journal of China University of Geosciences, 1999, 24(1): 1-12. |
[33]
|
Rees W E. Globalization and sustainability: Conflict or convergence?[J]. Bulletin of Science, Technology & Society, 2002, 22(4): 249-268. |
[34]
|
Huang H, Huyskens M H, Yin Q Z, et al. Eruptive tempo of Emeishan large igneous province, southwestern China and northern Vietnam: Relations to biotic crises and paleoclimate changes around the Guadalupian-Lopingian boundary[J]. Geology, 2022, 50(9): 1083-1087. |
[35]
|
杨帅,陈安清,张玺华,等. 四川盆地二叠纪栖霞—茅口期古地理格局转换及勘探启示[J]. 沉积学报,2021,39(6):1466-1477.
Yang Shuai, Chen Anqing, Zhang Xihua, et al. Paleogeographic transition of the Permian Chihsia-Maokou period in the Sichuan Basin and indications for oil-gas exploration[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1466-1477. |
[36]
|
Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68. |
[37]
|
杜远生,盛吉虎,顾松竹. 南秦岭勉略构造混杂岩带非史密斯地层系统和地层格架[J]. 地质论评,1999,45(6):563-570.
Du Yuansheng, Sheng Jihu, Gu Songzhu. Stratigraphic system and framework of non-smith strata in Mianxian-Lüeyang tectonic melange belt, South Qinling mountains[J]. Geological Review, 1999, 45(6): 563-570. |
[38]
|
张超. 华南晚二叠世层序—古地理与聚煤规律研究[D]. 北京:中国矿业大学(北京),2013:13-22.
Zhang Chao. Sequence-palaeogeography and coal accumulation regularities of the Late Permian in southern China[D]. Beijing: China University of Mining & Technology (Beijing), 2013: 13-22. |
[39]
|
邵龙义,张超,闫志明,等. 华南晚二叠世层序:古地理及聚煤规律[J]. 古地理学报,2016,18(6):905-919.
Shao Longyi, Zhang Chao, Yan Zhiming, et al. Sequence-palaeogeography and coal accumulation of the Late Permian in South China[J]. Journal of Palaeogeography, 2016, 18(6): 905-919. |
[40]
|
Mundil R, Ludwig K R, Metcalfe I, et al. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons[J]. Science, 2004, 305(5691): 1760-1763. |
[41]
|
Byrne R H, Sholkovitz E R. Marine chemistry and geochemistry of the lanthanides[J]. Handbook on the Physics and Chemistry of Rare Earths, 1996, 23: 497-593. |
[42]
|
Tanaka H K M, Taira H, Uchida T, et al. Three-dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B12): B12332. |
[43]
|
Elderfield H, Hawkesworth C J, Greaves M J, et al. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments[J]. Geochimica et Cosmochimica Acta, 1981, 45(4): 513-528. |
[44]
|
Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. |
[45]
|
Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. |
[46]
|
Zhang K, Shields G A. Sedimentary Ce anomalies: Secular change and implications for paleoenvironmental evolution[J]. Earth-Science Reviews, 2022, 229: 104015. |
[47]
|
Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry, 2006, 12(1): 39-72. |
[48]
|
Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology,1999, 161(1/2/3): 59-88. |
[49]
|
Halverson G P, Hoffman P F, Schrag D P, et al. Toward a Neoproterozoic composite carbon-isotope record[J]. GSA Bulletin, 2005, 117(9/10): 1181-1207. |
[50]
|
Banner J L, Hanson G N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis[J]. Geochimica et Cosmochimica Acta, 1990, 54(11): 3123-3137. |
[51]
|
Knauth L P, Kennedy M J. The Late Precambrian greening of the Earth[J]. Nature, 2009, 460(7256): 728-732. |
[52]
|
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. |
[53]
|
吕苗,鞠东澍,王姝蘅,等. 晚泥盆世弗拉期—法门期(F-F)之交海洋氧化:来自华南垌村剖面碳酸盐岩Ce异常证据[J]. 地层学杂志,2024,48(1):77-86.
Miao Lü, Ju Dongshu, Wang Shuheng, et al. Marine oxygenation pulses during Late Devonian Frasnian-Famennian transition: Evidence from ce anomaly record from the Dongcun section, South China[J]. Journal of Stratigraphy, 2024, 48(1): 77-86. |
[54]
|
Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 329-340. |
[55]
|
Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283. |
[56]
|
Guido A, Mastandrea A, Tosti F, et al. Importance of rare earth element patterns in discrimination between biotic and abiotic mineralization[M]//Reitner J, Quéric N V, Arp G. Advances in stromatolite geobiology. Berlin, Heidelberg: Springer, 2011: 453-462. |
[57]
|
Shields G, Stille P. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 2001, 175(1/2): 29-48. |
[58]
|
Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J]. Chemical Geology, 1999, 161 (1/2/3): 181-198. |
[59]
|
Canfield D E, Kump L R. Carbon cycle makeover[J]. Science, 2013, 339(6119): 533-534. |
[60]
|
Hayes J M, Strauss H, Kaufman A J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma[J]. Chemical Geology, 1999, 161(1/2/3): 103-125. |
[61]
|
Grard A, François L M, Dessert C, et al. Basaltic volcanism and mass extinction at the Permo-Triassic boundary: Environmental impact and modeling of the global carbon cycle[J]. Earth and Planetary Science Letters, 2005, 234(1/2): 207-221. |
[62]
|
Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10(6): 965-971. |
[63]
|
Jiang L, Planavsky N, Zhao M Y, et al. Authigenic origin for a massive negative carbon isotope excursion[J]. Geology, 2019, 47(2): 115-118. |
[64]
|
Cañadas F, Papineau D, Leng M J, et al. Extensive primary production promoted the recovery of the Ediacaran Shuram excursion[J]. Nature Communications, 2022, 13(1): 148. |
[65]
|
Saltzman M R, Ripperdan R L, Brasier M D, et al. A global carbon isotope excursion (SPICE) during the late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3/4): 211-223. |
[66]
|
Xia W P, Chen A Q, Azmy K, et al. A pilot study of Upper Yangtze shallow-water carbonates of the Paibian global marine euxinia: Implications for the late Cambrian SPICE event[J]. Marine and Petroleum Geology, 2023, 150: 106146. |
[67]
|
Buggisch W, Joachimski M M, Sevastopulo G, et al. Mississippian δ13Ccarb and conodont apatite δ18O records: Their relation to the Late Palaeozoic glaciation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 273-292. |
[68]
|
Yao L, Qie W K, Luo G M, et al. The TICE event: Perturbation of carbon-nitrogen cycles during the mid-Tournaisian (Early Carboniferous) greenhouse–icehouse transition[J]. Chemical Geology, 2015, 401: 1-14. |
[69]
|
Cheng C, Li S Y, Xie X Y, et al. Permian carbon isotope and clay mineral records from the Xikou section, Zhen'an, Shaanxi province, central China: Climatological implications for the easternmost paleo-tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514: 407-422. |
[70]
|
Baud A, Magaritz M, Holser W T. Permian-Triassic of the tethys: Carbon isotope studies[J]. Geologische Rundschau, 1989, 78(2): 649-677. |
[71]
|
Richoz S. Stratigraphie et variations isotopiques du carbone dans le Permien supérieur et le Trias inférieur de quelques localités de la Néotéthys (Turquie, Oman et Iran)[J]. Mémoire de Géologie de Lausanne, 2006, 46: 1-275. |
[72]
|
Heydari E, Arzani N, Safaei M, et al. Ocean's response to a changing climate: Clues from variations in carbonate mineralogy across the Permian-Triassic boundary of the Shareza section, Iran[J]. Global and Planetary Change, 2013, 105: 79-90. |
[73]
|
Retallack G J, Metzger C A, Greaver T, et al. Middle-Late Permian mass extinction on land[J]. Geological Society of America Bulletin, 2006, 118 (11/12): 1398-1411. |
[74]
|
Birgenheier L P, Frank T D, Fielding C R, et al. Coupled carbon isotopic and sedimentological records from the Permian system of eastern Australia reveal the response of atmospheric carbon dioxide to glacial growth and decay during the Late Palaeozoic ice age[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286(3/4): 178-193. |
[75]
|
Frank T D, Shultis A I, Fielding C R. Acme and demise of the Late Palaeozoic ice age: A view from the southeastern margin of Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 176-192. |
[76]
|
Wang P, Du Y S, Yu W C, et al. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews, 2020, 201: 103032. |
[77]
|
Widdicombe S, Spicer J I. Effects of ocean acidification on sediment fauna[M]//Gattuso J P, Hansson L J. Ocean Acidification. Oxford: Oxford University Press, 2011: 176-191. |
[78]
|
Li D D, Zhang X L, Hu D P, et al. Evidence of a large δ13Ccarb and δ13Corg depth gradient for deep-water anoxia during the late Cambrian SPICE event[J]. Geology, 2018, 46(7): 631-634. |
[79]
|
Berner R A. Atmospheric carbon dioxide levels over Phanerozoic time[J]. Science, 1990, 249(4975): 1382-1386. |
[80]
|
沈树忠,张飞飞,王文倩,等. 深时重大生物和气候事件与全球变化:进展与挑战[J]. 科学通报,2024,69(2):268-285.
Shen Shuzhong, Zhang Feifei, Wang Wenqian, et al. Deep-time major biological and climatic events versus global changes: Progresses and challenges[J]. Chinese Science Bulletin, 2024, 69(2): 268-285. |
[81]
|
Santosh M, Maruyama S, Yamamoto S. The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere[J]. Gondwana Research, 2009, 15(1/2): 324-341. |
[82]
|
Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845. |
[83]
|
Cui Y, Li M S, van Soelen E E, et al. Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2014701118. |
[84]
|
Shen S Z, Shi G R. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis[J]. Palaeoworld, 2009, 18(2/3): 152-161. |
[85]
|
Wang X D, Shen S Z, Sugiyama T, et al. Late Palaeozoic corals of Tibet (Xizang) and west Yunnan, southwest China: Successions and palaeobiogeography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 191(3/4): 385-397. |
[86]
|
Metcalfe I, Denyszyn S, Mundil R, et al. High-precision CA-IDTIMS U-Pb chronostratigraphy in the Bowen Basin, eastern Australia, calibration of deep-time climate change, super-volcanism and mass extinction[J]. Gondwana Research, 2024, 133: 335-347. |
[87]
|
Boucot A J, Xu C, Scotese C R. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate[M]. Tulsa: Society for Sedimentary Geology, 2013: 478. |
[88]
|
宋汉宸,宋海军,张仲石,等. 古生代—中生代之交的水循环演变及驱动机制[J]. 科学通报,2023,68(12):1501-1516.
Song Hanchen, Song Haijun, Zhang Zhongshi, et al. Evolution and driving mechanisms of water circulation during the Late Paleozoic to Early Mesozoic[J]. Chinese Science Bulletin, 2023, 68(12): 1501-1516. |
[89]
|
Shellnutt J G. The Emeishan large igneous province: A synthesis[J]. Geoscience Frontiers, 2014, 5(3): 369-394. |
[90]
|
Chen J, Xu Y G. Establishing the link between Permian volcanism and biodiversity changes: Insights from geochemical proxies[J]. Gondwana Research, 2019, 75: 68-96. |
[91]
|
颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253.
Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 232-253. |
[92]
|
Fan J X, Shen S Z, Erwin D H, et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity[J]. Science, 2020, 367(6475): 272-277. |
[93]
|
Chen B, Joachimski M M, Shen S Z, et al. Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited[J]. Gondwana Research, 2013, 24(1): 77-89. |
[94]
|
Chen J, Shen S Z, Li X H, et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 26-38. |
[95]
|
Wang W Q, Zhang F F, Zhang S, et al. Ecosystem responses of two Permian biocrises modulated by CO2 emission rates[J]. Earth and Planetary science Letters, 2023, 602: 117940. |
[96]
|
Li P W, Huang J H, Chen M, et al. Coincident negative shifts in sulfur and carbon isotope compositions prior to the end-Permian mass extinction at Shangsi section of Guangyuan, South China[J]. Frontiers of Earth Science in China, 2009, 3(1): 51-56. |
[97]
|
冯纯江,张继庆,官举铭. 四川盆地上二叠统沉积相及其构造控制[J]. 岩相古地理,1988(2):1-15.
Feng Chunjiang, Zhang Jiqing, Guan Juming. The Upper Permian sedimentary facies in Sichuan Basin and their tectonic controls[J]. Sedimentary Geology and Tethyan Geology, 1988(2): 1-15. |
[98]
|
李维波,李江海,王洪浩,等. 二叠纪古板块再造与岩相古地理特征分析[J]. 中国地质,2015,42(2):685-694.
Li Weibo, Li Jianghai, Wang Honghao, et al. Characteristics of the reconstruction of Permian paleoplate and lithofacies paleogeography[J]. Geology in China, 2015, 42(2): 685-694. |
[99]
|
陈旭,胡明毅,徐昌海,等. 四川盆地开江—梁平海槽周缘晚二叠世长兴期台缘礁滩沉积结构及其差异性[J]. 石油与天然气地质,2022,43(4):833-844.
Chen Xu, Hu Mingyi, Xu Changhai, et al. Sedimentary architectures of reef-shoal facies at the platform margin during Changxing times of the Late Permian around Kaijiang-Liangping trough in the Sichuan Basin and their differences[J]. Oil & Gas Geology, 2022, 43(4): 833-844. |