高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应

邓旭升 杨江海 何犇 聂波

邓旭升, 杨江海, 何犇, 聂波. 黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应[J]. 沉积学报, 2025, 43(4): 1293-1307. doi: 10.14027/j.issn.1000-0550.2024.095
引用本文: 邓旭升, 杨江海, 何犇, 聂波. 黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应[J]. 沉积学报, 2025, 43(4): 1293-1307. doi: 10.14027/j.issn.1000-0550.2024.095
DENG XuSheng, YANG JiangHai, HE Ben, NIE Bo. Response of the Lower Triassic Clastic Rocks in Northwestern Guizhou to the Emeishan Large Igneous Province[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1293-1307. doi: 10.14027/j.issn.1000-0550.2024.095
Citation: DENG XuSheng, YANG JiangHai, HE Ben, NIE Bo. Response of the Lower Triassic Clastic Rocks in Northwestern Guizhou to the Emeishan Large Igneous Province[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1293-1307. doi: 10.14027/j.issn.1000-0550.2024.095

黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应

doi: 10.14027/j.issn.1000-0550.2024.095
基金项目: 

黔地矿科合 2020-31

国家自然科学基金项目 42122015

详细信息
    作者简介:

    邓旭升,男,1986年出生,博士,高级工程师,沉积学和沉积矿产,E-mail: dengxs86@163.com

Response of the Lower Triassic Clastic Rocks in Northwestern Guizhou to the Emeishan Large Igneous Province

  • 摘要: 目的 晚二叠世—早三叠世早期,华南西部的峨眉山大火成岩省遭受了强烈的剥蚀,为相邻的右江盆地提供了大量的碎屑沉积物质。这些碎屑沉积物质不仅记录了峨眉山大火成岩省被剥蚀的火山岩岩石类型和组分特征,也揭示了峨眉山大火成岩省晚期火山序列可能存在的岩浆演化趋势。因此,黔西北地区下三叠统碎屑岩对于系统认识剥蚀序列及岩浆演化的变化特征具有重要的意义。 方法 为进一步明确早三叠世的侵蚀变化,以威宁地区下三叠统飞仙关组碎屑沉积岩为研究对象,通过碎屑岩的岩相学、地球化学和碎屑锆石U-Pb年代学及微量元素开展了详细的物源分析,探讨了峨眉山大火成岩省的风化侵蚀和晚期的岩浆过程。 结果 飞仙关组碎屑岩主要由石英、长石、方解石、火山岩屑和黏土矿物组成。火山岩屑结构反映其源岩为玄武质和长英质的火山岩。粉砂岩中具有较高的ICV值,反映了威宁地区飞仙关组碎屑岩来源于第一次循环碎屑。粉砂岩中含有较高的Fe2O3和MgO,Al2O3/TiO2值略高于峨眉山高Ti玄武岩,暗示了峨眉山高Ti玄武岩为主要源岩。碎屑锆石U-Pb年龄分布以~260 Ma的主要年龄组和>300 Ma的次要年龄组为特征,与右江盆地及其周缘晚二叠世碎屑沉积物的碎屑锆石U-Pb年龄组成一致,均指示峨眉山大火成岩省为主要碎屑沉积物源区。与下伏的上二叠统龙潭组相比,威宁地区下三叠统飞仙关组具有更多>300 Ma 的老锆石,且该组~260 Ma的锆石颗粒具有更高的Th/Nb值和U/Yb值,它们在垂向上表现为系统的变化。 结论 在右江盆地与峨眉山大火成岩省构成的源—汇沉积系统中,早三叠世和晚二叠世碎屑沉积物的锆石地球化学特征很可能代表了剥蚀的火山序列固有特征,共同且连续记录了峨眉山大火成岩省晚期的岩浆活动,即晚期岩浆活动中伴随了逐渐减弱的地壳混染作用。
  • 图  1  (a)峨眉山玄武岩分布范围及华南西南部早三叠世印度期古地理图[3,41];(b)钻孔岩心取样柱状图

    Figure  1.  (a) Schematic of the distribution of the Emeishan basalt and Early Triassic Induan paleogeographic map of South China[3,41];

    图  2  威宁地区下三叠统飞仙关组岩心和砂岩显微照片

    (a,b) photographs of the Feixianguan Formation from drill core; (c,e) microphotographs of sample J806⁃2g and J806⁃5g, in cross⁃polarized light (XPL); (d,f) microphotographs of sample J806⁃2g and J806⁃5g, in plane⁃polarized light (PPL); Q. quartz; F. feldspar; Cal. calcite; the Lvl., Lvm., Lvf., and Lvv. represent the vacanic rock fragments of lathwork, microlitic, felsic and vitric textures

    Figure  2.  Representative photographs of sedimentary structures and microphotographs of sandstones in the Lower Triassic Feixianguan Formation, Weining area

    Fig.2

    图  3  威宁地区下三叠统飞仙关组粉砂岩Al2O3/TiO2-TiO2图解

    Data sources: the mudstones from the Yelang Formation in Zhenfeng drill core[25]; the sandstones from the Tianqingbao Formation in Yanyuan[31]; the sandstones from the Longtan Formation in the Pu’an drill core[23]; the sandstones and siltstones from the Shaiwa Formation in the Sidazhai[22]; the mudstones and siltstones from the Xuanwei Formation in Zhejiao[14]; the high⁃Ti basalts[2,5257], low⁃Ti basalts[2,52,54] and silicic volcanic rocks[4,11,5860] in the Emeishan large igneous province; the average post⁃Archean shale[61]

    Figure  3.  Al2O3/TiO2 vs. TiO2 plot for the siltstones of the Feixianguan Formation at Weining area

    Fig.3

    图  4  威宁地区下三叠统飞仙关组砂岩中碎屑锆石阴极发光图像

    Figure  4.  Cathodoluminescence images of detrital zircons from the Lower Triassic Feixianguan Formation at Weining area

    图  5  威宁地区下三叠统飞仙关组碎屑锆石U⁃Pb年龄谐和图

    Figure  5.  Concordant diagram of detrital zircon U⁃Pb ages from sandstone in the Lower Triassic Feixianguan Formation at Weining area

    图  6  威宁地区下三叠统飞仙关组砂岩中碎屑锆石的U⁃Pb年龄频率直方图

    Figure  6.  Frequency distribution of detrital zircon U⁃Pb ages from sandstone in the Lower Triassic Feixianguan Formation at Weining area

    图  7  威宁地区下三叠统碎屑锆石Th/Nb⁃Hf/Th与Nb/Yb⁃U/Yb图解(底图据文献[22,69])

    Data sources: zircons from the Lower Triassic Yelang Formation at Zhenfeng[25]; zircons from the upper Permian Longtan Formation at Pu’an[23]

    Figure  7.  Th/Nb vs. Hf/Thand Nb/Yb vs. U/Ybdiagrams for detrital zircons from the Lower Triassic Feixianguan Formation at Weining area (base map from references [22,69])

    Fig.7

    图  8  右江盆地北西缘上二叠统龙潭组—下三叠世飞仙关组碎屑锆石地球化学特征变化图

    (a) U⁃Pb age distributions for detrital zircon with ages of >300 Ma; (b) box plots of Th/Nb and U/Yb ratios for the ~260 Ma zircons; arrow is the percentages of the detrital zircon with ages of >300 Ma in all detrital zircons; left and right boundaries of the boxes are set at 25% and 75%; black lines in the box represent the median values; zircon U⁃Pb ages and trace element data for the Late Permian Longtan Formation are from Deng et al. [23]

    Figure  8.  Geochemical characteristics of detrital zircons from the Lower Triassic Feixianguan Formation and the Upper Permian Longtan Formation in northwestern Youjiang Basin

    Fig.8

    表  1  威宁地区下三叠统飞仙关组粉砂岩主量元素含量(%)

    Table  1.   Major elemental contents (%) for the siltstones of the Lower Triassic Feixianguan Formation at Weining area

    样品编号SiO2Al2O3Fe2O3CaOMgONa2OK2OTiO2MnOP2O5LOIICV
    J806-151.3914.4313.262.405.780.892.023.150.170.426.171.92
    J806-248.1414.1613.874.015.554.522.033.200.170.443.632.36
    J806-348.2714.1215.484.033.624.062.572.920.150.433.422.33
    J806-450.5614.5812.633.754.733.652.992.620.160.413.902.09
    J806-549.3014.9613.123.944.833.092.942.880.140.414.352.07
    J806-649.9214.9011.453.846.192.793.382.870.180.474.222.06
    J806-749.5114.1312.183.826.832.852.812.510.160.454.552.21
    J806-849.4814.3012.444.046.582.442.922.340.150.405.202.16
    J806-950.0914.6512.483.436.062.332.872.470.130.424.742.03
    注:ICV=w(Fe2O3+K2O+Na2O+CaO+MgO+MnO+TiO2)/ w(Al2O3)[51]
    下载: 导出CSV
  • [1] Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23(10): 889-892.
    [2] Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China[J]. Lithos, 2001, 58(3/4): 145-168.
    [3] Ali J R, Fitton J G, Herzberg C. Emeishan large igneous province (SW China) and the mantle-plume up-doming hypothesis[J]. Journal of the Geological Society, 2010, 167(5): 953-959.
    [4] Xu Y G, Chung S L, Shao H, et al. Silicic magmas from the Emeishan large igneous province, Southwest China: Petrogenesis and their link with the end-Guadalupian biological crisis[J]. Lithos, 2010, 119(1/2): 47-60.
    [5] Zhang Z C, Wang F S. Geochemistry of two types of basalts in the Emeishan basaltic province: Evidence for mantle plume-lithosphere interaction[J]. Acta Geologica Sinica - English Edition, 2002, 76(2): 229-237.
    [6] 宋谢炎,侯增谦,汪云亮,等. 峨眉山玄武岩的地幔热柱成因[J]. 矿物岩石,2002,22(4):27-32.

    Song Xieyan, Hou Zeng-qian, Wang Yunliang, et al. The mantle plume features of Emeishan basalts[J]. Journal of Mineralogy and Petrology, 2002, 22(4): 27-32.
    [7] Zhang Z C, Mahoney J, Mao J W, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China[J]. Journal of Petrology, 2006, 47(10): 1997-2019.
    [8] 钟宏,朱维光,漆亮,等. 攀西地区峨眉山玄武岩的铂族元素地球化学特征[J]. 科学通报,2006,51(11):1297-1304.

    Zhong Hong, Zhu Weiguang, Qi Liang, et al. Geochemical characteristics of platinum elements of Emeishan basalt in Panxi region[J]. Chinese Science Bulletin, 2006, 51(11): 1297-1304.
    [9] Shellnutt J G, Zhou M F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume[J]. Chemical Geology, 2007, 243(3/4): 286-316.
    [10] Xu Y G, Luo Z Y, Huang X L, et al. Zircon U–Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3084-3104.
    [11] Shellnutt J G, Jahn B M. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex: Implications for the genesis of Fe–Ti oxide deposits and A-type granites of SW China[J]. Earth and Planetary Science Letters, 2010, 289(3/4): 509-519.
    [12] 李宏博,张招崇,吕林素. 峨眉山大火成岩省基性墙群几何学研究及对地幔柱中心的指示意义[J]. 岩石学报,2010,26(10):3143-3152.

    Li Hongbo, Zhang Zhaochong, Linsu Lü. Geometry of the mafic dyke swarms in Emeishan large igneous province: Implications for mantle plume[J]. Acta Petrologica Sinica, 2010, 26(10): 3143-3152.
    [13] Zhong H, Campbell I H, Zhu W G, et al. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province[J]. Geochimica et Cosmochimica Acta, 2011, 75(5): 1374-1395.
    [14] He B, Xu Y G, Huang X L, et al. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section[J]. Earth and Planetary Science Letters, 2007, 255(3/4): 306-323.
    [15] Wignall P B, Sun Y D, Bond D P G, et al. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China[J]. Science, 2009, 324(5931): 1179-1182.
    [16] Zheng L D, Yang Z Y, Tong Y B, et al. Magnetostratigraphic constraints on two-stage eruptions of the Emeishan continental flood basalts[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(12): Q12014.
    [17] Zhong Y T, He B, Mundil R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Binchuan section: Implications for the termination age of Emeishan large igneous province[J]. Lithos, 2014, 204: 14-19.
    [18] Huang H, Cawood P A, Hou M C, et al. Silicic ash beds bracket Emeishan large igneous province to < 1 m.y. at ~260 Ma[J]. Lithos, 2016, 264: 17-27.
    [19] Li Y J, He H Y, Ivanov A V, et al. 40Ar/39Ar age of the onset of high-Ti phase of the Emeishan volcanism strengthens the link with the end-Guadalupian mass extinction[J]. International Geology Review, 2018, 60(15): 1906-1917.
    [20] Shellnutt J G, Pham T, Denyszyn S W, et al. Magmatic duration of the Emeishan large igneous province: Insight from northern Vietnam[J]. Geology, 2020, 48(5): 457-461.
    [21] Yang J H, Cawood P A, Du Y S, et al. A sedimentary archive of tectonic switching from Emeishan Plume to Indosinian orogenic sources in SW China[J]. Journal of the Geological Society, 2014, 171(2): 269-280.
    [22] Yang J H, Cawood P A, Du Y S. Voluminous silicic eruptions during Late Permian Emeishan igneous province and link to climate cooling[J]. Earth and Planetary Science Letters, 2015, 432: 166-175.
    [23] Deng X S, Yang J H, Cawood P A, et al. Detrital record of late-stage silicic volcanism in the Emeishan large igneous province[J]. Gondwana Research, 2020, 79: 197-208.
    [24] 张英利,王宗起,王刚,等. 上扬子会泽地区早三叠世飞仙关组砂岩物源特征:来自重矿物铬尖晶石和碎屑锆石的限定[J]. 地质论评,2016,62(1):54-72.

    Zhang Yingli, Wang Zongqi, Wang Gang, et al. Chromian spinel, zircon age constraints on the provenance of Early Triassic Feixianguan Formation sandstones from Huize area, Upper Yangtze region[J]. Geological Review, 2016, 62(1): 54-72.
    [25] 周寅生,杨江海,黄燕,等. 黔西南下三叠统飞仙关组沉积物源分析对峨眉山大火成岩省火山剥蚀序列的重建约束[J]. 地质学报,2022,96(7):2348-2364.

    Zhou Yinsheng, Yang Jianghai, Huang Yan, et al. Provenance of the Lower Triassic Feixianguan Formation in southwestern Guizhou province and reconstruction of volcanic denudation sequence in the Emeishan large igneous province[J]. Acta Geologica Sinica, 2022, 96(7): 2348-2364.
    [26] Zhou Y P, Bohor B F, Ren Y L. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou provinces, China[J]. International Journal of Coal Geology, 2000, 44(3/4): 305-324.
    [27] 黄虎,杨江海,杜远生,等. 右江盆地北缘上二叠统碎屑岩和硅质岩地球化学特征及其地质意义[J]. 地球科学:中国地质大学学报,2012,37(增刊2):81-96.

    Huang Hu, Yang Jianghai, Du Yuansheng, et al. Depositional geochemistry of clastic rocks and siliceous deposits of the Upper Permian on the northern margin of the Youjiang Basin and its geological significance[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(Suppl.2): 81-96.
    [28] Dai S F, Li T, Seredin V, et al. Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China[J]. International Journal of Coal Geology, 2014, 121: 53-78.
    [29] Dai S F, Liu J, Ward C R, et al. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals[J]. International Journal of Coal Geology, 2016, 166: 71-95.
    [30] Huang H, Du Y S, Yang J H, et al. Origin of Permian basalts and clastic rocks in Napo, Southwest China: Implications for the erosion and eruption of the Emeishan large igneous province[J]. Lithos, 2014, 208-209: 324-338.
    [31] 朱民,陈汉林,周静,等. 上扬子西南盐源盆地早三叠世物源体系及构造意义[J]. 地球科学,2016,41(8):1309-1321.

    Zhu Min, Chen Hanlin, Zhou Jing, et al. Provenance of Early Triassic in Yanyuan Basin, Upper Yangtze and its implication for the tectonic evolution[J]. Earth Science, 2016, 41(8): 1309-1321.
    [32] 何冰辉,刘少峰,吴鹏. 滇东者海上二叠统宣威组下部地层碎屑锆石U-Pb测年及其地质意义[J]. 地质调查与研究,2017,40(2):126-133,146.

    He Binghui, Liu Shaofeng, Wu Peng. LA-ICP-MS U-Pb geochronology and its geological implications of the detrital zircons from the lower strata of Upper Permian Xuanwei Formation in Zhehai town, eastern Yunnan province[J]. Geological Survey and Research, 2017, 40(2): 126-133, 146.
    [33] 于鑫,杨江海,刘建中,等. 黔西南晚二叠世龙潭组物源分析及区域沉积古地理重建[J]. 地质学报,2017,91(6):1374-1385.

    Yu Xin, Yang Jianghai, Liu Jianzhong, et al. Provenance of the Late Permian Longtan Formation in SW Guizhou province and implication for reconstruction of regional sedimentation and paleogeography[J]. Acta Geologica Sinica, 2017, 91(6): 1374-1385.
    [34] Wang X T, Shao L Y, Eriksson K A, et al. Evolution of a plume-influenced source-to-sink system: An example from the coupled central Emeishan large igneous province and adjacent western Yangtze cratonic basin in the Late Permian, SW China[J]. Earth-Science Reviews, 2020, 207: 103224.
    [35] 张衡,李仁涛,巴金,等. 川西南美姑地区下三叠统飞仙关组地球化学特征及其对物源和构造环境的指示意义[J]. 矿物岩石,2019,39(3):52-59.

    Zhang Heng, Li Rentao, Ba Jin, et al. Geochemical characteristics of the Lower Triassic Feixianguan Formation in Meigu area, southwestern Sichuan and its significance for the provenance and tectonic setting[J]. Mineralogy and Petrology, 2019, 39(3): 52-59.
    [36] Cawood P A, Wang Y J, Xu Y J, et al. Locating South China in Rodinia and Gondwana: A fragment of greater India lithosphere?[J]. Geology, 2013, 41(8): 903-906.
    [37] Li X H, Li W X, Li Z X, et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 2009, 174(1/2): 117-128.
    [38] 杜远生,黄宏伟,黄志强,等. 右江盆地晚古生代—三叠纪盆地转换及其构造意义[J]. 地质科技情报,2009,28(6):10-15.

    Du Yuansheng, Huang Hongwei, Huang Zhiqiang, et al. Basin translation from Late Palaeozoic to Triassic of Youjiang Basin and its tectonic significance[J]. Geological Science and Technology Information, 2009, 28(6): 10-15.
    [39] 杜远生,黄虎,杨江海,等. 晚古生代—中三叠世右江盆地的格局和转换[J]. 地质论评,2013,59(1):1-11.

    Du Yuansheng, Huang Hu, Yang Jianghai, et al. The basin translation from Late Paleozoic to Triassic of the Youjiang Basin and its tectonic signification[J]. Geological Review, 2013, 59(1): 1-11.
    [40] Kofukuda D, Isozaki Y, Igo H. A remarkable sea-level drop and relevant biotic responses across the Guadalupian–Lopingian (Permian) boundary in low-latitude mid-Panthalassa: Irreversible changes recorded in accreted paleo-atoll limestones in Akasaka and Ishiyama, Japan[J]. Journal of Asian Earth Sciences, 2014, 82: 47-65.
    [41] 刘宝珺,许效松. 中国南方岩相古地理图集(震旦纪—三叠纪)[M]. 北京:科学出版社,1994:146.

    Liu Baojun, Xu Xiaosong. Atlas of the palaeogeography of South China (Sinian-Triassic)[M]. Beijing: Science Press, 1994: 146].
    [42] 向坤鹏,安亚运,贺永忠,等. 华南板块西南缘中三叠统底部火山灰来源:以右江盆地者堡敢南一带凝灰岩为例[J]. 地质论评,2019,65(2):319-334.

    Xiang Kunpeng, An Yayun, He Yongzhong, et al. Provenance of the volcanic ash in the bottom of Middle Triassic, southwest margin of the South China plate: A case study of the tuff in Gannan region, Zhebao, Youjiang Basin[J]. Geological Review, 2019, 65(2): 319-334.
    [43] 何碧,张向文,赵飞,等. 贵州官坝地区二叠系—三叠系地质界面黏土岩的火山岩特征、LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 现代地质,2020,34(5):1028-1042.

    He Bi, Zhang Xiangwen, Zhao Fei, et al. Volcanic characteristics, LA-ICP-MS zircon U-Pb ages of claystone at the Permian-Triassic boundary, Guanba area in Guizhou province, South China and the geological implications[J]. Geoscience, 2020, 34(5): 1028-1042.
    [44] 缪宇,吴亮,肖长源,等. 黔西北普宜地区下三叠统嘉陵江组沉凝灰岩锆石LA-ICP-MS U-Pb年龄、微量元素特征及其地质意义[J]. 地质论评,2021,67(2):289-310.

    Miao Yu, Wu Liang, Xiao Changyuan, et al. Zircon LA-ICP-MS U-Pb ages, trace element characteristics of the Lower Triassic Jialingjiang Formation tuffites in the Puyi area, northwestern Guizhou, and their geological significance[J]. Geological Review, 2021, 67(2): 289-310.
    [45] 贵州省地质调查院. 中国区域地质志·贵州志[M]. 北京:地质出版社,2017:428-458.

    Guizhou Geological Survey. The regional geology of China, Guizhou province[M]. Beijing: Geological Publishing House, 2017: 428-458.
    [46] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
    [47] Ludwig K R. User's manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center, 2003.
    [48] Dickinson W R. Interpreting detrital modes of graywacke and arkose[J]. Journal of Sedimentary Research, 1970, 40(2): 695-707.
    [49] Cawood P A. Modal composition and detrital clinopyroxene geochemistry of lithic sandstones from the New England Fold Belt (east Australia): A Paleozoic forearc terrane[J]. Geological Society of America Bulletin, 1983, 94(10): 1199-1214.
    [50] Critelli S, Marsaglia K M, Busby C J. Tectonic history of a Jurassic backarc-basin sequence (the Gran Cañon Formation, Cedros Island, Mexico), based on compositional modes of tuffaceous deposits[J]. GSA Bulletin, 2002, 114(5): 515-527.
    [51] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
    [52] Xiao L, Xu Y G, Mei H J, et al. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume–lithosphere interaction[J]. Earth and Planetary Science Letters, 2004, 228(3/4): 525-546.
    [53] Xu J F, Suzuki K, Xu Y G, et al. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: Insights into the source of a large igneous province[J]. Geochimica et Cosmochimica Acta, 2007, 71(8): 2104-2119.
    [54] Song X Y, Qi H W, Robinson P T, et al. Melting of the subcontinental lithospheric mantle by the Emeishan mantle plume: Evidence from the basal alkaline basalts in Dongchuan, Yunnan, southwestern China[J]. Lithos, 2008, 100(1/2/3/4): 93-111.
    [55] Lai S C, Qin J F, Li Y F, et al. Permian high Ti/Y basalts from the eastern part of the Emeishan large igneous province, southwestern China: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2012, 47: 216-230.
    [56] Li H B, Zhang Z C, Santosh M, et al. Late Permian basalts in the Yanghe area, eastern Sichuan province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction[J]. Journal of Asian Earth Sciences, 2017, 134: 293-308.
    [57] Li J, Zhong H, Zhu W G, et al. Elemental and Sr–Nd isotopic geochemistry of Permian Emeishan flood basalts in Zhaotong, Yunnan province, SW China[J]. International Journal of Earth Sciences, 2017, 106(2): 617-630.
    [58] Cheng L, Wang Y, Herrin J S, et al. Origin of K-feldspar megacrysts in rhyolites from the Emeishan large igneous province, southwest China[J]. Lithos, 2017, 294-295: 397-411.
    [59] Zhu B, Peate D W, Guo Z J, et al. Crustally derived granites in Dali, SW China: New constraints on silicic magmatism of the central Emeishan large igneous province[J]. International Journal of Earth Sciences, 2017, 106(7): 2503-2525.
    [60] Hei H X, Su S G, Wang Y, et al. Rhyolites in the Emeishan large igneous province (SW China) with implications for plume-related felsic magmatism[J]. Journal of Asian Earth Sciences, 2018, 164: 344-365.
    [61] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 26-29.
    [62] Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265.
    [63] Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
    [64] Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the western Alps[M]//Pagel M, Barbin V, Blanc P, et al. Cathodoluminescence in geosciences. Berlin Heidelberg: Springer, 2000: 373-400.
    [65] Möller A, O’Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society, London, Special Publications, 2003, 220(1): 65-81.
    [66] Hayashi K I, Fujisawa H, Holland H D, et al. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4115-4137.
    [67] Xiao L, Xu Y G, Chung S L, et al. Chemostratigraphic correlation of Upper Permian lavas from Yunnan province, China: Extent of the Emeishan large igneous province[J]. International Geology Review, 2003, 45(8): 753-766.
    [68] Grimes C B, Wooden J L, Cheadle M J, et al. “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 170(5/6): 46.
    [69] Grimes C B, John B E, Kelemen P B, et al. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7): 643-646.
    [70] Wang X C, Wilde S A, Xu B, et al. Origin of arc-like continental basalts: Implications for deep-Earth fluid cycling and tectonic discrimination[J]. Lithos, 2016, 261: 5-45.
    [71] Xu Z Q, Dilek Y, Cao H, et al. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 2015, 105: 320-337.
    [72] Halpin J A, Tran H T, Lai C K, et al. U–Pb zircon geochronology and geochemistry from NE Vietnam: A ‘tectonically disputed’ territory between the Indochina and South China blocks[J]. Gondwana Research, 2016, 34: 254-273.
    [73] 刘玉平,苏文超,皮道会,等. 滇黔桂低温成矿域基底岩石的锆石年代学研究[J]. 自然科学进展,2009,19(12):1319-1325.

    Liu Yuping, Su Wenchao, Pi Daohui, et al. Zircon chronology of the basement rocks from the low temperature metallogenic domain in Yunnan, Guizhou and Guangxi province[J]. Progress in Natural Science, 2009, 19(12): 1319-1325.
    [74] Li X H, Li Z X, He B, et al. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U–Pb, Lu–Hf and O isotope analyses of detrital zircons[J]. Chemical Geology, 2012, 328: 195-207.
    [75] Zhou M F, Malpas J, Song X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 2002, 196(3/4): 113-122.
    [76] Zhong H, Zhu W G, Hu R Z, et al. Zircon U–Pb age and Sr–Nd–Hf isotope geochemistry of the Panzhihua A-type syenitic intrusion in the Emeishan large igneous province, southwest China and implications for growth of juvenile crust[J]. Lithos, 2009, 110(1/2/3/4): 109-128.
    [77] Shellnutt J G, Usuki T, Kennedy A K, et al. A lower crust origin of some flood basalts of the Emeishan large igneous province, SW China[J]. Journal of Asian Earth Sciences, 2015, 109: 74-85.
    [78] Tang Q Y, Li C S, Zhang M J, et al. U–Pb age and Hf isotopes of zircon from basaltic andesite and geochemical fingerprinting of the associated picrites in the Emeishan large igneous province, SW China[J]. Mineralogy and Petrology, 2015, 109(1): 103-114.
    [79] Yang J H, Cawood P A, Du Y S, et al. Large igneous province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China[J]. Sedimentary Geology, 2012, 261-262: 120-131.
    [80] 邓旭升. 右江盆地北缘上二叠统沉积相和沉积物源分析:峨眉山大火成岩省的蚀顶剥蚀和晚期酸性火山喷发[D]. 武汉:中国地质大学,2019:74-77.

    Deng Xusheng. The Late Permian sedimentary facies and provenance analysis in northern Youjiang Basin: The erosional unroofing and late-stage silicic volcanism of the Emeishan large igneous province[D]. Wuhan: China University of Geosciences, 2019: 74-77.
  • [1] 杨凤英, 张云峰, 曾琪, 潘清川, 范存辉, 李一苇, 尹宏, 张本健.  凝灰岩成因及储集空间类型——以川西北大坪剖面二叠系吴家坪组为例 . 沉积学报, 2025, 43(1): 182-197. doi: 10.14027/j.issn.1000-0550.2023.011
    [2] 彭旸, 王波, 于海跃, 董雨洋, 盛莉娜, 杨琳娜, 刘少治, 王少依, 朱晨.  新疆三塘湖盆地条湖-马朗凹陷中下侏罗纪沉积体系演化及物源分析 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2023.125
    [3] 彭深远, 杨文涛, 张鸿禹, 方特.  华北盆地三叠纪物源特征及其沉积—构造演化 . 沉积学报, 2022, 40(5): 1228-1249. doi: 10.14027/j.issn.1000-0550.2021.021
    [4] 魏震, 郭瑞清, 孙敏佳, 吕彪, 金建斌, 王海培, 王明阳.  新疆库鲁克塔格南华系砂岩碎屑组成对其物源及盆地演化的指示 . 沉积学报, 2017, 35(2): 264-278. doi: 10.14027/j.cnki.cjxb.2017.02.006
    [5] 韦雪梅, 韦恒叶, 邱振.  瓜德鲁普末期生物灭绝是由峨眉山大火成岩省(LIP)引起的吗? . 沉积学报, 2016, 34(3): 436-451. doi: 10.14027/j.cnki.cjxb.2016.03.002
    [6] 鸡西盆地早白垩世城子河组和穆棱组物源分析 . 沉积学报, 2012, 30(4): 661-671.
    [7] 贵州镇宁乐纪泥盆系重晶石矿热水沉积特征 . 沉积学报, 2012, 30(3): 422-430.
    [8] 罗根明.  西秦岭地区晚二叠世—早三叠世沉积相分析和沉积古环境再造 . 沉积学报, 2007, 25(3): 332-342.
    [9] 杨瑞东, 毛家仁, 张位华, 姜立君, 高慧.  贵州早寒武世早期黑色页岩中生物化石保存及生态学研究 . 沉积学报, 2004, 22(4): 664-671.
    [10] 杨瑞东, 赵元龙, 毛家仁, 聂爱国, 陈笑媛.  贵州台江中寒武世凯里生物群古生态研究 . 沉积学报, 2002, 20(1): 129-135.
  • 加载中
图(8) / 表 (1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 修回日期:  2024-08-15
  • 录用日期:  2024-09-19
  • 网络出版日期:  2024-09-19
  • 刊出日期:  2025-08-10

目录

    黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应

    doi: 10.14027/j.issn.1000-0550.2024.095
      基金项目:

      黔地矿科合 2020-31

      国家自然科学基金项目 42122015

      作者简介:

      邓旭升,男,1986年出生,博士,高级工程师,沉积学和沉积矿产,E-mail: dengxs86@163.com

    摘要: 目的 晚二叠世—早三叠世早期,华南西部的峨眉山大火成岩省遭受了强烈的剥蚀,为相邻的右江盆地提供了大量的碎屑沉积物质。这些碎屑沉积物质不仅记录了峨眉山大火成岩省被剥蚀的火山岩岩石类型和组分特征,也揭示了峨眉山大火成岩省晚期火山序列可能存在的岩浆演化趋势。因此,黔西北地区下三叠统碎屑岩对于系统认识剥蚀序列及岩浆演化的变化特征具有重要的意义。 方法 为进一步明确早三叠世的侵蚀变化,以威宁地区下三叠统飞仙关组碎屑沉积岩为研究对象,通过碎屑岩的岩相学、地球化学和碎屑锆石U-Pb年代学及微量元素开展了详细的物源分析,探讨了峨眉山大火成岩省的风化侵蚀和晚期的岩浆过程。 结果 飞仙关组碎屑岩主要由石英、长石、方解石、火山岩屑和黏土矿物组成。火山岩屑结构反映其源岩为玄武质和长英质的火山岩。粉砂岩中具有较高的ICV值,反映了威宁地区飞仙关组碎屑岩来源于第一次循环碎屑。粉砂岩中含有较高的Fe2O3和MgO,Al2O3/TiO2值略高于峨眉山高Ti玄武岩,暗示了峨眉山高Ti玄武岩为主要源岩。碎屑锆石U-Pb年龄分布以~260 Ma的主要年龄组和>300 Ma的次要年龄组为特征,与右江盆地及其周缘晚二叠世碎屑沉积物的碎屑锆石U-Pb年龄组成一致,均指示峨眉山大火成岩省为主要碎屑沉积物源区。与下伏的上二叠统龙潭组相比,威宁地区下三叠统飞仙关组具有更多>300 Ma 的老锆石,且该组~260 Ma的锆石颗粒具有更高的Th/Nb值和U/Yb值,它们在垂向上表现为系统的变化。 结论 在右江盆地与峨眉山大火成岩省构成的源—汇沉积系统中,早三叠世和晚二叠世碎屑沉积物的锆石地球化学特征很可能代表了剥蚀的火山序列固有特征,共同且连续记录了峨眉山大火成岩省晚期的岩浆活动,即晚期岩浆活动中伴随了逐渐减弱的地壳混染作用。

    English Abstract

    邓旭升, 杨江海, 何犇, 聂波. 黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应[J]. 沉积学报, 2025, 43(4): 1293-1307. doi: 10.14027/j.issn.1000-0550.2024.095
    引用本文: 邓旭升, 杨江海, 何犇, 聂波. 黔西北下三叠统碎屑岩对峨眉山大火成岩省的响应[J]. 沉积学报, 2025, 43(4): 1293-1307. doi: 10.14027/j.issn.1000-0550.2024.095
    DENG XuSheng, YANG JiangHai, HE Ben, NIE Bo. Response of the Lower Triassic Clastic Rocks in Northwestern Guizhou to the Emeishan Large Igneous Province[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1293-1307. doi: 10.14027/j.issn.1000-0550.2024.095
    Citation: DENG XuSheng, YANG JiangHai, HE Ben, NIE Bo. Response of the Lower Triassic Clastic Rocks in Northwestern Guizhou to the Emeishan Large Igneous Province[J]. Acta Sedimentologica Sinica, 2025, 43(4): 1293-1307. doi: 10.14027/j.issn.1000-0550.2024.095
      • 峨眉山大火成岩省广泛分布于华南板块西南缘[13],主要由玄武质熔岩和少量苦橄岩、火山碎屑岩及酸性火山岩组成[12,4],伴生有大量的镁铁质、超镁铁质和长英质侵入岩[513]。生物地层学、磁性地层学和同位素年代学限定了峨眉山大火成岩省火山作用的喷发期为255~262 Ma[1320]。峨眉山大火成岩省在喷发后遭受了强烈的陆表风化剥蚀,并产生了大量的火山碎屑物质[2,14,2123],这些碎屑物质被保存于右江盆地及其周缘地区上二叠统—下三叠统印度阶的陆相—海陆交互相(或滨海相)—海相地层中。碎屑锆石年代学研究显示,贵州哲觉[14]、普安[23]和四大寨[22]地区上二叠统碎屑锆石的U-Pb峰值年龄均集中在257~261 Ma,云南会泽地区下三叠统飞仙关组碎屑锆石U-Pb年龄主要为248~272 Ma,其峰值年龄为257 Ma[24],而贵州贞丰地区下三叠统也报道了大量~260 Ma 的碎屑锆石[25]。它们与峨眉山大火成岩省的喷发期一致。由此可见,右江盆地与峨眉山大火成岩省构成了一个独特的“源—汇”沉积系统[14,2134]。基于此源—汇沉积系统之间的内在物质联系,晚二叠世—早三叠世印度期的碎屑沉积记录也对认识区域沉积古地理演变、峨眉山大火成岩省的剥蚀序列、源—汇沉积系统的搬运—沉积过程和陆表风化作用与古气候之间关系等具有重要意义。

        晚二叠世—早三叠世的碎屑沉积物质不仅记录了峨眉山大火成岩省顶部被剥蚀的火山岩岩石类型和组分特征,也揭示了峨眉山大火成岩省晚期火山序列可能存在的岩浆演化趋势。岩相学、全岩地球化学和同位素年代学的研究表明,华南西南地区晚二叠世—早三叠世印度期的碎屑沉积物主要来源于峨眉山大火成岩省高Ti玄武岩的风化剥蚀,有少量酸性火山岩的贡献[14,2223,25,28,31,35]。晚二叠世碎屑锆石U-Pb年龄、微量元素和Hf同位素的研究表明,峨眉山大火成岩省晚期岩浆演化经历了逐渐衰弱的地壳混染[2223]。周寅生等[25]在黔西南贞丰地区,利用下三叠统夜郎组上部的碎屑沉积物揭示了更加强烈的地壳混染作用。然而,相对于晚二叠世的风化侵蚀研究,早三叠世的相关研究还不深入,特别是缺少早三叠世印度早期的研究,使得该时期剥蚀的火山序列组成及其记录的岩浆演化的变化特征仍不清楚。

        本文对贵州威宁地区下三叠统飞仙关组开展了系统而详细的沉积物源分析,通过对比分析同一源—汇沉积系统晚二叠世和早三叠世沉积物的全岩地球化学、碎屑锆石年代学及微量元素数据,揭示了峨眉山大火成岩省在晚二叠世—早三叠世连续剥蚀的火山序列,探讨其可能的岩浆演化趋势。

      • 中元古代,扬子地块与华夏地块碰撞拼贴形成了华南板块[3637]。泥盆纪,在拉张裂陷作用下,华南板块的西南地区形成了具有明显沉积分异的裂谷盆地,即右江盆地[38]。早石炭世—早三叠世,该盆地转换为被动大陆边缘,并在中三叠世形成前陆盆地[39]。晚古生代,华南西南缘呈现北西高、南东低的古地貌,右江盆地及其周缘的晚古生代沉积物主要由碎屑岩、硅质岩和碳酸盐岩组成[21]。中—晚二叠世之交,峨眉山大火成岩省喷出事件与全球大规模海退事件[14,40]改变了早、中二叠世华南西南缘均为海域的单一古地理格局。晚二叠世—早三叠世印度期,峨眉山大火成岩省遭受大量的风化和剥蚀,为右江盆地及其周缘提供了大量火山碎屑物质,分别沉积保存在上二叠统的陆相宣威组、海陆交互相龙潭组、海相晒瓦组和领薅组[14,2123,30,33]及下三叠统陆相青天堡组和台地相夜郎组中[25,31]。早三叠世巢湖期,华南进入了稳定的海相碳酸盐岩沉积阶段[41],弧相关/造山带型火山碎屑岩的出现[27,4244]也意味着晚二叠世—早三叠世印度期的源—汇沉积系统的落幕。

        贵州西南部地区位于右江盆地及其北西缘,毗邻峨眉山大火成岩省,出露古生代和中生代地层,其中以二叠系和三叠系分布最为广泛。根据沉积相的不同,下三叠统由北西至南东可划分为东川组、飞仙关组、夜郎组、大冶组、罗楼组和乐康组,分别代表了陆相、海陆交互相、局限台地相、开阔台地相、台地边缘—斜坡相和深水盆地相的沉积,向南东具有灰岩逐渐增多和碎屑岩逐渐减少的分布特征[45]。本次取样钻孔位于贵州省威宁县新发乡(图1a),取样地层为下三叠统飞仙关组,为一套紫红色、灰绿色粉砂岩、细砂岩、钙质粉砂岩和泥岩的沉积,中上部偶夹鲕粒灰岩和泥晶灰岩。发育水平层理、小型交错层理、透镜状层理、脉状层理和双黏土层等沉积构造,受潮汐作用影响明显(图2a,b)。

        图  1  (a)峨眉山玄武岩分布范围及华南西南部早三叠世印度期古地理图[3,41];(b)钻孔岩心取样柱状图

        Figure 1.  (a) Schematic of the distribution of the Emeishan basalt and Early Triassic Induan paleogeographic map of South China[3,41];

        图  2  威宁地区下三叠统飞仙关组岩心和砂岩显微照片

        Figure 2.  Representative photographs of sedimentary structures and microphotographs of sandstones in the Lower Triassic Feixianguan Formation, Weining area

      • 在威宁县新发乡钻孔J806的飞仙关组粉砂岩和细砂岩中共采集5件碎屑锆石样品,其中飞仙关组下部2件(J806-2g和J806-3g)、中部1件(J806-4g)、上部2件(J806-5g和J806-6g)。在飞仙关组中共采集9件粉砂岩的全岩地球化学样品(图1b)。

        采集的9件粉砂岩样品均在澳实分析检测(广州)有限公司完成。样品采用PREP-31法进行样品细粉碎(<200目),随后采用ME-XRF26方法,试样中加入含硝酸锂的硼酸锂—硝酸锂熔融助熔剂,充分混合后高温熔融,熔融物倒入铂金模子形成扁平玻璃片后,再利用X射线荧光光谱仪(PW2424)分析主量元素含量。微量元素采用ME-MS61r方法,试样用高氯酸、硝酸、氢氟酸和盐酸消解后,用稀盐酸定容,再利用电感耦合等离子发射光谱(Agilent 5110)进行分析,若Bi/Hg/Mo/Ag/W较高,需要做相应稀释,再利用电感耦合等离子质谱(Agilent 7900)分析。稀土元素采用ME-MS81方法,往试样中加入硼酸锂熔剂,混合均匀后在1 025 ℃下熔融,待熔融液冷却后用硝酸、盐酸和氢氟酸消解并定容,然后利用电感耦合等离子质谱(Agilent 7900)分析。

        采集的5件粉砂岩和细砂岩样品利用淘洗和重液分选矿物,在双目镜下挑选碎屑锆石颗粒。碎屑锆石颗粒经制靶和抛光后,使用阴极发光观察以明确其内部结构特征,指导测试点位置的选择。锆石U-Pb同位素测年及微量元素含量测定在武汉上谱分析科技有限责任公司利用激光剥蚀等离子体质谱仪(LA-ICP-MS)分析完成。激光剥蚀系统由COMPexPro102 Arf 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7900,束斑直径32 μm。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度。U-Pb同位素年龄和微量元素含量处理中采用锆石标准91500和玻璃标准物质NIST610作为外标分别进行同位素和微量元素分馏校正。每个时间分辨分析数据包括大约20~30 s的空白信号和50 s的样品信号。对分析数据的离线处理采用软件 ICPMS DataCal完成。更加详细的仪器操作条件和数据处理方法参见Liu et al.[46]。锆石样品的U-Pb年龄谐和图绘制和加权平均年龄计算均采用Isoplot/Ex_ver 3[47]完成。在获得的U-Pb年龄数据中,小于1 000 Ma的锆石年龄按照206Pb/238U比值计算,而大于1 000 Ma的锆石年龄按照207Pb/206Pb比值计算。

      • 显微镜下鉴定显示,本次采集的贵州威宁地区下三叠统飞仙关组样品为岩屑粉砂岩和岩屑细砂岩,主要由石英、长石、方解石、火山岩屑和黏土矿物组成(图2c~f)。火山岩屑为棱角状—次圆状,大小通常小于0.1 mm,按结构可将其分为板条状、微晶状和霏细晶状、玻璃质,它们分别指示基性和酸性火山源岩[4850]。其中板条状和微晶状岩屑较多,霏细晶和玻璃质岩屑较少。石英和长石颗粒分别以次棱角状—次圆状和棱角状—次棱角状为主,大小为0.05~0.25 mm。单晶石英内部可见矿物或者流体包裹体。在飞仙关组沉积序列上,石英含量由下至上有略微增多的趋势。长石以斜长石为主,呈长条状或板条状,发育聚片双晶。

      • 威宁地区下三叠统飞仙关组9件粉砂岩样品具有较低的SiO2含量(48.14%~51.39%),而TiO2、 Fe2O3和MgO的含量较高,其中TiO2含量介于2.34%~3.20%,Fe2O3介于11.45%~15.48%,MgO介于3.62%~6.83%。Na2O和K2O含量分别介于0.89%~4.52%和2.02%~3.38%(表1)。粉砂岩样品中的Al2O3含量稳定(14.12%~14.96%),Al2O3/TiO2值变化范围窄,集中在4.43~6.11(图3),明显低于平均后太古代页岩(18.9)[61]和平均大陆上地壳(30.4)[62]

        表 1  威宁地区下三叠统飞仙关组粉砂岩主量元素含量(%)

        Table 1.  Major elemental contents (%) for the siltstones of the Lower Triassic Feixianguan Formation at Weining area

        样品编号SiO2Al2O3Fe2O3CaOMgONa2OK2OTiO2MnOP2O5LOIICV
        J806-151.3914.4313.262.405.780.892.023.150.170.426.171.92
        J806-248.1414.1613.874.015.554.522.033.200.170.443.632.36
        J806-348.2714.1215.484.033.624.062.572.920.150.433.422.33
        J806-450.5614.5812.633.754.733.652.992.620.160.413.902.09
        J806-549.3014.9613.123.944.833.092.942.880.140.414.352.07
        J806-649.9214.9011.453.846.192.793.382.870.180.474.222.06
        J806-749.5114.1312.183.826.832.852.812.510.160.454.552.21
        J806-849.4814.3012.444.046.582.442.922.340.150.405.202.16
        J806-950.0914.6512.483.436.062.332.872.470.130.424.742.03
        注:ICV=w(Fe2O3+K2O+Na2O+CaO+MgO+MnO+TiO2)/ w(Al2O3)[51]

        图  3  威宁地区下三叠统飞仙关组粉砂岩Al2O3/TiO2-TiO2图解

        Figure 3.  Al2O3/TiO2 vs. TiO2 plot for the siltstones of the Feixianguan Formation at Weining area

      • 飞仙关组碎屑锆石多为无色或淡黄色,磨圆度差,呈棱角状—次棱角状,在CL图像上大部分锆石颗粒显示出振荡环带(图4),个别颗粒整体较亮,内部成分显示均一。在5件样品的388个分析点中,有6个分析点的Th/U值小于0.1,45个分析点的Th/U值介于0.11~0.39,2个点的Th/U值分别为13.82和41.68,其余分析点的Th/U值均介于0.40~3.52。大部分锆石颗粒表现为岩浆锆石的形态结构[63]和Th/U值特征[6465]

        图  4  威宁地区下三叠统飞仙关组砂岩中碎屑锆石阴极发光图像

        Figure 4.  Cathodoluminescence images of detrital zircons from the Lower Triassic Feixianguan Formation at Weining area

        对388个锆石颗粒进行LA-ICP-MS分析,获得388个U-Pb年龄数据,其中358年龄数据谐和度≥90%(图5)。飞仙关组的5件样品均具有相对一致的碎屑锆石U-Pb年龄分布,主要年龄组介于280~238 Ma,其峰值年龄在256.5±1.9 Ma~251.3±1.8 Ma之间变化(图6)。除飞仙关组顶部1件样品具有571±26 Ma和954±14 Ma的次要峰值年龄外,其余锆石颗粒的年龄均零散分布在频率直方图上,介于153~238 Ma和458~2 762 Ma。

        图  5  威宁地区下三叠统飞仙关组碎屑锆石U⁃Pb年龄谐和图

        Figure 5.  Concordant diagram of detrital zircon U⁃Pb ages from sandstone in the Lower Triassic Feixianguan Formation at Weining area

        图  6  威宁地区下三叠统飞仙关组砂岩中碎屑锆石的U⁃Pb年龄频率直方图

        Figure 6.  Frequency distribution of detrital zircon U⁃Pb ages from sandstone in the Lower Triassic Feixianguan Formation at Weining area

        威宁地区下三叠统飞仙关组5件样品的锆石微量元素变化范围均较宽,在获得较高谐和率的锆石颗粒中,大部分~260 Ma锆石都具有高Th/Nb(>10)和U/Yb值(>0.5)。在飞仙关组下部、中部和上部样品中,~260 Ma锆石颗粒的Th/Nb和U/Yb值分别为3.42~219.15和0.10~2.43、9.03~169.14和0.31~1.68、11.14~752.40和0.19~1.39。在飞仙关组地层序列上,由下至上Th/Nb和U/Yb值具有逐渐升高的趋势。而年龄>300 Ma的锆石颗粒整体上则具有更高的Th/Nb和U/Yb值。

      • 贵州威宁地区下三叠统飞仙关组砂岩主要由石英、长石和岩屑组成,大部分岩屑、石英和副矿物(如锆石)磨圆度一般,为次棱角状—次圆状,表现出一定距离的搬运特征。火山岩岩屑结构对于识别源岩类型具有指示意义。飞仙关组砂岩中的火山岩屑以板条状和微晶状为主,它们与黔西南地区上二叠统龙潭组[23]和晒瓦组[22]砂岩中火山岩屑具有相似的结构组成,说明了其源岩主要为玄武质的火山岩,含少量长英质火山岩[4850]

        年轻沉积物与古老沉积物中氧化物含量具有差异性,Cox et al.[51]认为成分变异指数(ICV)可用于反映泥岩的成分成熟度。岩石ICV值与黏土矿物的含量和第一次循环碎屑的输入量相关,第一次循环碎屑输入量较高的岩石,其黏土矿物含量较低,岩石ICV值一般大于1,其物质来源多为火成岩。而黏土矿物含量较高的岩石多形成于稳定区域,其物质来源很可能经历过多次风化—沉积成岩的过程。飞仙关组粉砂岩均具有较高的ICV值(1.92~2.36,表1),说明威宁地区飞仙关组碎屑岩来源于第一次循环碎屑,而非稳定区域的再循环碎屑。

        威宁地区下三叠统飞仙关组粉砂岩中含有较高的Fe2O3和MgO,表明其源岩可能为富Fe和Mg的基性火成岩。在火成岩中,Al大部分赋存于长石中,而Ti则赋存于镁铁质矿物中。因此,火成岩中的Al/Ti比值通常会随SiO2含量的增加而增加。镁铁质火山岩、中性火山岩、酸性火山岩的Al2O3/TiO2比值分别介于3~8、8~21和21~70[66]。此外,在风化、搬运、沉积和成岩过程中,源岩中的Al2O3/TiO2比值不会受到明显的改变。因此,沉积岩中的Al2O3/TiO2比值可以作为示踪的指标[14,66]。威宁地区下三叠统飞仙关组粉砂岩样品的Al2O3/TiO2值略高于峨眉山高Ti玄武岩[2,5257],而与峨眉山低Ti玄武岩相比[2,52,54],则具有更低的Al2O3/TiO2值,远低于峨眉山酸性火山岩[4,11,5860]和后太古代页岩(18.9)[61]。它们也与贵州哲觉[14]、普安[23]、四大寨[22]上二叠统和四川盐源[31]、贵州贞丰[25]下三叠统的碎屑沉积物具有相似的Al2O3/TiO2值范围(图3)。在峨眉山大火成岩省的火山序列中,绝大部分地区的高Ti玄武岩都覆盖在低Ti玄武岩之上[2],低Ti玄武岩不可能作为源岩。而在金平地区,低Ti玄武岩直接暴露地表被认为是晚白垩世—早古近纪的构造破坏所致[67]。此外,低Ti玄武岩中通常具有较多的斜辉石[2],而本次研究的样品中并未发现该矿物。由此可见,威宁地区下三叠统的碎屑岩很可能也主要来源于峨眉山高Ti玄武岩的风化剥蚀。

        贵州威宁地区下三叠统飞仙关组砂岩中锆石具有较为统一的U-Pb峰值年龄,与峨眉山大火成岩省的主要喷发时限相一致(~260 Ma)[1320]。在锆石微量元素的Th/Nb-Hf/Th与U/Yb-Nb/Yb图解中[22,68],这些~260 Ma碎屑锆石颗粒大部分位于或靠近板内/非造山构造背景中,与洋岛型的锆石颗粒更具地球化学亲和性(图7)。这也进一步反映了这些碎屑物质的主要源区为峨眉山大火成岩省。而部分~260 Ma碎屑锆石颗粒投在弧相关/造山带和大陆弧区域内,与那些大于300 Ma的锆石相比,它们更靠近板内/非造山和地幔锆石矩阵。这很可能是地壳物质的混染导致峨眉山幔源岩浆具有一些陆壳的地球化学特征[70]。华南与印支地块之间的火成岩也具有相似的年龄(~248~300 Ma)[7172]。然而,这些岛弧物质的输入将导致全岩地球化学组分的变化,与威宁地区飞仙关组全岩地球化学特征不符。综上分析,威宁地区下三叠统飞仙关组碎屑物质主要来源于峨眉山大火成岩省的风化剥蚀。这与前人关于扬子西南缘的早三叠世碎屑沉积物物质来源的认识相一致[2425,31]

        图  7  威宁地区下三叠统碎屑锆石Th/Nb⁃Hf/Th与Nb/Yb⁃U/Yb图解(底图据文献[22,69])

        Figure 7.  Th/Nb vs. Hf/Thand Nb/Yb vs. U/Ybdiagrams for detrital zircons from the Lower Triassic Feixianguan Formation at Weining area (base map from references [22,69])

        除了~260 Ma碎屑锆石外,威宁地区飞仙关组砂岩中还含有较多U-Pb年龄>300 Ma的老锆石。它们与滇黔桂地区基底的锆石U-Pb年龄谱(~430 Ma、~520 Ma、~770 Ma、~860 Ma、~960 Ma、~1 100 Ma、~2 500 Ma等七组峰值年龄)具有较高的相似性[73]。然而,再循环沉积物或前寒武系的基底物质将产生高Al2O3/TiO2值、低ICV值的碎屑物质和少量沉积/变质岩屑。飞仙关组样品中未发现有变质岩屑,且具有低Al2O3/TiO2值和较高ICV值的特征,而大量再循环物质的加入将导致全岩组分的明显变化。飞仙关组碎屑岩中的石英含量及老锆石的占比由下至上具有增多的趋势,考虑到这些石英颗粒圆度与再循环碎屑有所差异,且在晚二叠世的宣威组和龙潭组等砂岩中也观察到棱角状的石英颗粒,这些沉积物基本不含有>300 Ma的老锆石[2223,33],很可能不是来源于再旋回沉积物。因此,再循环碎屑不太可能作为老锆石主要物质来源。更为重要的是,峨眉山高Ti玄武岩之下仍有低Ti玄武岩,而华南西南缘在早—中二叠世未缺失碳酸盐岩沉积[41],峨眉山大火成岩省在早三叠世的剥蚀不可能下切至基底。而川滇侵蚀区以西的区域则逐渐过渡为海相沉积,在晚二叠世—早三叠世不可能为研究区及其周缘提供基底的碎屑物质来源,且飞仙关组中石英颗粒的圆度也未表现出长距离搬运的特征。此外,华南板块东南缘的同期沉积岩中可见大量石英,含少量火山岩屑,甚至不含火山岩屑,且具有多组峰值的碎屑锆石年龄谱[74]。北西高和南东低的岩相古地理格局进一步说明了华南东南缘不可能成为威宁地区的下三叠统沉积物提供碎屑物质输入。事实上,前人在峨眉山大火成岩省的侵入岩和喷出岩中报道过很多年龄>300 Ma的锆石[7578]。综合考虑上述几个方面,认为飞仙关组中的老锆石很可能来源于峨眉山大火成岩省岩浆的捕获晶或围岩。这与相同源—汇沉积系统中老锆石来源的认识相一致[2223,25],符合构造背景判别图中部分~260 Ma锆石颗粒偏移的解释。

      • 前人研究显示,在右江盆地北西缘的晚二叠世海陆交互相和海相碎屑沉积物岩石学和地球化学特征在沉积序列上无明显的差异,而碎屑锆石U-Pb年龄及微量元素在沉积序列上则具有明显的变化特征。晚二叠世下部沉积序列中,~260 Ma的锆石颗粒具有较低的U/Yb(大部分小于0.5)和Th/Nb(大部分小于10)值,几乎不含老锆石(>300 Ma)。而上部序列的锆石颗粒具有更高的U/Yb(大部分大于0.5)和Th/Nb(大部分大于10)值,老锆石逐渐增多[2223]。与上二叠统碎屑锆石相比,在本文研究的早三叠世印度期沉积序列中,~260 Ma锆石颗粒具有更高的Th/Nb值、U/Yb值和老锆石比重,在垂向序列上表现为系统的变化趋势(图8)。考虑到这些~260 Ma的锆石主要来源于峨眉山大火成岩省顶部火山序列的剥蚀,它们与下二叠统的碎屑锆石地球化学变化特征很可能代表了右江盆地与峨眉山大火成岩省构成的源—汇沉积系统中碎屑沉积物的一种固有特征,即剥蚀的火山序列特征。

        图  8  右江盆地北西缘上二叠统龙潭组—下三叠世飞仙关组碎屑锆石地球化学特征变化图

        Figure 8.  Geochemical characteristics of detrital zircons from the Lower Triassic Feixianguan Formation and the Upper Permian Longtan Formation in northwestern Youjiang Basin

        岩浆锆石Th/Nb和U/Yb值对母岩浆化学组成和演化具有一定的指示作用,如幔源岩浆的锆石具有低的Th/Nb和U/Yb值,而地壳物质的输入则会使岩浆锆石具有更高的Th/Nb和U/Yb值[6869,79]。普安地区龙潭组中锆石地球化学和Hf同位素的研究显示,副矿物的分异、锆石在熔体中的分异系数和岩浆的温度及氧化状态等因素对锆石中Th/Nb和U/Yb值未产生明显的影响。因此,锆石微量元素中的Th/Nb、U/Yb值可用来揭示锆石结晶期间峨眉山晚期岩浆活动[80]。右江盆地北西缘的晚二叠世碎屑沉积物揭示了峨眉山大火成岩省晚期岩浆活动过程中伴随地壳混染作用的不断减弱[2223]。在沉积序列上,威宁地区下三叠统飞仙关组中锆石Th/Nb值和U/Yb值均表现出由下至上逐渐变大的趋势,且大部分锆石具有Th/Nb值大于10和U/Yb值大于0.5的特征,反映了峨眉山大火成岩省晚期的早期阶段经历了更为强烈且逐渐减弱的地壳混染作用。来源于峨眉山大火成岩省岩浆的捕获晶或围岩的老锆石颗粒(>300 Ma),在沉积序列上也具有其比重逐渐增多的趋势,进一步支持上述认识。右江盆地北西缘早三叠世和晚二叠世碎屑的沉积物共同且连续地记录了峨眉山大火成岩省顶部剥蚀火山序列所经历的岩浆活动。

      • (1) 威宁地区下三叠统飞仙关组的碎屑沉积物主要来源于峨眉山大火成岩省高Ti玄武岩的风化剥蚀,酸性火山岩可能有少量贡献。

        (2) 威宁地区下三叠统飞仙关组具有更多>300 Ma的岩浆捕获锆石,其中~260 Ma的锆石颗粒具有更高Th/Nb值和U/Yb值。在右江盆地与峨眉山大火成岩省构成的源—汇沉积系统中,早三叠世和晚二叠世碎屑沉积物的锆石地球化学特征在垂向序列上具有系统的变化趋势,很可能代表了剥蚀的火山序列固有特征。

        (3) 威宁地区早三叠世印度期的碎屑沉积物与右江盆地北西缘的晚二叠世碎屑沉积物共同且连续记录了峨眉山大火成岩省晚期的岩浆活动,即晚期岩浆活动在分异结晶作用下,伴随了逐渐减弱的地壳混染作用。

    参考文献 (80)

    目录

      /

      返回文章
      返回