川东北灯影组克劳德管富集层及其储集特征分析
doi: 10.14027/j.issn.1000-0550.2024.049
cstr: 32268.14.cjxb.62-1038.2024.049A Cloudina-rich Bed from the Dengying Formation, Northeastern Sichuan Basin, and Its Reservoir Characteristics
-
摘要:
目的 近年来,继安岳气田的发现和绵阳—长宁裂陷的提出,四川盆地埃迪卡拉系—下寒武统得到了重点关注。这些油气藏的储集层主要发育在灯二段和灯四段的微生物岩和富岩溶孔隙白云岩中。通过讨论埃迪卡拉纪末期首次出现的动物骨骼化石克劳德管(Cloudina)对当时白云岩储层的潜在影响,可拓展区域油气勘探开发思路。 方法 基于四川盆地东部鹿页1井岩心资料,通过偏光显微镜、阴极发光、扫描电子显微镜观察和micro-CT分析,对灯四段顶部的岩矿特征、孔隙类型、成岩类型、成岩序列、孔隙演化进行了初步研究。 结果 川东巫溪地区灯影组顶部生物碎屑微晶白云岩中存在较丰富的管状动物化石,依据其形态特征可鉴定为Cloudina,其基质中存在大量微生物组构。识别出的孔隙类型有管状化石壳体构成的生物孔,以及基质中的粒间孔、沥青孔、晶间溶孔和晶内溶孔;识别出的主要成岩作用有多期的溶蚀作用、胶结作用以及充填作用。从重建的孔隙形态与分布来看,管状化石对生物碎屑微晶白云岩的孔隙度贡献显著,化石富集层的孔隙度至少为0.7%,而基质孔隙度仅为0.1%~0.4%。 结论 富集成层的Cloudina是灯四段局部层位中除微生物礁丘以外的另一个重要孔隙来源。这说明埃迪卡拉纪末期动物矿化骨骼的出现不仅是生物演化上的创新,也为油气储层的类型带来了深刻的改变。
Abstract:Objective The discovery of the Anyue gas field and the Mianyang-Changning intratonic sag has attracted considerable attention to the strata near the Ediacaran-Cambrian boundary in the Sichuan Basin. The reservoirs of these oil and gas fields occur mainly in the microbial and karst porous rich dolomite of the second and the fourth member of Dengying Formation. This study discusses the impact of Cloudina skeletal remains, one of the earliest metazoan mineral skeletons, on the terminal Ediacaran carbonate reservoirs, in order to expand regional oil and gas exploration strategies. Methods Drilling core material from the topmost Dengying Formation of the well Luye 1, northeastern Sichuan Basin, was examined for sedimentology, diagenesis, pore types, and porosity evolution, using a combination of methods including optical microscopy, cathodoluminescence, scanning electron microscopy, and micro-CT analysis. Results and Discussions Abundant tubular animal fossils, diagnosed as Cloudina, were aggregated in a layer of bioclastic micrite dolomite. These fossils are preserved in a micritic to microsparitic matrix, with their body axes oriented along the bedding plane. Micritic clots and filaments of probably microbial origin were found all around. The recognized pore types include biogenic pores formed by tubular fossils, intergranular pores, inter- and intracrystalline dissolution pores, and bitumen pores. The main diagenetic processes include dissolution, cementation, and filling at different periods. The high-resolution micro-CT scan shows that the porosity of the studied material is conspicuously affected by the presence/absence of the Cloudina skeleton. Only 0.1% to 0.4% of the porosity can be attributed to the dolomitic matrix, while the contribution of the tubular fossils is more than 0.7%. Conclusion Cloudina aggregates can contribute a considerable amount of porosity to the terminal Ediacaran dolomite, in addition to the microbial fabrics. The presence of mineralized animal skeletons at the end of the Ediacaran not only marks a big step in biological evolution but has also profoundly changed the types of oil and gas reservoirs.
-
Key words:
- northeastern Sichuan region /
- Ediacaran Period /
- Cloudina /
- pores /
- reservoir characteristics
-
-
[1] 邹才能,杜金虎,徐春春,等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发,2014,41(3):278-293. Zou Caineng, Du Jinhu, Xu Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. [2] 李智武,冉波,肖斌,等. 四川盆地北缘震旦纪—早寒武世隆—坳格局及其油气勘探意义[J]. 地学前缘,2019,26(1):59-85. Li Zhiwu, Ran Bo, Xiao Bin, et al. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hydrocarbon exploration[J]. Earth Science Frontiers, 2019, 26(1): 59-85. [3] 姚根顺,郝毅,周进高,等. 四川盆地震旦系灯影组储层储集空间的形成与演化[J]. 天然气工业,2014,34(3):31-37. Yao Genshun, Hao Yi, Zhou Jingao, et al. Formation and evolution of reservoir spaces in the Sinian Dengying Fm of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 31-37. [4] 周进高,姚根顺,杨光,等. 四川盆地安岳大气田震旦系—寒武系储层的发育机制[J]. 天然气工业,2015,35(1):36-44. Zhou Jingao, Yao Genshun, Yang Guang, et al. Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue gas field, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 36-44. [5] 杨雨,黄先平,张健,等. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义[J]. 天然气工业,2014,34(3):38-43. Yang Yu, Huang Xianping, Zhang Jian, et al. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 38-43. [6] 刘宏,罗思聪,谭秀成,等. 四川盆地震旦系灯影组古岩溶地貌恢复及意义[J]. 石油勘探与开发,2015,42(3):283-293. Liu Hong, Luo Sicong, Tan Xiucheng, et al. Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance, SW China[J]. Petroleum Exploration and Development, 2015, 42(3): 283-293. [7] Cai Y P, Hua H, Zhang X L. Tube construction and life mode of the Late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte[J]. Precambrian Research, 2013, 224: 255-267. [8] Cai Y P, Hua H, Schiffbauer J D, et al. Tube growth patterns and microbial mat-related lifestyles in the Ediacaran fossil Cloudina, Gaojiashan Lagerstätte, South China[J]. Gondwana Research, 2014, 25(3): 1008-1018. [9] Cai Y P, Xiao S H, Li G X, et al. Diverse biomineralizing animals in the terminal Ediacaran Period herald the Cambrian explosion[J]. Geology, 2019, 47(4): 380-384. [10] Penny A M, Wood R, Curtis A, et al. Ediacaran metazoan reefs from the Nama Group, Namibia[J]. Science, 2014, 344(6191): 1504-1506. [11] Wood R, Curtis A. Extensive metazoan reefs from the Ediacaran Nama Group, Namibia: The rise of benthic suspension feeding[J]. Geobiology, 2015, 13(2): 112-122. [12] Cai Y P, Hua H, Xiao S H, et al. Biostratinomy of the Late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: Importance of event deposits[J]. Palaios, 2010, 25(8): 487-506. [13] Wood R. Exploring the drivers of early biomineralization[J]. Emerging Topics in Life Sciences, 2018, 2(2): 201-212. [14] Shore A J, Wood R A, Butler I B, et al. Ediacaran metazoan reveals lophotrochozoan affinity and deepens root of Cambrian Explosion[J]. Science Advances, 2021, 7(1): eabf2933. [15] Warren L V, Quaglio F, Simões M G, et al. Cloudina-Corumbella-Namacalathus association from the Itapucumi Group, Paraguay: Increasing ecosystem complexity and tiering at the end of the Ediacaran[J]. Precambrian Research, 2017, 298: 79-87. [16] Wood R A. Paleoecology of the earliest skeletal metazoan communities: Implications for early biomineralization[J]. Earth-Science Reviews, 2011, 106(1/2): 184-190. [17] Warren L V, Quaglio F, Riccomini C, et al. The puzzle assembled: Ediacaran guide fossil Coludina reveals an old proto-Gondwana seaway[J]. Geology, 2014, 42(5): 391-394. [18] 赵文智,沈安江,周进高,等. 礁滩储集层类型、特征、成因及勘探意义:以塔里木和四川盆地为例[J]. 石油勘探与开发,2014,41(3):257-267. Zhao Wenzhi, Shen Anjiang, Zhou Jingao, et al. Types, characteristics, origin and exploration significance of reef-shoal reservoirs: A case study of Tarim Basin, NW China and Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 257-267. [19] 卫平生,刘全新,张景廉,等. 再论生物礁与大油气田的关系[J]. 石油学报,2006,27(2):38-42. Wei Pingsheng, Liu Quanxin, Zhang Jinglian, et al. Re-discussion of relationship between reef and giant oil-gas fields[J]. Acta Petrolei Sinica, 2006, 27(2): 38-42. [20] Zhao G C, Cawood P A. Precambrian geology of China[J]. Precambrian Research, 2012, 222-223: 13-54. [21] Greentree M R, Li Z X, Li X H, et al. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia[J]. Precambrian Research, 2016, 151(1/2): 79-100. [22] 胡健民,施炜,渠洪杰,等. 秦岭造山带大巴山弧形构造带中生代构造变形[J]. 地学前缘,2009,16(3):49-68. Hu Jianmin, Shi Wei, Qu Hongjie, et al. Mesozoic deformation of Dabashan curvilinear structural belt of Qinling orogen[J]. Earth Science Frontiers, 2009, 16(3): 49-68. [23] 刘鸿允. 中国震旦系[M]. 北京:科学出版社,1991:1-388. Liu Hongyun. The Sinian system in China[M]. Beijing: Science Press, 1991: 1-388. [24] Hoffman P F, Abbot D S, Ashkenazy Y, et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology[J]. Science Advances, 2017, 3(11): e1600983. [25] Hoffman P F, Schrag D P. The snowball Earth hypothesis: Testing the limits of global change[J]. Terra Nova, 2002, 14(3): 129-155. [26] Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551 Ma) in South China[J]. Gondwana Research, 2011, 19(4): 831-849. [27] 邓胜徽,樊茹,李鑫,等. 四川盆地及周缘地区震旦(埃迪卡拉)系划分与对比[J]. 地层学杂志,2015,39(3):239-254. Deng Shenghui, Fan Ru, Li Xin, et al. Subdivision and correlation of the Sinian (Ediacaran) System in the Sichuan Basin and its adjacent area[J]. Journal of Stratigraphy, 2015, 39(3): 239-254. [28] 周传明,欧阳晴,王伟,等. 中国埃迪卡拉纪岩石地层划分和对比[J]. 地层学杂志,2021,45(3):211-222. Zhou Chuanming, Ouyang Qing, Wang Wei, et al. Lithostratigraphic subdivision and correlation of the Ediacaran in China[J]. Journal of Stratigraphy, 2021, 45(3): 211-222. [29] Zhou J G, Zhang J Y, Deng H Y, et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin[J]. Natural Gas Industry B, 2017, 4(3): 217-224. [30] 赵东方,胡广,张文济,等. 渝北巫溪鱼鳞剖面灯影组鲕粒沉积特征及其地质意义[J]. 地质论评,2018,64(1):191-202. Zhao Dongfang, Hu Guang, Zhang Wenji, et al. Sedimentary characteristics of ooids of Sinian (Ediacaran) Dengying Formation on the Yulin section in Wuxi, Chongqing, and geological implications[J]. Geological Review, 2018, 64(1): 191-202. [31] Zhang L, Chang S, Chen C, et al. Coludina aggregates from the uppermost Dengying Formation, Three Gorges area, South China, and stratigraphical implications[J]. Precambrian Research, 2022, 370: 106552. [32] Braithwaite C J R. Cathodoluminescence in Quaternary carbonate deposits[J]. Sedimentary Geology, 2016, 337: 29-35. [33] Droser M L, Gehling J G. The advent of animals: The view from the Ediacaran[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(16): 4865-4870. [34] Grotzinger J P, Bowring S A, Saylor B Z, et al. Biostratigraphic and geochronologic constraints on early animal evolution[J]. Science, 1995, 270(5236): 598-604. [35] Zhu M Y, Zhuravlev A Y, Wood R A, et al. A deep root for the Cambrian explosion: Implications of new bio-and chemostrati-graphy from the Siberian Platform[J]. Geology, 2017, 45(5): 459-462. [36] 杨犇,尚晓冬, Steiner M,等. 湖北神农架地区埃迪卡拉纪管状化石及其地层意义[J]. 地层学杂志,2020,44(4):448-454. Yang Ben, Shang Xiaodong, Steiner M, et al. Ediacaran tubular fossils from the Shennongjia area, Hubei province and their stratigraphic significance[J]. Journal of Stratigraphy, 2020, 44(4): 448-454. [37] Yang B, Warren L V, Steiner M, et al. Taxonomic revision of Ediacaran tubular fossils: Cloudina, Sinotubulites and Conotubus[J]. Journal of Paleontology, 2022, 96(2): 256-273. [38] Mehra A, Maloof A. Multiscale approach reveals that Cloudina aggregates are detritus and not in situ reef constructions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): E2519-E2527. [39] Curtis A, Wood R, Bowyer F, et al. Modelling Ediacaran metazoan-microbial reef growth[J]. Sedimentology, 2021, 68(5): 1877-1892. [40] Hannisdal B, Peters S E. Phanerozoic Earth system evolution and marine biodiversity[J]. Science, 2011, 334(6059): 1121-1124. [41] Warren L V, Simões M G, Fairchild T R, et al. Origin and impact of the oldest metazoan bioclastic sediments[J]. Geology, 2013, 41(4): 507-510. [42] Grant S W. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic[J]. American Journal of Science, 1990, 290-A: 261-294. [43] Cai Y P, Schiffbauer J D, Hua H, et al. Morphology and paleoecology of the Late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi province, South China[J]. Precambrian Research, 2011, 191(1/2): 46-57. [44] Warren L V, Fairchild T R, Gaucher C, et al. Corumbella and in situ Cloudina in association with thrombolites in the Ediacaran Itapucumi Group, Paraguay[J]. Terra Nova, 2011, 23(6): 382-389. [45] Hua H, Chen Z, Yuan X L, et al. Skeletogenesis and asexual reproduction in the earliest biomineralizing animal Cloudina[J]. Geology, 2005, 33(4): 277-280. [46] Germs G J B. New shelly fossils from Nama Group, south West Africa[J]. American Journal of Science, 1972, 272(8): 752-761. [47] Becker-Kerber B, Pacheco M L A F, Rudnitzki I D, et al. Ecological interactions in Cloudina from the Ediacaran of Brazil: Implications for the rise of animal biomineralization[J]. Scientific Reports, 2017, 7(1): 5482. [48] Vinn O, Zatoń M. Inconsistencies in proposed annelid affinities of early biomineralized organism Cloudina (Ediacaran): Structural and ontogenetic evidences[J]. Carnets de Géologie, 2012, 2012/03 (CG2012_A2003): 39-47. [49] 郭玉鑫. 四川盆地震旦系灯影组沉积微相与微组构分析[D]. 北京:中国石油大学(北京),2021. Guo Yuxin. Sedimentary microfacies and microfabrics of the Sinian Dengying Formation in the Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2021. [50] 梁锋,谭兵,王立恩,等. 川中古隆起蓬莱气区上震旦统灯影组二段白云岩储集层特征及优质储层形成主控因素[J/OL]. 天然气地球科学:1-20 [2024-05-09]. http://kns.cnki.net/kcms/detail/62.1177.TE.20240429.1619.002.html. http://kns.cnki.net/kcms/detail/62.1177.TE.20240429.1619.002.html Liang Feng, Tan Bing, Wang Li'en, et al. Characteristics and main controlling factors of dolomite reservoir in the Second member of Upper Sinian Dengying Formation, Penglai gas area, central Sichuan paleo-uplift [J/OL]. Natural Gas Geoscience: 1-20 [2024-05-09]. http://kns.cnki.net/kcms/detail/62.1177.TE.20240429.1619.002.html. http://kns.cnki.net/kcms/detail/62.1177.TE.20240429.1619.002.html [51] 丁一,刘树根,文龙,等. 中上扬子地区震旦纪灯影组沉积期碳酸盐岩台地古地理格局及有利储集相带分布规律[J].沉积学报,2024,42(3):928-943. Ding Yi, Liu Shugen, Wen Long, et al. Paleogeographic pattern of the carbonate platform in the Middle-Upper Yangtze area during the deposition of the Ediacaran Dengying Formation and distribution pattern of the reservoir facies[J]. Acta Sedimentologica Sinica, 2024,42(3):928-943. [52] 罗冰,杨跃明,罗文军,等. 川中古隆起灯影组储层发育控制因素及展布[J]. 石油学报,2015,36(4):416-426. Luo Bing, Yang Yueming, Luo Wenjun, et al. Controlling factors and distribution of reservoir development in Dengying Formation of paleo uplift in central Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(4): 416-426. [53] 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3):305-312. Wang Zecheng, Jiang Hua, Wang Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312. [54] 刘树根,宋金民,罗平,等. 四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景[J]. 成都理工大学学报(自然科学版),2016,43(2):129-152. Liu Shugen, Song Jinmin, Luo Ping, et al. Characteristics of microbial carbonate reservoir andits hydrocarbon exploring outlook in the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science &. Technology Edition), 2016, 43(2): 129-152. [55] 王炳森,袁海锋,王涛,等. 川中蓬莱地区震旦系灯影组四段储层成岩作用、孔隙演化及油气充注[J/OL]. 沉积学报,doi:10.14027/j.issn.1000-0550.2024.012. doi: 10.14027/j.issn.1000-0550.2024.012 Wang Bingsen, Yuan Haifeng, Wang Tao, et al. Reservoir diagenesis, pore evolution and oil and gas charging in the Fourth member of the Sinian Dengying Formation in the Penglai area, central Sichuan [J/OL]. Acta Sedimentologica Sinica, doi: 10.14027/j.issn.1000-0550.2024.012.