-
除了上扬子地区灯三段可见混合沉积,中扬子三峡地区石板滩段可见灰岩之外,灯影组在中上扬子台地相区几乎均发育白云岩。鉴于石板滩段灰岩为风暴影响的中—外缓坡沉积,留茶坡组硅质岩属于斜坡—盆地相沉积已经得到学界广泛认同,前人据此分别在中、上扬子地区建立了缓坡台地和陆表海碳酸盐岩台地沉积模式[5⁃6,22⁃23],本文着重解析灯影组沉积期碳酸盐岩台地相(或内缓坡)的白云岩岩相组合变化。通过综合分析研究区30余条剖面(钻井),发现灯影组沉积期上扬子台地和中扬子台地具有类似的岩相组合(表1),可以大体归纳为三种沉积相带:(1)丘滩相,以发育块状鲕粒白云岩、砂屑白云岩及丘状叠层石建造为标志;(2)潮坪相,以微生物纹层白云岩、穹窿—缓波状叠层石白云岩、凝块石白云岩等微生物岩形成的米级、分米级旋回为特征;(3)潟湖相,主要发育泥晶(泥质)白云岩、含球粒/砂屑泥晶白云岩及泥晶砂质白云岩(表2)。丘滩相大致沿前人刻画的碳酸盐岩台地—斜坡(内—中缓坡)边界分布[5⁃6,12]:在上扬子地区该种相带主要发育在灯影组下部灯一段(如蓬探1井、资阳1井、清平剖面、北斗山剖面),在梅子湾、白家坝和鱼鳞剖面[24]发育于灯二段,在岩孔—松林地区灯一段—灯二段均有发育;中扬子地区该种相带在部分剖面发育于灯影组下部的蛤蟆井段(如三岔、白鹭垭、田坪剖面)或上部的白马沱段(如庙河剖面),不少剖面可见该种相带反复进积—退积,多次出现在灯影组不同部位(如白果坪、晓峰河、灯影峡、武山、薛家店[25]及邓家崖剖面[26])(图1)。潮坪和潟湖相广泛分布在中上扬子碳酸盐岩台地上,在绝大部分剖面/钻井(除鱼鳞剖面、庙河剖面、ZK102井外)均有发育(图1)。这两种相带的分布范围与葡萄状白云岩的分布范围大致一致,本次研究剖面/钻井灯二段中下部(或相应层段)发育这两种相带的层段基本伴生了葡萄状构造(图1)。
表 1 中上扬子地区灯影组典型剖面(井)地层及沉积相概况(据文献[6]修改)
Table 1. Stratigraphy and depositional facies of typical sections (wells) of the Dengying Formationin the Middle⁃Upper Yangtze area (modified from reference [6])
剖面(井) 位置(坐标) 地层及沉积环境 杨坝 四川南江(32°28′35″ N,106°46′59″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 关山 陕西勉县(33°11′8″ N,106°36′40″ E) 灯影组零星出露,发育潮坪—潟湖相 胡家坝 陕西宁强(32°56′58″ N,106°28′20″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 福成 四川南江(32°30′21″ N,107°15′24″ E) 灯二、灯四段主要发育潮坪—潟湖相 白家坝 四川南江(32°24′52″ N,107°58′32″ E) 灯二、灯四段主要发育潮坪—潟湖相 马深1井 四川通江(32°10′11″ N,107°10′57″ E) 灯二、灯四段主要发育潮坪—潟湖相 康家坪 四川城口(31°43′26″ N,109°7′42″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 鱼鳞 重庆巫溪(31°40′19″ N,109°28′47″ E) 灯影组全段以斜坡—盆地相为主,仅在灯二段上部发育丘滩相 廖家槽 重庆彭水(29°44′14″ N,108°14′11″ E) 剥蚀后仅残留灯一—灯二段,为潮坪—潟湖相,灯二段发育葡萄状白云岩 松林 贵州遵义(27°43′11″ N,106°42′13″ E) 剥蚀后仅残留灯一—灯二段,发育潮坪—潟湖相为主,仅在灯一段下部发育斜坡相,中部和灯二段顶部发育丘滩相,灯二段发育葡萄状白云岩 岩孔 贵州金沙(27°34′14″ N,106°14′58″ E) 剥蚀后仅残留灯二段,发育潮坪—潟湖相为主,仅在中上部发育丘滩相,灯二段发育葡萄状白云岩 北斗山 贵州瓮安(27°0′47″ N,107°23′10″ E) 剥蚀后仅残留灯一—灯二段,灯一段下部为斜坡相,上部发育丘滩相, 灯二段发育潮坪—潟湖相,灯二段发育葡萄状白云岩 梅子湾 贵州金沙(27°27′22″ N,107°26′29″ E) 剥蚀后仅残留灯一—灯二段相应层位,以斜坡相为主,仅在剖面上部发育丘滩相 谷腊 贵州清镇(26°42′26″ N,106°28′55″ E) 剥蚀后仅残留灯一—灯二段,为潮坪—潟湖相,灯二段发育葡萄状白云岩 方深1井 贵州大方(27°15′35″ N,105°38′51″ E) 灯一、灯二、灯四段主要发育潮坪—潟湖相,灯二段发育葡萄状白云岩 银厂坡 云南会泽(26°30′55″ N,103°12′45″ E) 灯影组零星出露,发育潮坪—潟湖相,灯二段发育葡萄状白云岩 棉沙湾 四川巧家(27°7′39″ N,102°55′59″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 先锋 四川峨边(29°18′28″ N,103°27′48″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 孔玉 四川康定(30°30′58″ N,102°5′5″ E) 剥蚀后仅残留灯一—灯二段,为潮坪—潟湖相,灯二段发育葡萄状白云岩 清平 四川绵竹(31°36′3″ N,104°5′12″ E) 灯一段下部为斜坡相,上部发育丘滩相,灯二、灯四段均潮坪—潟湖相,灯二段发育葡萄状白云岩 资阳1井 四川资阳(30°2′11″ N,105°0′5″ E) 剥蚀后仅残留灯一段,以潮坪—潟湖相为主,下部发育丘滩相 高石1井 四川安岳(30°2′39″ N,105°28′15″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 蓬探1井 四川大英(30°27′55″ N,105°16′23″ E) 剥蚀后仅残留灯一—灯二段,以潮坪—潟湖相为主,灯一段下部发育丘滩相,灯二段发育葡萄状白云岩 蓬探101井 四川遂宁(30°26′43″ N,105°19′26″ E) 剥蚀后仅残留灯一—灯二段,为潮坪—潟湖相,灯二段发育葡萄状白云岩 三岔 湖南张家界(29°4′28″ N,110°33′53″ E) 剥蚀后仅残留蛤蟆井段,以丘滩相为主,上部发育潮坪—潟湖相 田坪 湖南张家界(28°58′21″ N,110°24′31″ E) 剥蚀后仅残留蛤蟆井段,以丘滩相和斜坡相交替发育为特征 ZK102 贵州松桃(28°7′48″ N,108°52′48″ E) 灯影组全段以斜坡—盆地相为主 白果坪 湖北鹤峰(29°53′40″ N,110°27′47″ E) 灯影组全段以潮坪—潟湖相为主,石板滩段中部见中—外缓坡相,上部见丘滩相 灯影峡 湖北宜昌(30°47′40″ N,111°9′22″ E) 蛤蟆井段发育丘滩相,石板滩段发育中—外缓坡相、丘滩相、潮坪—潟湖、中—外缓坡相序列, 白马沱段下部发育丘滩相,上部发育潮坪—潟湖相 庙河 湖北宜昌(30°53′54″ N,110°52′34″ E) 灯影组以中—外缓坡相为主,仅白马沱段发育丘滩相 晓峰河 湖北宜昌(30°56′16″ N,111°17′47″ E) 灯影组全段以潮坪—潟湖相为主,底部,中下部,中部发育三套丘滩相,灯影组中下部发育葡萄状白云岩 白鹭垭 湖北宜昌(31°18′37″ N,111°12′36″ E) 灯影组全段以潮坪—潟湖相为主,底部,中下部,中部发育三套丘滩相,灯影组中下部发育葡萄状白云岩 鄂参1 湖北神恩施(30°14′58″ N,109°20′20″ E) 灯影组发育中—外缓坡相 西蒿坪 湖北房县(31°52′8″ N,110°39′48″ E) 灯影组零星出露,发育潮坪—潟湖相,灯影组中下部发育葡萄状白云岩 表 2 中上扬子地区灯影组岩相类型及沉积相带划分
Table 2. Lithofacies types and depositional facies of the Dengying Formation in the Middle⁃Upper Yangtze area
相带 岩相类型 沉积特征 沉积环境 组合方式 丘滩相 鲕粒白云岩 冲刷面、交错层理 台地边缘/内缓坡浅水潮下 三种岩相类型交替叠置产出 砂屑白云岩 冲刷面、交错层理 台地边缘/内缓坡浅水潮下 丘状叠层石白云岩 呈块状—丘状 台地边缘/内缓坡浅水潮下 潮坪相 微生物纹层白云岩 鸟眼、帐篷、干缩角砾 局限台地/内缓坡潮间—潮上 凝块石白云岩→穹窿—缓波状叠层石白云岩→微生物纹层白云岩 穹窿—缓波状叠层石 白云岩 鸟眼、帐篷、干缩角砾 局限台地/内缓坡潮间—潮上 凝块石白云岩 斑块状结构, 中层状或透镜状 局限台地/内缓坡潮下 砂屑白云岩 冲刷面、滞留沉积 局限台地/内缓坡潮道 切入微生物白云岩及泥晶白云岩之中 潟湖相 泥晶(泥质)白云岩 水平层理 局限台地/内缓坡潮下 与潮坪相微生物白云岩在垂向上叠置出现, 向上过渡为潮坪相微生物白云岩形成米级旋回 含球粒/砂屑泥晶白云岩 水平层理 局限台地/内缓坡潮下 泥晶砂质白云岩 粒序层序、 丘状交错层理 局限台地/内缓坡潮下 -
丘滩相主要出现在内缓坡及台地边缘(图1),发育三种岩石类型:鲕粒白云岩、砂屑白云岩及叠层石白云岩。这三种岩相均是以块状产出为主,最大单层厚度可达十米(图3a,b)。相对于鲕粒白云岩和砂屑白云岩,叠层石白云岩的分布更为局限且更靠近斜坡方向,仅见于北斗山、田坪等少数剖面。纵向上,在北斗山剖面可见颗粒白云岩与叠层石白云岩呈交替式叠置产出。鲕粒白云岩及砂屑白云岩的颗粒直径通常集中在0.5~2 mm,局部可达细砾级(>2 mm),分选和圆度均较好,颗粒支撑为主,颗粒间发育栉壳状白云石、粒状白云石两世代胶结物(图3c~e)。栉壳状白云石呈等厚环边状沿缝壁生长(图3e),为典型的海底胶结物;粒状白云石在栉壳状白云石基础上进一步向孔洞中心充填,为埋藏期孔隙水沉淀产物[15]。底部和层间均常发育冲刷面,其上伴生滞留砾石(图3f)。层内可发育板状、槽状、楔状等多种交错层理(图3g)。块状叠层石白云岩总体呈现出块状—丘状建造,核心由破碎的,相互交织的柱状、穹窿状叠层石组成(图3h),其内部组构与潮坪相的微生物纹层白云岩、叠层石白云岩类似,镜下可见丝状纹层结构。
-
潮坪相在整个中上扬子台地广泛发育,以微生物纹层白云岩、穹窿—缓波状叠层石白云岩、凝块石白云岩三种岩相为特征,局部夹砂屑白云岩、泥晶白云岩。与丘滩相的叠层石白云岩相比,潮坪相的微生物白云岩单层厚度通常较薄,因此纵向上常形成米级—分米级旋回。其中,微生物纹层白云岩出现在旋回顶部,局部发育鸟眼、帐篷、干缩角砾化等暴露构造(图4a),镜下见丝状,微球粒状的纹层(图4b)。穹窿—缓波状叠层石白云岩表现为纹层具有更大的起伏(图4c),与微生物纹层白云岩发育类似的微观结构,通常向上过渡为微生物纹层白云岩。凝块石白云岩宏观发育斑块状结构(图4d),显微镜下见暗色凝块及丝状,微球粒状结构,其间也发育亮晶胶结物(图4e)。凝块石白云岩通常以中层状或透镜状产出,向上过渡为叠层石白云岩。砂屑白云岩通常以中层状—厚层状产出于各种上述微生物白云岩及泥晶白云岩之中,底部和内部常常发育冲刷面及伴生的滞留沉积(图4f),砂屑内部具有明显的微生物/泥晶结构(图4g)。此外,上扬子地区灯影组二段微生物白云岩通常与葡萄状白云岩伴生。本次研究发现中扬子地区晓峰河、白鹭垭等剖面也具有类似的特征(图4h),说明葡萄状白云岩不仅具有地层对比意义[6],可能还是内缓坡(或局限台地)潮坪相的指示标志(见下文讨论)。
-
潟湖相与潮坪相在垂向上叠置出现,主要由泥晶白云岩、含球粒/砂屑泥晶白云岩组成,在部分地区(如川北)还发育泥晶泥质白云岩、泥晶砂质白云岩及泥岩、砂岩夹层。局部层段也可夹少量的微生物白云岩。其中,泥晶白云岩通常呈中层—块状层产出,部分层段连续厚度可达数十米(图5a),主要由均一的泥晶白云石组成(图5b),局部含有球粒、砂砾屑,过渡为含球粒/砂砾屑泥晶白云岩(图5c)。泥晶泥质白云岩因富含黏土质,常发育水平层理(图5d)。在砂质/砂屑泥晶白云岩中(图5e),有时可见粒序层及丘状交错层理(图5f)。
Paleogeographic Pattern of the Carbonate Platform in the Middle-Upper Yangtze Area During the Deposition of the Ediacaran Dengying Formation and Distribution Pattern of the Reservoir Facies
-
摘要: 目的 中上扬子地区灯影组沉积期碳酸盐岩台地古地理格局及有利储集相带发育分布规律尚存争议,阻碍了灯影组油气勘探领域由绵阳—长宁拉张槽两侧向其他广大地区拓展。 方法 通过中上扬子地区灯影组30余条剖面(钻井)开展岩石类型划分及沉积相分析, 结果 进一步明确丘滩相以块状砂屑/鲕粒白云岩及柱状、穹窿状叠层石白云岩为特征,呈环带状分布在中上扬子台地(或内缓坡)边缘,向外过渡为中—外缓坡风暴岩或斜坡—盆地相区的滑塌角砾白云岩、泥质白云岩、硅质岩等。由于丘滩的阻挡作用,其内侧以低能的潮坪及潟湖沉积环境为主:其中潮坪相主要发育微生物纹层白云岩、穹窿—缓波状叠层石白云岩、凝块石白云岩夹砂屑白云岩、泥晶白云岩,纵向上常常形成米级—厘米级旋回;潟湖相主要由泥晶白云岩、含球粒/砂屑泥晶白云岩组成。相带时空分布表明灯影组在中上扬子地区总体呈现出进积的沉积趋势,内部包含2.5个层序,即三次进积(变浅)和两次退积(变深)旋回。 结论 由于灯影组在台地边缘—斜坡区域普遍遭到剥蚀,以及灯影组沉积期上扬子台地范围远超目前的板块边界,灯影组上部灯四段很少发现高能丘滩相带。在此背景下,局部地区(如松林—岩孔地区、中扬子台地周缘)灯影组中下部灯一段—灯二段(或蛤蟆井段、石板滩段)发育的丘滩相,是重要的有利储集相带。此外,处于海退体系域的灯二段中下部和灯四段上部(或相当层位)在中上扬子台地(或内缓坡)内部广泛发育微生物白云岩,也为储层发育有利相带。在中上扬子台地微生物白云岩广泛分布的背景下,进一步分析优质储层发育机理与分布规律才是找到油气接替区的关键。Abstract: Objective The dispute in the paleogeographic pattern of the carbonate platform and distribution of reservoir facies during the deposition of the Dengying Formation in the middle-upper area, hinders the expansion of the exploration domain from the Mianyang-Changning intracratonic sag to other areas. Methods Detailed lithofacies and facies analysis was conducted on more than 30 sections (wells), Results further confirming that the mound-shoal is marked by massive peloidal/ooidal dolograinstone and columnar, domal dolostromatolite, which were deposited around the platform (or inner ramp) margin of the Middle-Upper Yangtze Platform gradually shifting outward into tempestite of the middle-outer ramp or slump dolobreccia, argillaceous dolomite and chert of slope-basin facies. Owing to the mound-shoal barrier, its back was dominated by tidal flat and lagoon. Of these, the tidal flat facies were marked by microbial dololaminite, domal dolostromatolite, dolothrombolite with minor peloidal dolograinstone, and dolomudstone, which are commonly arranged into meter-centimeter scale cycles. The lagoon facies were composed mainly of dolomudstone and peloidal dolowackestone. In general, the mound-shoal facies is present in the lower Dengying Formation along the platform to slope transition (or inner ramp to middle ramp transition). In the Upper Yangtze Platform, it occurs in the Deng 1 (e.g., wells Pengtan 1, Ziyang 1, and sections Qingping, Beidoushan) or Deng 2 members at the Baijiaba, Yulin, and Meiziwan sections, or in both the Deng 1 and Deng 2 members at the Songlin-Yankong areas. On Middle Yangtze Platform, it occurs in the Hamajing (e.g., sections Sancha, Bailuya, and Tianping) or Baimatuo members of the upper Dengying Formation at the Miaohe section. Specifically, the mound-shoal facies shows repeated transgressions and regressions and occurs in different stratigraphic position of the Dengying Formation at many sections (Baiguoping, Xiaofenghe, Dengyingxia, Wushan, Xuejiadian, and Dengjiaya). In contrast, the tidal flat and lagoon facies are widely present on the whole Middle-Upper Yangtze Platform, commonly associated with the grape-like dolomite at the lower-middle part of the Deng 2 member (or correlated stratigraphy). The spatiotemporal distributions of these facies show a progradational trend of the Dengying Formation on the Middle-Upper Yangtze Platform, which consists of 2.5 depositional sequences with three progradations (shallowing) and two retrogradations (deepening). The regressive system tract of Sequence 1 is formed by the lower Dengying Formation (the Deng 1 to middle Deng 2 or Hamajing members), characterized by the upward evolution of lagoon or mound-shoal facies into tidal flat facies. On the Upper Yangtze Platform, Sequence 2 occurs in the upper Deng 2 member, marked by the regression of mound-shoal facies and the presence of more lagoonal dolomudstone, followed by the reoccurrence of tidal flat facies. On the Middle Yangtze Platform, Sequence 2 is present in the Shibantan member, represented by the deepening into middle ramp limestone or lagoonal dolomudstone and then shallowing into mound-shoal or tidal flat facies. Sequence 3 on the Middle Yangtze Platform shows a similar deepening (transgression) and shallowing (regression) cycle. On the Upper Yangtze Platform, the transgressive systems tract of Sequence 3 is located in the siliciclastic rock of the Deng 3 member and the following transgressive systems tract is marked by the transition of lagoonal dolomudstone to tidal flat dolomicrobialite. Conclusions Owing to the denudation of the Dengying Formation at the platform margin-slope area and Upper Yangtze Platform beyond the current plate boundary, the platform marginal mound-shoal facies are locally present in the Deng 4 member. In this case, certain areas (e.g., the Songlin-Yankong area and periphery of the Middle Yangtze Platform) with platform marginal mound-shoal facies in the lower-middle Dengying Formation (Deng 1 to 2 or Hamajing to Shibantan members) are important exploration targets. Moreover, the lower Deng 2 and upper Deng 4 members (or coeval strata) formed during progradations composed of microbial dolomite throughout the Middle-Upper Yangtze Platform (or inner ramp) interior are also important exploration targets. Because the microbial dolomite was widely developed throughout the Middle-Upper Yangtze Platform interior, decoding the formation mechanism and distribution pattern of high-quality reservoir is the key to finding new hydrocarbon provinces.
-
表 1 中上扬子地区灯影组典型剖面(井)地层及沉积相概况(据文献[6]修改)
Table 1. Stratigraphy and depositional facies of typical sections (wells) of the Dengying Formationin the Middle⁃Upper Yangtze area (modified from reference [6])
剖面(井) 位置(坐标) 地层及沉积环境 杨坝 四川南江(32°28′35″ N,106°46′59″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 关山 陕西勉县(33°11′8″ N,106°36′40″ E) 灯影组零星出露,发育潮坪—潟湖相 胡家坝 陕西宁强(32°56′58″ N,106°28′20″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 福成 四川南江(32°30′21″ N,107°15′24″ E) 灯二、灯四段主要发育潮坪—潟湖相 白家坝 四川南江(32°24′52″ N,107°58′32″ E) 灯二、灯四段主要发育潮坪—潟湖相 马深1井 四川通江(32°10′11″ N,107°10′57″ E) 灯二、灯四段主要发育潮坪—潟湖相 康家坪 四川城口(31°43′26″ N,109°7′42″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 鱼鳞 重庆巫溪(31°40′19″ N,109°28′47″ E) 灯影组全段以斜坡—盆地相为主,仅在灯二段上部发育丘滩相 廖家槽 重庆彭水(29°44′14″ N,108°14′11″ E) 剥蚀后仅残留灯一—灯二段,为潮坪—潟湖相,灯二段发育葡萄状白云岩 松林 贵州遵义(27°43′11″ N,106°42′13″ E) 剥蚀后仅残留灯一—灯二段,发育潮坪—潟湖相为主,仅在灯一段下部发育斜坡相,中部和灯二段顶部发育丘滩相,灯二段发育葡萄状白云岩 岩孔 贵州金沙(27°34′14″ N,106°14′58″ E) 剥蚀后仅残留灯二段,发育潮坪—潟湖相为主,仅在中上部发育丘滩相,灯二段发育葡萄状白云岩 北斗山 贵州瓮安(27°0′47″ N,107°23′10″ E) 剥蚀后仅残留灯一—灯二段,灯一段下部为斜坡相,上部发育丘滩相, 灯二段发育潮坪—潟湖相,灯二段发育葡萄状白云岩 梅子湾 贵州金沙(27°27′22″ N,107°26′29″ E) 剥蚀后仅残留灯一—灯二段相应层位,以斜坡相为主,仅在剖面上部发育丘滩相 谷腊 贵州清镇(26°42′26″ N,106°28′55″ E) 剥蚀后仅残留灯一—灯二段,为潮坪—潟湖相,灯二段发育葡萄状白云岩 方深1井 贵州大方(27°15′35″ N,105°38′51″ E) 灯一、灯二、灯四段主要发育潮坪—潟湖相,灯二段发育葡萄状白云岩 银厂坡 云南会泽(26°30′55″ N,103°12′45″ E) 灯影组零星出露,发育潮坪—潟湖相,灯二段发育葡萄状白云岩 棉沙湾 四川巧家(27°7′39″ N,102°55′59″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 先锋 四川峨边(29°18′28″ N,103°27′48″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 孔玉 四川康定(30°30′58″ N,102°5′5″ E) 剥蚀后仅残留灯一—灯二段,为潮坪—潟湖相,灯二段发育葡萄状白云岩 清平 四川绵竹(31°36′3″ N,104°5′12″ E) 灯一段下部为斜坡相,上部发育丘滩相,灯二、灯四段均潮坪—潟湖相,灯二段发育葡萄状白云岩 资阳1井 四川资阳(30°2′11″ N,105°0′5″ E) 剥蚀后仅残留灯一段,以潮坪—潟湖相为主,下部发育丘滩相 高石1井 四川安岳(30°2′39″ N,105°28′15″ E) 灯一、灯二、灯四段均发育潮坪—潟湖相,灯二段发育葡萄状白云岩 蓬探1井 四川大英(30°27′55″ N,105°16′23″ E) 剥蚀后仅残留灯一—灯二段,以潮坪—潟湖相为主,灯一段下部发育丘滩相,灯二段发育葡萄状白云岩 蓬探101井 四川遂宁(30°26′43″ N,105°19′26″ E) 剥蚀后仅残留灯一—灯二段,为潮坪—潟湖相,灯二段发育葡萄状白云岩 三岔 湖南张家界(29°4′28″ N,110°33′53″ E) 剥蚀后仅残留蛤蟆井段,以丘滩相为主,上部发育潮坪—潟湖相 田坪 湖南张家界(28°58′21″ N,110°24′31″ E) 剥蚀后仅残留蛤蟆井段,以丘滩相和斜坡相交替发育为特征 ZK102 贵州松桃(28°7′48″ N,108°52′48″ E) 灯影组全段以斜坡—盆地相为主 白果坪 湖北鹤峰(29°53′40″ N,110°27′47″ E) 灯影组全段以潮坪—潟湖相为主,石板滩段中部见中—外缓坡相,上部见丘滩相 灯影峡 湖北宜昌(30°47′40″ N,111°9′22″ E) 蛤蟆井段发育丘滩相,石板滩段发育中—外缓坡相、丘滩相、潮坪—潟湖、中—外缓坡相序列, 白马沱段下部发育丘滩相,上部发育潮坪—潟湖相 庙河 湖北宜昌(30°53′54″ N,110°52′34″ E) 灯影组以中—外缓坡相为主,仅白马沱段发育丘滩相 晓峰河 湖北宜昌(30°56′16″ N,111°17′47″ E) 灯影组全段以潮坪—潟湖相为主,底部,中下部,中部发育三套丘滩相,灯影组中下部发育葡萄状白云岩 白鹭垭 湖北宜昌(31°18′37″ N,111°12′36″ E) 灯影组全段以潮坪—潟湖相为主,底部,中下部,中部发育三套丘滩相,灯影组中下部发育葡萄状白云岩 鄂参1 湖北神恩施(30°14′58″ N,109°20′20″ E) 灯影组发育中—外缓坡相 西蒿坪 湖北房县(31°52′8″ N,110°39′48″ E) 灯影组零星出露,发育潮坪—潟湖相,灯影组中下部发育葡萄状白云岩 表 2 中上扬子地区灯影组岩相类型及沉积相带划分
Table 2. Lithofacies types and depositional facies of the Dengying Formation in the Middle⁃Upper Yangtze area
相带 岩相类型 沉积特征 沉积环境 组合方式 丘滩相 鲕粒白云岩 冲刷面、交错层理 台地边缘/内缓坡浅水潮下 三种岩相类型交替叠置产出 砂屑白云岩 冲刷面、交错层理 台地边缘/内缓坡浅水潮下 丘状叠层石白云岩 呈块状—丘状 台地边缘/内缓坡浅水潮下 潮坪相 微生物纹层白云岩 鸟眼、帐篷、干缩角砾 局限台地/内缓坡潮间—潮上 凝块石白云岩→穹窿—缓波状叠层石白云岩→微生物纹层白云岩 穹窿—缓波状叠层石 白云岩 鸟眼、帐篷、干缩角砾 局限台地/内缓坡潮间—潮上 凝块石白云岩 斑块状结构, 中层状或透镜状 局限台地/内缓坡潮下 砂屑白云岩 冲刷面、滞留沉积 局限台地/内缓坡潮道 切入微生物白云岩及泥晶白云岩之中 潟湖相 泥晶(泥质)白云岩 水平层理 局限台地/内缓坡潮下 与潮坪相微生物白云岩在垂向上叠置出现, 向上过渡为潮坪相微生物白云岩形成米级旋回 含球粒/砂屑泥晶白云岩 水平层理 局限台地/内缓坡潮下 泥晶砂质白云岩 粒序层序、 丘状交错层理 局限台地/内缓坡潮下 -
[1] 赵路子,汪泽成,杨雨,等. 四川盆地蓬探1井灯影组灯二段油气勘探重大发现及意义[J]. 中国石油勘探,2020,25(3):1-12. Zhao Luzi, Wang Zecheng, Yang Yu, et al. Important discovery in the Second member of Dengying Formation in well Pengtan1 and its significance, Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(3): 1-12. [2] 文龙,罗冰,钟原,等. 四川盆地灯影期沉积特征及槽—台体系成因模式[J]. 成都理工大学学报(自然科学版),2021,48(5):513-524,590. Wen Long, Luo Bing, Zhong Yuan, et al. Sedimentary characteristics and genetic model of trough-platform system during the Dengying period in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(5): 513-524, 590. [3] [4] 田兴旺,彭瀚霖,王云龙,等. 川中安岳气田震旦系灯影组四段台缘—台内区储层差异及控制因素[J]. 天然气地球科学,2020,31(9):1225-1238. Tian Xingwang, Peng Hanlin, Wang Yunlong, et al. Analysis of reservoir difference and controlling factors between the platform margin and the inner area of the Fourth member of Sinian Dengying Formation in Anyue gas field, central Sichuan[J]. Natural Gas Geoscience, 2020, 31(9): 1225-1238. [5] Ding Y, Chen D Z, Zhou X Q, et al. Tectono-depositional pattern and evolution of the Middle Yangtze Platform (South China) during the Late Ediacaran[J]. Precambrian Research, 2019, 333: 105426. [6] Ding Y, Li Z W, Liu S G, et al. Sequence stratigraphy and tectono-depositional evolution of a Late Ediacaran epeiric platform in the Upper Yangtze area, South China[J]. Precambrian Research, 2021, 354: 106077. [7] 兰才俊,徐哲航,马肖琳,等. 四川盆地震旦系灯影组丘滩体发育分布及对储层的控制[J]. 石油学报,2019,40(9):1069-1084. Lan Caijun, Xu Zhehang, Ma Xiaolin, et al. Development and distribution of mound-shoal complex in the Sinian Dengying Formation, Sichuan Basin and its control on reservoirs[J]. Acta Petrolei Sinica, 2019, 40(9): 1069-1084. [8] 罗垚,谭秀成,赵东方,等. 埃迪卡拉系微生物碳酸盐岩沉积特征及其地质意义:以川中磨溪8井区灯影组四段为例[J]. 古地理学报,2022,24(2):278-291. Luo Yao, Tan Xiucheng, Zhao Dongfang, et al. Sedimentary characteristics of the Ediacaran microbial carbonates and their geological implications: A case study of the member 4 of Dengying Formation from wellblock MX8 in central Sichuan Basin[J]. Journal of Palaeogeography, 2022, 24(2): 278-291. [9] 李勇,王兴志,冯明友,等. 四川盆地北部及周缘地区震旦系灯影组二段、四段储集层特征及成因差异[J]. 石油勘探与开发,2019,46(1):52-64. Li Yong, Wang Xingzhi, Feng Mingyou, et al. Reservoir characteristics and genetic differences between the Second and Fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas[J]. Petroleum Exploration and Development, 2019, 46(1): 52-64. [10] 马奎,文龙,张本健,等. 四川盆地德阳:安岳侵蚀裂陷槽分段性演化分析和油气勘探意义[J]. 石油勘探与开发,2022,49(2):274-284. Ma Kui, Wen Long, Zhang Benjian, et al. Segmented evolution of Deyang-Anyue erosion rift trough in Sichuan Basin and its significance for oil and gas exploration, SW China[J]. Petroleum Exploration and Development, 2022, 49(2): 274-284. [11] 李文正,张建勇,李浩涵,等. 鄂西—渝东地区克拉通内裂陷分布特征及油气勘探意义[J]. 天然气地球科学,2020,31(5):675-685. Li Wenzheng, Zhang Jianyong, Li Haohan, et al. Distribution characteristics of intracratonic rift and its exploration significance in western Hubei and eastern Chongqing area[J]. Natural Gas Geoscience, 2020, 31(5): 675-685. [12] 汪泽成,姜华,陈志勇,等. 中上扬子地区晚震旦世构造古地理及油气地质意义[J]. 石油勘探与开发,2020,47(5):884-897. Wang Zecheng, Jiang Hua, Chen Zhiyong, et al. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the Middle-Upper Yangtze region, South China[J]. Petroleum Exploration and Development, 2020, 47(5): 884-897. [13] 颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253. Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography, 2019, 21(2): 232-253. [14] 王龙,吴海,张瑞,等. 碳酸盐台地的类型、特征和沉积模式:兼论华北地台寒武纪陆表海—淹没台地的沉积样式[J]. 地质论评,2018,64(1):62-76. Wang Long, Wu Hai, Zhang Rui, et al. The types, characteristics and depositional models of carbonate platform: Implications for Cambrian sedimentary patterns of epeiric-drowned carbonate platform in North China[J]. Geological Review, 2018, 64(1): 62-76. [15] Tucker M E, Wright V P, Dickson J A D. Carbonate sedimentology[M]. Oxford: Blackwell Science, 1990: 1-421. [16] Jiang G Q, Christie-Blick N, Kaufman A J, et al. Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India[J]. Sedimentology, 2003, 50(5): 921-952. [17] Charvet J. The Neoproterozoic-Early Paleozoic tectonic evolution of the South China Block: An overview[J]. Journal of Asian Earth Sciences, 2013, 74: 198-209. [18] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. [19] Jiang G Q, Shi X Y, Zhang S H, et al. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-551Ma) in South China[J]. Gondwana Research, 2011, 19(4): 831-849. [20] Liu S G, Yang Y, Deng B, et al. Tectonic evolution of the Sichuan Basin, southwest China[J]. Earth-Science Reviews, 2021, 213: 103470. [21] Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze Platform shelf (Hubei and Hunan provinces, central China)[J]. Sedimentary Geology, 2010, 225(3/4): 99-115. [22] Zhu M Y, Zhang J M, Steiner M, et al. Sinian-Cambrian stratigraphic framework for shallow- to deep-water environments of the Yangtze Platform: An integrated approach[J]. Progress in Natural Science, 2003, 13(12): 951-960. [23] Chen D Z, Zhou X Q, Fu Y, et al. New U-Pb zircon ages of the Ediacaran-Cambrian boundary strata in South China[J]. Terra Nova, 2015, 27(1): 62-68. [24] 赵东方,胡广,张文济,等. 渝北巫溪鱼鳞剖面灯影组鲕粒沉积特征及其地质意义[J]. 地质论评,2018,64(1):191-202. Zhao Dongfang, Hu Guang, Zhang Wenji, et al. Sedimentary characteristics of ooids of Sinian (Ediacaran) Dengying Formation on the Yulin section in Wuxi, Chongqing, and geological implications [J]. Geological Review, 2018, 64(1): 191-202. [25] 李忠雄,陆永潮,王剑,等. 中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理[J]. 古地理学报,2004,6(2):151-162. Li Zhongxiong, Lu Yongchao, Wang Jian, et al. Sedimentary characteristics and lithofacies paleogeography of Late Sinian and Early Cambrian in Middle Yangtze region [J]. Journal of Palaeogeography, 2004, 6(2): 151-162. [26] 薛耀松,周传明,陈哲. 湖北南漳地区晚震旦世高家山期微化石的新发现:兼论南江上升运动的地质意义[J]. 微体古生物学报,2004,21(1):1-16. Xue Yaosong, Zhou Chuanming, Chen Zhe. Discovery of microfossils of the Late Sinian Gaojiashanian Age in Nanzhang, Hubei province, China with remarks on the geological significance of the Nanjiang uplift movement[J]. Acta Micropalaeontologica Sinica, 2004, 21(1): 1-16. [27] Harwood C L, Sumner D Y. Microbialites of the Neoproterozoic beck spring dolomite, southern California[J]. Sedimentology, 2011, 58(6): 1648-1673. [28] Chen D Z, Guo Z H, Jiang M S, et al. Dynamics of cyclic carbonate deposition and biotic recovery on platforms during the Famennian of Late Devonian in Guangxi, South China: Constraints from high-resolution cycle and sequence stratigraphy[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 245-265. [29] Gil J, García-Hidalgo J F, Segura M, et al. Stratigraphic architecture, palaeogeography and sea-level changes of a third order depositional sequence: The Late Turonian-Early Coniacian in the northern Iberian Ranges and Central System (Spain)[J]. Sedimentary Geology, 2006, 191(3/4): 191-225. [30] 郝毅,周进高,陈旭,等. 四川盆地灯影组“葡萄花边”状白云岩成因及地质意义[J]. 海相油气地质,2015,20(4):57-64. Hao Yi, Zhou Jinggao, Chen Xu, et al. Genesis and geological significance of Upper Sinian Dengying dolostone with grape-lace shaped cement, Sichuan Basin[J]. Marine Origin Petroleum Geology, 2015, 20(4): 57-64. [31] 牟传龙,王秀平,梁薇,等. 上扬子区灯影组白云岩葡萄体特征及成因初探:以南江杨坝地区灯影组一段为例[J]. 沉积学报,2015,33(6):1097-1110. Mou Chuanlong, Wang Xiuping, Liang Wei, et al. Characteristics and genesis of grape-like stone of dolomite in Sinian Dengying Formation in Yangtze region: A case from the First section of Dengying Formation in Yangba, Nanjiang, Sichuan province[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1097-1110. [32] Pratt B R, James N P. The St George Group (Lower Ordovician) of western Newfoundland: Tidal flat island model for carbonate sedimentation in shallow epeiric seas[J]. Sedimentology, 1986, 33(3): 313-343. [33] 刘静江,刘慧荣,李文皓,等. 四川盆地裂陷槽研究新进展:关于裂陷槽成因机制与形成时间的探讨[J]. 地质论评,2021,67(3):767-786. Liu Jingjiang, Liu Huirong, Li Wenhao, et al. New progress in the study of aulacogen in Sichuan Basin: A discussion on the genetic mechanism and formation time of the aulacogen[J]. Geological Review, 2021, 67(3): 767-786. [34] 陈明思,张本健,李智武,等. 四川盆地及周缘震旦系灯影组岩性:碳同位素地层划分及意义[J]. 古地理学报,2023,25(6):1347-1363. Chen Mingsi, Zhang Benjian, Li Zhiwu, et al. Lithol and carbon isotopic stratigraphic division and its sighificance of the Sinian Dengying Formation in Sichuan Basin and surrounding area[J]. Journal of Palaeogeography, 2023, 25(6): 1347-1363 [35] 周传明. 贵州瓮安地区上震旦统碳同位素特征[J]. 地层学杂志,1997,21(2):124-129. Zhou Chuanming. Upper Sinian carbon isotope in Weng'an, Guizhou[J]. Journal of Stratigraphy, 1997, 21(2): 124-129.