The Depositional Environment and Hydrocarbon Potential of the Mesoproterozoic Black Shale in the Western Liaoning Depression of the Yanliao Rift Zone
-
摘要: 目的 前人对中元古代生命演化、氧气含量、古海洋条件等研究均表明中元古代存在适宜优质烃源岩生成和保存的环境。加之近年来元古宇油气资源的相继发现,使得我国中元古界黑色页岩沉积环境和生烃潜力的认识亟需加强。华北地台燕辽裂陷槽沉积了巨厚的中新元古代地层,发育串岭沟组、高于庄组、洪水庄组、铁岭组和下马岭组5套烃源岩层系,前人在冀北地区对这些烃源岩层系已开展了大量研究,但是目前对辽西坳陷研究还处于初级阶段。 方法 基于大量的野外露头、钻井、薄片和有机地球化学数据对辽西坳陷洪水庄组、铁岭组和下马岭组这三套烃源岩层系开展了沉积环境和生烃潜力分析。 结果 洪水庄组主要为一套富含有机质的黑色页岩,黄铁矿非常发育,指示海槽深水沉积。多个露头点在洪水庄组顶部见白云岩滑塌沉积,表明水深向上变浅,逐渐过渡为碳酸盐岩台地斜坡沉积环境。铁岭组底部广泛发育高能颗粒白云岩沉积,中部以灰色页岩为主,局部地区灰色页岩与含锰白云岩交互沉积,顶部为叠层石白云岩和泥岩互层,反映碳酸盐岩台地边缘—潟湖—潮坪沉积环境,并同洪水庄组组成了两个整体水深向上变浅的沉积旋回。待建系下马岭组底部发育石英砂岩、中上部则以灰色页岩沉积为主,为无障壁碎屑海岸—浅海陆棚沉积。有机地球化学数据表明多数黑色页岩TOC含量大于1.0%,为中到优质烃源岩,Tmax介于435 ℃~480 ℃,指示烃源岩处于成熟阶段,有利于油气的生成。 结论 中元古界黑色页岩沉积环境和生烃潜力综合分析表明,辽西坳陷具有良好的油气勘探潜力。Abstract: Objective Recent years' research advance on the life evolution, oxygen content, and paleo oceanic conditions of the Mesoproterozoic all indicate that during the Mesoproterozoic era there were suitable environments for the formation and preservation of high-quality hydrocarbon source rocks. The discoveries of the Proterozoic oil and gas resources in recent years, also suggests a need to enhance our understanding of the China's Mesoproterozoic black organic shale depositional environment and its potential for generating hydrocarbons. The YanLiao rift belt in the North China Craton has deposited thick Proterozoic strata, developing five sets of source rock systems: Chuanlinggou Formation, Gaoyuzhuang Formation, Hongshuizhuang Formation, Tieling Formation, and Xiamaling Formation. Previous studies have conducted extensive research on these source rock systems in the northern Hebei region but current research on the Western Liaoning Depression is still at an early stage. Methods This study is based on field outcrops investigation, drilling core observation, thin sections analysis and geochemical data to reveal the sedimentary environment and hydrocarbon potential for the Proterozoic Hongshuizhuang, Tieling, and Xiamaling Formation in the Western Liaoning Depression. Results and Discussions The study found that the Hongshuizhuang Formation mainly consists of organic-rich black shales with abundant pyrite indicating a deep- marine trough depositional setting. Multiple outcrop sections show carbonate debris flow deposits at the top of the Hongshuizhuang Formation, suggesting a gradually decreased water depth and depositional environment transition into a carbonate platform slope setting. The Tieling Formation consists of the grain dolostone formed under high energy at the bottom, gray shale and locally developed manganese-bearing dolostone in the middle, and interbedded stromatolite dolomite and thin mudstone at the top, suggesting a carbonate platform margin-lagoon- tidal flat depositional environment. The Xiamaling Formation is dominated by quartz sandstone at the bottom and grey shale in the middle-upper part indicating a clastic coast - shallow marine shelf depositional environment. Organic geochemical test data shows that most black shales have TOC content >1.0%, which are medium to high-quality source rocks. The majority of the Tmax ranges from 435°-480°, indicating that the source rock is mature and favorable for oil and gas generation. Conclusions Given the widely development of the black shale, favorite depositional environment, along with the high shale TOC and suitable thermal evolution degree, we believe the Proterozoic black shales in the Western Liaoning Depression have great hydrocarbon potential.
-
图 2 研究区概况图
(a)冀北辽西地区中新元古界分布图,红框范围为燕辽裂陷带辽西坳陷部分,即本次研究区;(b)研究区野外露头和钻井资料分布图;红色线为野外露头和钻井对比剖面
Figure 2. Geographic figure of the study area showing outcrops and drilling wells used in this work
(a) distribution of the Mesoproterozoic strata in the northern Hebei and western Liaoning regions. The area within the red box represents the Western Liaoning Depression of the Yan⁃Liao rift belt, which is the focus of this study; (b) distribution map of outcrops and drilling wells used in the study area; The red line marks the stratigraphic correlation section based on outcrops and wells
图 3 华北地区燕辽裂陷槽地层和构造演化综合柱状图(据文献[40,44])修改)
1.灰岩;2.泥质灰岩;3.白云岩;4.灰质白云岩;5.白云质灰岩;6.粉砂质白云岩;7.页岩;8.粉砂质页岩;9.砂岩;10.砾岩;11.火山岩;12.花岗岩;13.片麻岩;14.沥青质;15.叠层石;16.燧石条带
Figure 3. Comprehensive stratigraphic and tectonic evolution history diagram of the Yan⁃Liao rift belt in the North China Craton (modified from references [40,44])
1. limestone; 2. marlite; 3. dolomite; 4. limy dolomite; 5. dolomitic limestone; 6. silty dolomite; 7. shale; 8. silty shale; 9. sandstone; 10. conglomerate; 11. volcanic rock; 12. granite; 13. gneiss; 14. asphaltene contents; 15. stromatolite; 16. chert band
图 4 洪水庄组野外露头特征
(a)洪水庄组黑色页岩,风化严重,新鲜面为灰色,辽西凌源市孟家窝铺剖面;(b)洪水庄组黑色页岩,向上过渡为铁岭组白云岩,朝阳市瓦房子镇尹杖子村剖面;(c)洪水庄组页岩,注意新鲜面为黑色,风化面为黄色,朝阳市瓦房子镇曲家沟西梁;(d)洪水庄组页岩,页理发育,喀左县平房子镇北洞村剖面
Figure 4. The depositional features of the outcrops of the Hongshuizhuang Formation
(a) the black shale of the Hongshuizhuang Formation, Mengjiawopu section, Lingyuan city; (b) the black shale of the Hongshuizhuang Formation, Yinzhangzi village, Wafangzi town, Chaoyang city; (c) black shale of the Hongshuizhuang Formation, note the fresh surface is black and the weathered surface is yellow, western ridge of Qujiagou village, Wafangzi town, Chaoyang city; (d) black shale of the Hongshuizhuang Formation with well⁃developed lamination, Beidong village, Pingfangzi town, Kazuo county
图 6 洪水庄组钻井、岩心和薄片特征(辽凌地3井)
(a)洪水庄组岩性和测井柱状图;(b)黑色页岩,黄铁矿发育,410.1 m;(c)黑色页岩,黄铁矿发育,464.6 m;(d,e)洪水庄组黑色页岩镜下特征,黑色条带为有机质,正交光,比例尺见右下角,410.1 m
Figure 6. The core, well log and thin section features of the Hongshuizhuang Formation (well Liaolingdi 3)
(a) the lithology and GR logging feature; (b) black shale with well developed pyrite, 410.1 m; (d) black shale with well developed pyrite, 464.6 m; (d, e) Microscopic feature of the black shale under thin section, cross-polarized light. Please note the black color band are organic rich and the scale bare is located at the lower right corner, 3, 410.1 m
图 7 研究区洪水庄组顶部滑塌体野外特征
(a)洪水庄组顶部页岩,夹透镜状白云岩,白云岩透镜体内部见丘状交错层理,凌源市姜杖子村剖面;(b)洪水庄组顶部页岩被白云岩滑塌体切割,凌源市姜杖子村剖面;(c)洪水庄组顶部页岩被白云岩滑塌体侵蚀,朝阳市瓦房子镇曲家沟西梁;(d)白云岩滑塌体内部见白云岩角砾,朝阳市瓦房子镇曲家沟西梁
Figure 7. The sedimentary features of the slump deposits on the uppermost part of Hongshuizhuang Formation on outcrops
(a) top shale of the Hongshuizhuang Formation interbedded with lens⁃shaped dolomite, with hummocky cross⁃stratification observed inside the dolomite lens, Jiangzhangzi village, Lingyuan city; (b) top shale of the Hongshuizhuang Formation cut by dolomite debris flow, Jiangzhangzi village, Lingyuan city; (c) top shale of the Hongshuizhuang Formation eroded by dolomite debris flow, western ridge of Qujiagou village, Wafangzi town, Chaoyang city; (d) dolomite breccia observed inside the dolomite debris flow, western ridge of Qujiagou village, Wafangzi town, Chaoyang city
图 8 铁岭组底部野外露头和微观镜下特征
(a,b)铁岭组底部颗粒白云岩,辽西喀左县姜杖子村剖面;(c,d)铁岭组底部颗粒白云岩镜下微观特征,薄片取自图b中岩石;(e)铁岭组底部颗粒白云岩;辽西凌源市孟家窝铺剖面;(f)铁岭组底部颗粒灰岩,为图5e的局部放大;辽西凌源市孟家窝铺剖面
Figure 8. Outcrop and microscopic features of the basal part of the Tieling Formation
(a, b) grain dolostone at the base of the Tieling Formation, Jiangzhangzi village, Kazuo county, western Liaoning; (c, d) microscopic features of grain dolostone at the base of the Tieling Formation, thin sections taken from the rock in Fig.5b; (e) grain dolostone at the base of the Tieling Formation, Mengjiawopu village, Lingyuan city, western Liaoning; (f) grain dolostone at the base of the Tieling Formation, a magnified section of Fig.5e, Mengjiawopu village, Lingyuan city, western Liaoning
图 9 铁岭组中部和顶部野外露头特征
(a)铁岭组中部灰色页岩,辽西喀左县姜杖子村剖面;(b)铁岭组中部灰色页岩,凌源市孟家窝铺剖面;(c)铁岭组中部含锰白云岩和含锰页岩,朝阳市瓦房子镇曲家沟剖面;(d)铁岭组中部含锰白云岩和含锰页岩,朝阳市瓦房子镇曲家沟剖面;(e)铁岭组顶部薄层白云岩与泥岩互层,凌源市小庄户剖面;(f)铁岭组顶部叠层石白云岩,喀左县姜杖子村剖面
Figure 9. Outcrop features of the middle and upper parts of the Tieling Formation
(a) gray shale in the middle part of the Tieling Formation, Jiangzhangzi village, Kazuo county, western Liaoning; (b) gray shale in the middle part of the Tieling Formation, Mengjiawopu village, Lingyuan city; (c, d) Manganese⁃bearing dolostone and manganese⁃bearing shale in the middle part of the Tieling Formation, Qujiagou village, Wafangzi town, Chaoyang city; (e) thin⁃layered dolostone interbedded with mudstone at the top of the Tieling Formation, Xiaozhuanghu village, Lingyuan city; (f) stromatolite dolostone at the top of the Tieling Formation, Jiangzhangzi village, Kazuo county
图 10 凌源市沟门子镇小庄户村下马岭组野外沉积特征
(a,b)铁岭组与下马岭组不整合接触,底下为白云岩,顶部为石英砂岩;(c)下马岭组石英砂岩,可见槽状交错层理;(d)厚层石英砂岩向上过渡为薄层灰色页岩;(e)灰色粉砂质页岩,风化面发黄,新鲜面为灰色;(f)灰色页岩夹薄层粉砂质条带
Figure 10. Sedimentary features of the Xiamaling Formation outcrop in Xiaozhuanghu village, Goumenzi town, Lingyuan city
(a, b) unconformity between the Tieling Formation and the Xiamaling Formation, with dolomite below and quartz sandstone above; (c) quartz sandstone of the Xiamaling Formation showing trough cross⁃bedding; (d) the brownish quartz sandstone gradually changes upward to gray silty shale; (e) gray silty shale, note the yellow color is caused by weathering and the fresh surface is gray; (f) gray shale with very thin silty lamination
图 12 辽西坳陷洪水庄组、铁岭组和下马岭组烃源岩有机地化参数分布图
(a)烃源岩TOC和S1+S2分布图,数据据文献[69⁃74];(b)烃源岩Tmax分布图,数据据文献[70⁃74]
Figure 12. Distribution of organic geochemical parameters of source rocks from the Hongshuizhuang Formation, Tieling Formation, and Xiamling Formation in the Western Liaoning Depression
(a) distribution map of TOC and S1+S2 of source rocks, data based on references[69⁃74]; (b) distribution map of Tmax in source rocks, data based on based on references[70⁃74]
-
[1] 孙枢,王铁冠. 中国东部中—新元古界地质学与油气资源[M]. 北京:科学出版社,2016. Sun Shu, Wang Tieguan. Mesoproterozoic geology and oil and gas resources in eastern China[M]. Beijing: Science Press, 2016. [2] 赵文智,胡素云,汪泽成,等. 中国元古界—寒武系油气地质条件与勘探地位[J]. 石油勘探与开发,2018,45(1):1-13. Zhao Wenzhi, Hu Suyun, Wang Zecheng, et al. Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China[J]. Petroleum Exploration and Development, 2018, 45(1): 1-13. [3] 赵文智,王晓梅,胡素云,等. 中国元古宇烃源岩成烃特征及勘探前景[J]. 中国科学(D辑):地球科学,2019,49(6):939-964. Zhao Wenzhi, Wang Xiaomei, Hu Suyun, et al. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China[J]. Science China (seri.D): Earth Sciences, 2019, 49(6): 939-964. [4] Zhang Z Y. Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China[J]. Journal of Micropalaeontology, 1986, 5(2): 9-16. [5] 阎玉忠. 河北庞家堡常州沟组页岩相微古植物[J]. 微体古生物学报,1991,8(2):183-195. Yan Yuzhong. Shale-facies microflora from the Changzhougou Formation (Changcheng system) in Pangjiabu region, Hebei, China[J]. Acta Micropaleontica Sinica, 1991, 8(2): 183-195. [6] Huntley J W, Xiao S H, Kowalewski M. 1.3 billion years of acritarch history: An empirical morphospace approach[J]. Precambrian Research, 2006, 144(1/2): 52-68. [7] 张水昌,王华建,王晓梅,等. 中元古代增氧事件[J]. 中国科学:地球科学,2022,52(1):26-52. Zhang Shuichang, Wang Huajian, Wang Xiaomei, et al. The Mesoproterozoic oxygenation event[J]. Science China Earth Sciences, 2022, 52(1): 26-52. [8] Mills D B, Ward L M, Jones C, et al. Oxygen requirements of the earliest animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(11): 4168-4172. [9] Cole D B, Mills D B, Erwin D H, et al. On the co-evolution of surface oxygen levels and animals[J]. Geobiology, 2020, 18(3): 260-281. [10] Canfield D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396(6710): 450-453. [11] 王晓梅,张水昌,王华建,等. 烃源岩非均质性及其意义:以中国元古界下马岭组页岩为例[J]. 石油勘探与开发,2017,44(1):32-39. Wang Xiaomei, Zhang Shuichang, Wang Huajian, et al. Significance of source rock heterogeneities: A case study of Mesoproterozoic Xiamaling Formation shale in North China[J]. Petroleum Exploration and Development, 2017, 44(1): 32-39. [12] Craig J, Thurow J, Thusu B, et al. Global Neoproterozoic petroleum systems: The emerging potential in North Africa[J]. Geological Society, London, Special Publications, 2009, 326(1): 1-25. [13] Craig J, Biffi U, Galimberti R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40: 1-47. [14] 李刚,白国平,高平,等. 全球前寒武系—下寒武统原生油气藏地质及分布特征[J]. 石油实验地质,2021,43(6):958-966. Li Gang, Bai Guoping, Gao Ping, et al. Geological characteristics and distribution of global primary hydrocarbon accumulations of Precambrian-Lower Cambrian[J]. Petroleum Geology & Experiment, 2021, 43(6): 958-966. [15] Melezhik V A, Fallick A E, Filippov M M, et al. Karelian shungite—an indication of 2.0-ga-old metamorphosed oil-shale and generation of petroleum: Geology, lithology and geochemistry[J]. Earth-Science Reviews, 1999, 47(1/2): 1-40. [16] Melezhik V A, Filippov M M, Romashkin A E. A giant Palaeoproterozoic deposit of Shungite in NW Russia: Genesis and practical applications[J]. Ore Geology Reviews, 2004, 24(1): 135-154. [17] Frolov S V, Akhmanov G G, Bakay E A, et al. Meso-Neoproterozoic petroleum systems of the eastern Siberian sedimentary basins[J]. Precambrian Research, 2015, 259: 95-113. [18] Schmid S. Sedimentological review of the Barney Creek Formation in drillholes LV09001, BJ2, McA5, McArthur Basin[R]. Northern Territory Geological Survey, 2015. [19] Schaefer K. This country is caught in a catch-22 with energy[EB/OL]. 2017[2017-03-09]. https://oilandgas-investments.com/2017/oil-stocks/this-country-is-caught-in-a-catch-22-with-energy/ [20] Hlebszevitsch J C, Gebhard I, Cruz C E, et al. The “Infracambrian System” in the southwestern margin of Gondwana, southern South America[M]//Craig J, Thurow J, Thusu B, et al. Global Neoproterozoic petroleum systems: The emerging potential in North Africa. London: Geological Society of London, 2009: 289-302. [21] 李剑,杨春龙,谢武仁,等. 四川盆地安岳气田震旦系台缘带和台内地区天然气成藏差异性及勘探领域[J]. 石油与天然气地质,2023,44(1):34-45. Li Jian, Yang Chunlong, Xie Wuren, et al. Differences of natural gas accumulation and play fairways in the marginal zone and interior of Sinian platform in Anyue gas field, Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(1): 34-45. [22] 王铁冠. 燕山地区震旦亚界油苗的原生性及其石油地质意义[J]. 石油勘探与开发,1980(2):34-52. Wang Tieguan. The original nature of Sinian sub-boundary oil seedlings in the Yanshan area and its petroleum geological significance[J]. Petroleum Exploration and Development, 1980(2): 34-52. [23] 张水昌,张宝民,边立曾,等. 8亿多年前由红藻堆积而成的下马岭组油页岩[J]. 中国科学 D辑:地球科学,2007,37(5):636-643. Zhang Shuichang, Zhang Baomin, Bian Lizeng, et al. Oil shale of the Xiamaling Formation formed by red algae accumulated more than 800 million years ago[J]. Science in China (Series D: Earth Sciences), 2007, 37(5): 636-643. [24] 史晓颖,张传恒,蒋干清,等. 华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力[J]. 现代地质,2008,22(5):669-682. Shi Xiaoying, Zhang Chuanheng, Jiang Ganqing, et al. Microbial mats from the Mesoproterozoic carbonates of the North China Platform and their potential for hydrocarbon-generation[J]. Geoscience, 2008, 22(5): 669-682. [25] 罗情勇,钟宁宁,朱雷,等. 华北北部中元古界洪水庄组埋藏有机碳与古生产力的相关性[J]. 科学通报,2013,58(11):1036-1047. Luo Qingyong, Zhong Ningning, Zhu Lei, et al. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China[J]. Chinese Science Bulletin, 2013, 58(11): 1036-1047. [26] 刘静,周志,刘喜恒,等. 燕山地区中元古界页岩气成藏地质条件[J]. 石油学报,2019,40(3):268-278. Liu Jing, Zhou Zhi, Liu Xiheng, et al. Geological conditions of the Mesoproterozoic shale gas accumulation in Yanshan area, North China[J]. Acta Petrolei Sinica, 2019, 40(3): 268-278. [27] 王浩,任收麦,周志,等. 华北燕山地区中—新元古界油气勘查形势[J]. 地质通报,2019,38(增刊1):404-413. Wang Hao, Ren Shoumai, Zhou Zhi, et al. Oil and gas exploration status analysis of the Meso-Neoproterozoic strata in Yanshan area, North China[J]. Geological Bulletin of China, 2019, 38(Suppl.1): 404-413. [28] 宋到福,王铁冠,张迈,等. 冀北坳陷双洞背斜铁岭组沥青的有机地球化学特征及其地质意义[J]. 长江大学学报(自然科学版),2021,18(1):1-10. Song Daofu, Wang Tieguan, Zhang Mai, et al. Organic geochemical characteristics and the geological significance of bitumen from Tieling Formation of Shuangdong anticline in North Hebei Depression[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(1): 1-10. [29] 陈媛. 冀北—辽西地区中新元古界原生油气的成藏过程研究[D]. 北京:中国石油大学(北京),2020. Chen Yuan. The accumulation process of primary oil and gas in the Meso-Neoproterozoic sedimentary strata, Jibei-Liaoxi area[D]. Beijing: China University of Petroleum, Beijing, 2020. [30] 孙求实. 冀北—辽西中新元古界油气地质调查项目顺利通过野外验收[EB/OL]. 中国地质调查局网站. 2021[2021-11-07]. http://www.shenyang.cgs.gov.cn/glyfw/202111/t20211117_684139.html. Sun Qiushi. The Mesoproterozoic oil and gas geological survey project in northern Hebei and western Liaoning successfully passed the Hebei field acceptance[EB/OL]. China Geological Survey website. 2021[2021-11-07]. http://www.shenyang.cgs.gov.cn/ glyfw/202111/t20211117_684139.html. [31] 刘鸿允. 中国古地理图[J]. 科学大众,1957(5):230-231. Liu Hongyun. Ancient geography map of China[J]. Popular Science, 1957(5): 230-231. [32] 王杰,陈践发,窦启龙. 华北北部中、上元古界生烃潜力特征研究[J]. 石油实验地质,2004,26(2):206-211. Wang Jie, Chen Jianfa, Dou Qilong. Evaluation of the hydrocarbon-generating potential for the possible hydrocarbon source rocks of the Middle-Upper Proterozoic in north Huabei area[J]. Petroleum Geology & Experiment, 2004, 26(2): 206-211. [33] 鲍志东,陈践发,张水昌,等. 北华北中上元古界烃源岩发育环境及其控制因素[J]. 中国科学 D辑:地球科学,2004,34(增刊1):114-119. Bao Zhidong, Chen Jianfa, Zhang Shuichang, et al. Development environment and controlling factors of Middle and Upper Proterozoic source rocks in North China[J]. Science in China Series D: Earth Sciences, 2004, 34(Suppl.1): 114-119. [34] 罗顺社,吕奇奇,尚飞,等. 宣龙坳陷新元古界下马岭组沉积相特征研究[J]. 断块油气田,2011,18(1):26-29. Luo Shunshe, Qiqi Lü, Shang Fei, et al. Characteristics of sedimentrary facies of Neoproterozoic Xiamaling Formation reservoir in Xuanlong Depression[J]. Fault-Block Oil & Gas Field, 2011, 18(1): 26-29. [35] 王铁冠,韩克猷. 论中—新元古界的原生油气资源[J]. 石油学报,2011,32(1):1-7. Wang Tieguan, Han Keyou. On Meso-Neoproterozoic primary petroleum resources[J]. Acta Petrolei Sinica, 2011, 32(1): 1-7. [36] 刘岩,钟宁宁,宋涛,等. 海相油页岩的生烃动力学特征:以燕山地区下马岭组油页岩为例[J]. 吉林大学学报(地球科学版),2011,41(增刊1):78-84,113. Liu Yan, Zhong Ningning, Song Tao, et al. Kinetics of marine oil shale: A case study of Xiamaling Formation oil shale in Yanshan region, North China[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(Suppl.1): 78-84, 113. [37] 牛露,朱如凯,王莉森,等. 华北地区北部中—上元古界泥页岩储层特征及页岩气资源潜力[J]. 石油学报,2015,36(6):664-672,698. Niu Lu, Zhu Rukai, Wang Lisen, et al. Characteristics and evaluation of the Meso-Neoproterozoic shale gas reservoir in the northern North China[J]. Acta Petrolei Sinica, 2015, 36(6): 664-672, 698. [38] 王铁冠,龚剑明. 中国中—新元古界地质学与油气资源勘探前景[J]. 中国石油勘探,2018,23(6):1-9. Wang Tieguan, Gong Jianming. Meso-Neoproterozoic geology and petroleum resources prospect in China[J]. China Petroleum Exploration, 2018, 23(6): 1-9. [39] 吕奇奇,罗顺社,汪泽成,等. 华北克拉通典型拗拉槽中—新元古界沉积体系与古地理演化[J]. 地质学报,2022,96(2):349-367. Qiqi Lü, Luo Shunshe, Wang Zecheng, et al. Meso-Neoproterozoic sedimentary system and palaeogeographic evolution of typical aulacogens in the North China Craton[J]. Acta Geologica Sinica, 2022, 96(2): 349-367. [40] 张文浩,汤冬杰,杨烨,等. 华北地台中—新元古界烃源岩沉积特征及生烃潜力[J]. 中国地质,2021,48(5):1510-1523. Zhang Wenhao, Tang Dongjie, Yang Ye, et al. The sedimentary characteristics and hydrocarbon potential of Meso-Neoproterozoic source rocks in North China Platform[J]. Geology in China, 2021, 48(5): 1510-1523. [41] 宗文明,郜晓勇,孙求实,等. 华北北部凌源—宁城盆地蓟县系洪水庄组生烃潜力分析:以小庄户剖面为例[J]. 地质与资源,2017,26(4):370-376. Zong Wenming, Gao Xiaoyong, Sun Qiushi, et al. Evaluation of the hydrocarbon generating potential of the Jixianian Hongshuizhuang Formation in Lingyuan-Ningcheng Basin, northern China: A case study of Xiaozhuanghu geological profile[J]. Geology and Resources, 2017, 26(4): 370-376. [42] 杨时杰. 辽西建昌地区中—新元古界原生油气藏成藏条件分析[J]. 海相油气地质,2013,18(3):12-18. Yang Shijie. Conditions of hydrocarbon accumulation in Meso-Neoproterozoic primary oil reservoirs in Jianchang area, western Liaoning[J]. Marine Oil and Gas Geology, 2013, 18(3): 12-18. [43] 马满兴,慕德梁,李正达. 建昌盆地中新元古界石油地质条件研究[J]. 特种油气藏,2013,20(2):60-64. Ma Manxing, Mu Deliang, Li Zhengda. Study on the petroleum geological conditions of the Middle Neoproterozoic in Jianchang Basin[J]. Special Oil & Gas Reservoirs, 2013, 20(2): 60-64. [44] 潘建国,曲永强,马瑞,等. 华北地块北缘中新元古界沉积构造演化[J]. 高校地质学报,2013,19(1):109-122. Pan Jianguo, Qu Yongqiang, Ma Rui, et al. Sedimentary and tectonic evolution of the Meso-Neoproterozoic strata in the northern margin of the North China Block[J]. Geological Journal of China Universities, 2013, 19(1): 109-122. [45] Lu S N, Zhao G C, Wang H C, et al. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review[J]. Precambrian Research, 2008, 160(1/2): 77-93. [46] 翟明国. 中国主要古陆与联合大陆的形成:综述与展望[J]. 中国科学(D辑):地球科学,2013,43(10):1583-1606. Zhai Mingguo. The main old lands in China and assembly of Chinese unified continent[J]. Science China (seri.D): Earth Sciences, 2013, 43(10): 1583-1606. [47] 翟明国. 华北克拉通构造演化[J]. 地质力学学报,2019,25(5):722-745. Zhai Mingguo. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 2019, 25(5): 722-745. [48] 旷红伟,柳永清,耿元生,等. 中国中新元古代重要沉积地质事件及其意义[J]. 古地理学报,2019,21(1):1-30. Kuang Hongwei, Liu Yongqing, Geng Yuansheng, et al. Important sedimentary geological events of the Meso-Neoproterozoic and their significance[J]. Journal of Palaeogeography, 2019, 21(1): 1-30. [49] 郝石生,高耀斌,张有成,等. 华北北部中—上元古界石油地质学[M]. 东营:石油大学出版社,1990. Hao Shisheng, Gao Yaobin, Zhang Youcheng, et al. Petroleum geology of the Middle and Upper Proterozoic in northern North China[M]. Dongying: Petroleum University Press, 1990. [50] 乔秀夫. 青白口群地层学研究[J]. 地质科学,1976(3):246-265. Qiao Xiufu. Investigation on stratigraphy of the Qingbaikou Group of the Yenshan mountains, North China[J]. Chinese Journal of Geology, 1976(3): 246-265. [51] Lyu D, Deng Y, Wang, H J, et al. Using cyclostratigraphic evidence to define the unconformity caused by the Mesoproterozoic Qinyu uplift in the North China Craton[J]. Journal of Asian Earth Sciences, 2021, 206: 104608. [52] 高志勇,王华建,冯佳睿,等. 燕辽海盆中元古界下马岭组沉积期的物源性质与古地理环境[J]. 地质学报,2021,95(12):3606-3628. Gao Zhiyong, Wang Huajian, Feng Jiarui, et al. Provenance and paleogeographic environment of the Middle Proterozoic Xiamaling Formation in the Yanliao Basin[J]. Acta Geologica Sinica, 2021, 95(12): 3606-3628. [53] 旷红伟,彭楠,柳永清,等. 华北克拉通下马岭组与龙山组之间存在大型不整合吗?[J]. 中国科学(D辑):地球科学,2023,53(5):948-972. Kuang Hongwei, Peng Nan, Liu Yongqing, et al. Is there a great unconformity between Xiamaling and Longshan Formations in the North China Craton?[J]. Science China (seri.D): Earth Sciences, 2023, 53(5): 948-972. [54] 霍勇,罗顺社,张建坤,等. 燕山地区宣龙坳陷中元古界洪水庄组—铁岭组沉积相分析与层序格架的建立[J]. 地质科技情报,2012,31(3):8-15. Huo Yong, Luo Shunshe, Zhang Jiankun, et al. Sedimentary facies and sequence stratigraphic framework of Hongshuizhuang-Tieling Formations in Xuanlong Depression of Yanshan region[J]. Geological Science and Technology Information, 2012, 31(3): 8-15. [55] 吕奇奇,罗顺社,汪泽成,等. 华北克拉通典型拗拉槽中—新元古界沉积体系与古地理演化[J]. 地质学报,2022,96(2):349-367. Qiqi Lü, Luo Shunshe, Wang Zecheng, et al. Meso-Neoproterozoic sedimentary system and palaeogeographic evolution of typical aulacogens in the North China Craton[J]. Acta Geologica Sinica, 2022, 96(2): 349-367. [56] 汪凯明,罗顺社. 河北宽城地区洪水庄组岩石特征及沉积环境[J]. 沉积与特提斯地质,2014,34(2):29-35. Wang Kaiming, Luo Shunshe. Petrology and sedimentary environments of the Hongshuizhuang Formation in the Kuancheng region, Hebei[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(2): 29-35. [57] 王雪琪. 中元古代河北燕辽裂陷槽洪水庄组有机质来源和赋存环境[D]. 西安:西安石油大学,2019. Wang Xueqi. Sources of organic matter and environment of the Hongshuizhuang Formation of the Yanliao gully in the Middle Proterozoic of Hebei province[D]. Xi'an: Xi'an Shiyou University, 2019. [58] Law B, Ahlbrandt T, Hoyer D. Source and reservoir rock attributes of Mesoproterozoic shale, Beetaloo Basin, northern Territory, Australia[C]//AAPG Annual Convention. New Orleans: AAPG, 2010. [59] 姜在兴,陈代钊. 沉积学[M]. 3版. 北京:中国石化出版社,2022:525-532. Jiang Zaixing, Chen Daizhao. Sedimentology[M]. 3rd ed. Beijing: China Petrochemical Press, 2022: 525-532. [60] Algeo T J, Rowe H. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology, 2012, 324-325: 6-18. [61] Maynard J B. Manganiferous sediments, rocks, and ores[M]//Holland H D, Turekian K K. Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 327-349. [62] Yu W C, Algeo T J, Du Y S, et al. Genesis of Cryogenian Datangpo manganese deposit: Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 321-337. [63] 董志国,张连昌,王长乐,等. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题[J]. 矿床地质,2020,39(2):237-255. Dong Zhiguo, Zhang Lianchang, Wang Changle, et al. Progress and problems in understanding sedimentary manganese carbonate metallogenesis[J]. Mineral Deposits, 2020, 39(2): 237-255. [64] 李晓波,张艳,仝亚博. 燕辽东段侏罗、白垩纪构造转变期古地理和古环境的初步分析[J]. 地学前缘,2021,28(2):391-411. Li Xiaobo, Zhang Yan, Tong Yabo. Preliminary analysis on the paleogeography and paleoenvironment in the eastern Yanliao area during the Jurassic-Cretaceous tectonic transition[J]. Earth Science Frontiers, 2021, 28(2): 391-411. [65] 黄汲清. 关于震旦运动[J]. 地质论评,1947,12(增刊1):95-100. Huang Jiqing. Sinian system elevation [J]. Geological Review, 1947, 12(Suppl.1): 95-100. [66] 张拴宏,赵越,刘建民,等. 华北地块北缘晚古生代—早中生代岩浆活动期次、特征及构造背景[J]. 岩石矿物学杂志,2010,29(6):824-842. Zhang Shuanhong, Zhao Yue, Liu Jianmin, et al. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 824-842. [67] Zhang S C, Wang X M, Hammarlund E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): E1406-E1413. [68] Wang X M, Zhang S C, Wang H J, et al. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting[J]. American Journal of Science, 2017, 317(8): 861-900. [69] 肖洪. 冀北—辽西地区中元古界分子标志物组成及地球化学意义[D]. 北京:中国石油大学(北京),2020. Xiao Hong. The compositions of molecular markers in the Mesoproterozoic successions and their geochemical significance in the Jibei-Liaoxi area[D]. Beijing: China University of Petroleum (Beijing), 2020. [70] 宗文明,郜晓勇,孙求实,等. 华北北部凌源—宁城盆地中元古界下马岭组生烃潜力分析:以小庄户剖面为例[J]. 世界地质,2017,36(4):1161-1169. Zong Wenming, Gao Xiaoyong, Sun Qiushi, et al. Evaluation of hydrocarbon generation potential in Middle Proterozoic Xiamaling Formation of Lingyuan-Ningcheng Basin in northern China: A case study of Xiaozhuanghu geological section[J]. World Geology, 2017, 36(4): 1161-1169. [71] 宗文明,孙求实,郜晓勇,等. 辽西拗陷凌源地区洪水庄组烃源岩石油地质特征及生烃潜力[J]. 地质与资源,2022,31(2):165-174,192. Zong Wenming, Sun Qiushi, Gao Xiaoyong, et al. The source rocks of Hongshuizhuang Formation in Lingyuan area of Liaoxi Depression: Petroleum geology and hydrocarbon generation potential[J]. Geology and Resources, 2022, 31(2): 165-174, 192. [72] 张涛,李永飞,孙守亮,等. 冀北—辽西地区洪水庄期海洋氧化还原环境的不均一性[J]. 地质与资源,2021,30(3):257-264. Zhang Tao, Li Yongfei, Sun Shouliang, et al. Heterogeneity of marine redox environment during the sedimentary period of Hongshuizhuang Formation in northern Hebei-western Liaoning[J]. Geology and Resources, 2021, 30(3): 257-264. [73] 孙守亮,李永飞,张涛,等. 燕辽裂陷带辽西拗陷中元古界高于庄组生物标志化合物特征及意义[J]. 地质与资源,2021,30(3):341-349. Sun Shouliang, Li Yongfei, Zhang Tao, et al. Biomarker characteristics and implication of the Mesoproterozoic Gaoyuzhuang Formation in Liaoxi Depression of Yanliao rift zone[J]. Geology and Resources, 2021, 30(3): 341-349. [74] 石蕾,宗文明,孙求实,等. 泥页岩有机非均质性评价及其在烃源岩分级评价中的应用:以辽西拗陷中元古界蓟县系为例[J]. 地质与资源,2022,31(3):367-374. Shi Lei, Zong Wenming, Sun Qiushi, et al. Shale organic heterogeneity evaluation method and its application in source rocks grading evaluation: A case study of Mesoproterozoic Jixianianin in Liaoxi Depression[J]. Geology and Resources, 2022, 31(3): 367-374. [75] 张敏,王正允,张紫光,等. 碳酸盐岩宏观储集空间研究:以冀北坳陷中元古界蓟县系雾迷山组和铁岭组为例[J]. 石油地质与工程,2008,22(5):37-40. Zhang Min, Wang Zhengyun, Zhang Ziguang, et al. Research on macroscopic reservoir space of carbonate rocks: Taking the Wumishan Formation and Tieling Formation of the Mesoproterozoic Jixian System in the northern Hebei Depression as an example[J]. Petroleum Geology and Engineering, 2008, 22(5): 37-40. [76] 孙雨轩,罗顺社,吕奇奇,等. 燕山地区冀北坳陷和宣龙坳陷中元古界碳酸盐岩储集空间类型及其控制因素[J]. 新疆石油地质,2016,37(3):275-280. Sun Yuxuan, Luo Shunshe, Qiqi Lü, et al. Storage space types and controlling factors of Mesoproterozoic carbonate rocks in Jibei and Xuanlong Depressions in Yanshan area[J]. Xinjiang Petroleum Geology, 2016, 37(3): 275-280.