-
研究区马鞍塘组沉积特征分异明显,结合野外剖面观察,基于室内镜下鉴定结果,识别出11个微相类型(表1),分别是:含包粒似球粒泥粒灰岩—颗粒灰岩(MF1)、含生屑似球粒泥粒灰岩(MF2)、含鲕粒似球粒泥粒灰岩—颗粒灰岩(MF3)、含生屑同心放射鲕泥粒灰岩—颗粒灰岩(MF4)、含生屑表鲕泥粒灰岩—颗粒灰岩(MF5)、含生屑脑状鲕泥粒灰岩(MF6)、含包粒生屑砾状灰岩(MF7)、含生屑包粒泥粒灰岩—漂砾灰岩(MF8)、含生屑凝块石泥粒灰岩—漂砾灰岩(MF9)、海绵微生物黏结灰岩(MF10)、蠕虫管黏结灰岩(MF11)。根据微相特征和相关性,11个微相类型被进一步分为5个岩相组合(Lithofacies Association,LA),分别为似球粒灰岩组合(LA-peloid)、鲕粒灰岩组合(LA-ooid)、生屑灰岩组合(LA-skeletal)、海绵礁组合(LA-sponge reef)以及页岩组合(LA-shale)。
表 1 绵竹汉旺观音崖剖面马鞍塘组微相特征
Table 1. Characteristics of microfacies from the Ma’antang Formation at the Guanyinya section in Hanwang, Mianzhu
编号 名称 主要特征 沉积相 MF1 含包粒似球粒泥粒 灰岩—颗粒灰岩 颗粒支撑,颗粒间灰泥充填为主,局部有亮晶胶结。包粒粒径主要集中在2 mm左右,核心多为生屑或泥晶,结构复杂,粒间距较大,充填大量粒径0.1~0.2 mm的似球粒(>30%)和部分生物碎屑(15%)。生物碎屑有有孔虫(主要)、腕足、介形虫、海百合茎等,颗粒多破碎,泥晶化,颗粒形态模糊 内缓坡似球粒滩 MF2 含生屑似球粒 泥粒灰岩 颗粒支撑,颗粒间灰泥充填。以似球粒为主,粒径0.1~0.2 mm,存在大量生物碎屑(25%),如有孔虫(主要)、腕足、介形虫、海百合茎等,生屑多破碎,粒径与似球粒相似,大型化石壳体上可见生物钻孔。方解石脉发育 内缓坡似球粒滩 MF3 含鲕粒似球粒泥粒 灰岩—颗粒灰岩 颗粒支撑,颗粒间主要为亮晶胶结,充填少量灰泥。鲕粒粒径极细且均匀,大部分为0.3~0.6 mm,形状不规则,粒径稍大的鲕粒(0.5~0.6 mm)主要发育同心放射状圈层,鲕粒核心多见生屑(棘屑、有孔虫)或灰泥。鲕粒粒间距较大,夹杂粒径较小的碳酸盐颗粒,粒径约0.1 mm,主要为有孔虫、小鲕粒、似球粒及其他细碎生屑,约占整体的10%,未见大粒径生屑 内缓坡似球粒滩 MF4 含生屑同心放射鲕泥粒灰岩—颗粒灰岩 鲕粒圈层以同心放射状为主,直径0.6~1.5 mm,大小混杂,分选较差,小鲕粒(0.6 mm左右)呈团块状集中分布。约有1/4的鲕粒以生屑为核心,其余鲕粒未见核心或以泥晶为核心。生物碎屑较多,主要为棘屑、腹足、腕足、有孔虫、介形虫 内缓坡鲕粒滩 MF5 含生屑表鲕泥粒灰岩—颗粒灰岩 鲕粒以表鲕为主,约占整体的30%,磨圆较好,粒径多介于0.3~0.6 mm。鲕粒核心多为胶结物或者生物碎屑,约占整体的2/3,核心直径明显大于鲕粒包壳的厚度,受核心影响导致鲕粒形状不规则。偶见粒径较大的大鲕粒,粒径接近1 mm,但鲕粒圈层只有0.05 mm左右。生物碎屑丰富,主要生物类型有海百合、藻屑、棘皮、有孔虫等,这些生屑或作为表鲕核心出现,或在鲕粒的间隙单独出现,除藻屑多因重结晶看不清原本结构外,其他生屑大多保存完好 内缓坡鲕粒滩 MF6 含生屑脑状 鲕泥粒灰岩 脑状鲕直径介于0.6~2 mm,鲕粒形状规则,但边缘不光滑,可见部分有孔虫呈包壳状出现在鲕粒内部或边缘;微生物也多参与鲕粒的形成,出现在鲕粒圈层间或鲕粒最外圈层,菌丝保存较好,丝状,高度缠绕。鲕粒粒间夹约10%的小鲕粒、球粒及生屑,粒径介于0.1~0.2 mm。似球粒状泥晶灰岩常见,呈团块状集中分布。生屑多出现在脑状鲕核心或分布在鲕粒粒间,主要有有孔虫、海百合、海胆刺、腕足、藻屑等,鲕粒的形状受核心的影响从而形态不一 内缓坡鲕粒滩 MF7 含包粒生屑砾状灰岩 颗粒支撑,颗粒间为灰泥充填。非骨屑颗粒以包粒为主,大小均匀,多大于2 mm,磨圆较好,多呈球状、椭球状。生物碎屑丰富,含量可达30%,颗粒较大,腕足壳较常见,保存完整,可达1 cm;还出现粒径较大的藻屑,最大可达2 cm,另外可见脑纹状海绵及层孔虫 中缓坡生屑滩 MF8 含生屑包粒泥粒灰岩—漂砾灰岩 主要颗粒为包粒,粒径0.5~3 mm不等,圈层不明显,颜色发黑,形状不规则。包粒间和包粒核心可见生物碎屑,含量约10%,主要有介形虫、海百合、海胆刺、有孔虫、腕足、腹足等,另外海绵骨针在其中杂乱分布 中缓坡生屑滩 MF9 含生屑凝块石泥粒灰岩—漂砾灰岩 靠近礁的部分,出现大量凝块石颗粒,约占整体的10%~20%,粒径为0.2~1.8 mm不等,凝块石为内含细碎生物碎屑的黑色泥晶团块,磨圆中等。在粒间隙常见大量生物碎屑,主要为棘皮类、腹足类、介形类、双壳类、海绵(多为海绵骨针,偶见海绵)等,生物化石破碎,少数保存完好,另外还有大量蠕虫管集中出现,外层厚泥晶套包裹,核心通常充填有亮晶胶结物。似球粒状泥晶大量出现,多呈团块状集中分布 中缓坡生屑滩 MF10 海绵微生物黏结灰岩 基质主要为灰泥,含量可达到70%以上。镜下可见保存较好的海绵及海绵骨针,其他的生物碎屑较少见,偶见保存较好的海百合茎、介形虫、腕足等 外缓坡生物礁 MF11 蠕虫管黏结灰岩 镜下可见蠕虫管局部富集,周围分布有大量似球粒状灰泥。生物碎屑少见,主要为海绵骨针或海绵,偶见海百合茎及腕足壳体的碎片 外缓坡生物礁 1) 似球粒灰岩组合(LA-peloid)
该组合是以似球粒为主的深灰色薄—中层泥粒灰岩—颗粒灰岩,主要颗粒为似球粒,约占整体的30%,其形态及特征与巴哈马似球粒相似,为磨圆和分选都较好的泥晶化细粒暗色团块,粒径约0.2 mm。根据次要颗粒的类型可将该组合分为三个微相:含包粒似球粒泥粒灰岩—颗粒灰岩(MF1)、含生屑似球粒泥粒灰岩(MF2)、含鲕粒似球粒泥粒灰岩—颗粒灰岩(MF3)。在似球粒灰岩组合中,MF1中的次要颗粒是粒径较大、暗色、不规则团块状的包粒(图3a),分选和磨圆都较差,包粒内部未见纹层等结构,但可见包裹其中的有孔虫和海百合茎等生屑;MF2中的次要颗粒是生物碎屑,粒径与似球粒大小相似,约占整体的25%,有孔虫在生屑中占比较高,约占生屑总量的40%,结构保存较好,腔室等细微结构在镜下清晰可见,有孔虫以小栗虫为主(图3b),呈纺锤状;MF3中的次要颗粒为显微结构保存较差的鲕粒,具有丝状同心圈层(图3c)。
Quantitative Study on the Composition and Evolution of the Late Triassic Carnian Shallow-Water Carbonate Factories in Northwestern Sichuan
-
摘要: 目的 准确识别碳酸盐工厂类型并阐明其发育控制因素,定量化评价工厂发育过程的环境条件,厘清其在沉积体系转换过程中的古生态学和沉积学信号是探究碳酸盐岩沉积体系演化的关键。 方法 以川西北绵竹市汉旺镇观音崖剖面的马鞍塘组为例,通过系统的碳酸盐岩微相分析,结合粒径统计分析方法对20 391个颗粒定量分析,在此基础上对该时期热带浅水碳酸盐生产工厂的构成、特征、转变过程、驱动因素等进行了详细阐述。 结果 研究区热带浅水碳酸盐生产工厂可进一步划分为似球粒、鲕粒、生屑及生物礁等多个细分特异化工厂类型,指示多样化的碳酸盐生产路径。通过分析研究区热带浅水工厂的构成,沉积环境、水动力条件和营养水平等因素,发现各个细分工厂类型有着非常强烈的“生境”特点,工厂类型的转变更多地受区域海平面变化控制。 结论 频繁的海平面变化导致营养水平、水动力条件和碳酸盐矿物饱和度等因素快速变化,进而驱动了具体细分工厂的转变。而众多细分工厂在沉积序列上的快速变化指示了它们在横向上的共生关系。因此,较短时间尺度下细分工厂类型的转变主要与区域海平面控制的横向生产工厂类型的迁移有关,与极端事件和沉积体系的转变可能无关。Abstract: Objective The precipitation and accumulation of massive carbonates are called the "carbonate factory". Environmental and biological factors, such as water depth, light intensity, nutrients, hydrodynamics, climatic conditions, and sea-water chemistry control the composition of different carbonate factories. To properly understand the evolution of the carbonate sedimentary system, it is essential to accurately identify different types of carbonate factories and the factors controlling their development. To achieve this, the quantitative evaluation of the environmental and biological parameters in the transition of sedimentary systems is key. Methods In this study, the composition, characteristics, type transitions, and driving forces of tropical shallow-water carbonate factories within the Ma'antang Formation were studied in detail. We applied a systematic microfacies analysis in the deposition of the Ma'antang Formation at the Guanyinya section, Hanwang town, Mianzhu city, northwest Sichuan. Microfacies characteristics, including types and percentages of carbonate grains, matrix, and fossils, combined with quantitative analysis of the size and morphological parameters of 20,391 carbonate grains, including circularity, roundness, solidity, and aspect ratio, were analyzed from the thin sections. The size data were corrected and then used to calculate the average particle sizes, degree of sorting, skewness, and kurtosis following the Folk and Ward method. The analyses of the above-mentioned morphological parameters were accomplished in ImageJ using high-resolution scanning photos of the studied thin sections. Results Eleven carbonate microfacies are recognized in the study area. Based on the microfacies characteristics, the 11 microfacies types are further classified into five lithofacies associations (LA): LA-peloids, LA-ooids, LA-skeletal grain, LA-sponge reef, and LA-shale, correlating to four specific carbonate factories, including peloids, ooids, skeletal grains, and sponge reef. The statistical data reveal that the LA-peloids exhibit the smallest average grain size, characterized by regular shapes and good roundness. However, the sedimentation was a carbonate sediment mixture with relatively poor sorting, and the shape coefficient had significant fluctuations, suggesting a medium to high-energy environment. Carbonate grains are relatively pure and slightly larger in the LA-ooids than the LA-peloids. Multiple samples demonstrate a concentrated average grain size distribution with predominantly near-circular grains. The ooids are well cemented with sparry calcite, indicating the strongest hydrodynamic condition over the studied sedimentary succession. The LA-skeletal grain contains various carbonate grains, displaying poor sorting and roundness in the statistical results. Furthermore, part of the carbonate grains of the LA-skeletal grains is deposited in the micritic matrix, indicating relatively deep and quiet water with weak hydrodynamic energy. Conclusions The primary carbonate grain types in the different specific factories indicated different depositional mechanisms that drive different carbonate production pathways. By analyzing the composition, depositional environment, hydrodynamic, and nutrient level of tropical shallow water factories in the study area, each specific factory has strong "habitat" characteristics. The rapid transition of different specific carbonate factories in the sedimentary succession indicates that they coexisted at the horizontal level. Frequent sea level changes can lead to rapid changes in hydrodynamic level, carbonate saturation, and other factors, driving the transition of factory types. Additionally, the nutrient level is crucial in regulating carbonate production and may control the formation of different specific types of carbonate factories in shallow-water environments. Therefore, the rapid transformation of subdivided specific carbonate factories on a short time scale is primarily related to the horizontal migration of factory types controlled by regional sea level and may not be related to extreme climate events and the transformation of sedimentary systems.
-
Key words:
- Sichuan Basin /
- Late Triassic /
- Carnian /
- carbonate factory /
- carbonate sediment process /
- grains statistics
-
表 1 绵竹汉旺观音崖剖面马鞍塘组微相特征
Table 1. Characteristics of microfacies from the Ma’antang Formation at the Guanyinya section in Hanwang, Mianzhu
编号 名称 主要特征 沉积相 MF1 含包粒似球粒泥粒 灰岩—颗粒灰岩 颗粒支撑,颗粒间灰泥充填为主,局部有亮晶胶结。包粒粒径主要集中在2 mm左右,核心多为生屑或泥晶,结构复杂,粒间距较大,充填大量粒径0.1~0.2 mm的似球粒(>30%)和部分生物碎屑(15%)。生物碎屑有有孔虫(主要)、腕足、介形虫、海百合茎等,颗粒多破碎,泥晶化,颗粒形态模糊 内缓坡似球粒滩 MF2 含生屑似球粒 泥粒灰岩 颗粒支撑,颗粒间灰泥充填。以似球粒为主,粒径0.1~0.2 mm,存在大量生物碎屑(25%),如有孔虫(主要)、腕足、介形虫、海百合茎等,生屑多破碎,粒径与似球粒相似,大型化石壳体上可见生物钻孔。方解石脉发育 内缓坡似球粒滩 MF3 含鲕粒似球粒泥粒 灰岩—颗粒灰岩 颗粒支撑,颗粒间主要为亮晶胶结,充填少量灰泥。鲕粒粒径极细且均匀,大部分为0.3~0.6 mm,形状不规则,粒径稍大的鲕粒(0.5~0.6 mm)主要发育同心放射状圈层,鲕粒核心多见生屑(棘屑、有孔虫)或灰泥。鲕粒粒间距较大,夹杂粒径较小的碳酸盐颗粒,粒径约0.1 mm,主要为有孔虫、小鲕粒、似球粒及其他细碎生屑,约占整体的10%,未见大粒径生屑 内缓坡似球粒滩 MF4 含生屑同心放射鲕泥粒灰岩—颗粒灰岩 鲕粒圈层以同心放射状为主,直径0.6~1.5 mm,大小混杂,分选较差,小鲕粒(0.6 mm左右)呈团块状集中分布。约有1/4的鲕粒以生屑为核心,其余鲕粒未见核心或以泥晶为核心。生物碎屑较多,主要为棘屑、腹足、腕足、有孔虫、介形虫 内缓坡鲕粒滩 MF5 含生屑表鲕泥粒灰岩—颗粒灰岩 鲕粒以表鲕为主,约占整体的30%,磨圆较好,粒径多介于0.3~0.6 mm。鲕粒核心多为胶结物或者生物碎屑,约占整体的2/3,核心直径明显大于鲕粒包壳的厚度,受核心影响导致鲕粒形状不规则。偶见粒径较大的大鲕粒,粒径接近1 mm,但鲕粒圈层只有0.05 mm左右。生物碎屑丰富,主要生物类型有海百合、藻屑、棘皮、有孔虫等,这些生屑或作为表鲕核心出现,或在鲕粒的间隙单独出现,除藻屑多因重结晶看不清原本结构外,其他生屑大多保存完好 内缓坡鲕粒滩 MF6 含生屑脑状 鲕泥粒灰岩 脑状鲕直径介于0.6~2 mm,鲕粒形状规则,但边缘不光滑,可见部分有孔虫呈包壳状出现在鲕粒内部或边缘;微生物也多参与鲕粒的形成,出现在鲕粒圈层间或鲕粒最外圈层,菌丝保存较好,丝状,高度缠绕。鲕粒粒间夹约10%的小鲕粒、球粒及生屑,粒径介于0.1~0.2 mm。似球粒状泥晶灰岩常见,呈团块状集中分布。生屑多出现在脑状鲕核心或分布在鲕粒粒间,主要有有孔虫、海百合、海胆刺、腕足、藻屑等,鲕粒的形状受核心的影响从而形态不一 内缓坡鲕粒滩 MF7 含包粒生屑砾状灰岩 颗粒支撑,颗粒间为灰泥充填。非骨屑颗粒以包粒为主,大小均匀,多大于2 mm,磨圆较好,多呈球状、椭球状。生物碎屑丰富,含量可达30%,颗粒较大,腕足壳较常见,保存完整,可达1 cm;还出现粒径较大的藻屑,最大可达2 cm,另外可见脑纹状海绵及层孔虫 中缓坡生屑滩 MF8 含生屑包粒泥粒灰岩—漂砾灰岩 主要颗粒为包粒,粒径0.5~3 mm不等,圈层不明显,颜色发黑,形状不规则。包粒间和包粒核心可见生物碎屑,含量约10%,主要有介形虫、海百合、海胆刺、有孔虫、腕足、腹足等,另外海绵骨针在其中杂乱分布 中缓坡生屑滩 MF9 含生屑凝块石泥粒灰岩—漂砾灰岩 靠近礁的部分,出现大量凝块石颗粒,约占整体的10%~20%,粒径为0.2~1.8 mm不等,凝块石为内含细碎生物碎屑的黑色泥晶团块,磨圆中等。在粒间隙常见大量生物碎屑,主要为棘皮类、腹足类、介形类、双壳类、海绵(多为海绵骨针,偶见海绵)等,生物化石破碎,少数保存完好,另外还有大量蠕虫管集中出现,外层厚泥晶套包裹,核心通常充填有亮晶胶结物。似球粒状泥晶大量出现,多呈团块状集中分布 中缓坡生屑滩 MF10 海绵微生物黏结灰岩 基质主要为灰泥,含量可达到70%以上。镜下可见保存较好的海绵及海绵骨针,其他的生物碎屑较少见,偶见保存较好的海百合茎、介形虫、腕足等 外缓坡生物礁 MF11 蠕虫管黏结灰岩 镜下可见蠕虫管局部富集,周围分布有大量似球粒状灰泥。生物碎屑少见,主要为海绵骨针或海绵,偶见海百合茎及腕足壳体的碎片 外缓坡生物礁 -
[1] James N P. Facies models 7. Introduction to carbonate facies models[J]. Geoscience Canada, 1977, 4(3): 123-125. [2] James N P, Choquette P W. Diagenesis 9. Limestones-the meteoric diagenetic environment[J]. Geoscience Canada, 1984, 11(4): 161-194. [3] Tucker M E, Wright V P. Carbonate sedimentology[M]. Chichester: John Wiley & Sons, 2009. [4] Schlager W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464. [5] Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169. [6] Lowenstam H A, Weiner S. On biomineralization[M]. New York: Oxford University Press, 1989. [7] Schlager W. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems[J]. Geological Society, London, Special Publications, 2000, 178(1): 217-227. [8] Pomar L. Carbonate systems[M]//Scarselli N, Adam J, Chiarella D, et al. Regional geology and tectonics: Volume1: Principles of geologic analysis. 2nd ed. Amsterdam: Elsevier, 2020: 235-311. [9] Reijmer J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796. [10] 颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253. Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography, 2019, 21(2): 232-253. [11] Steinhoff I, Strohmenger C. Zechstein 2 carbonate platform subfacies and grain-type distribution (Upper Permian, northwest Germany)[J]. Facies, 1996, 35(1): 105-132. [12] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008:1-484. Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008: 1-484. [13] 郭芪恒,金振奎,史书婷,等. 鲕粒粒度特征及其指示意义:以北京西山下苇甸寒武系张夏组剖面为例[J]. 沉积学报,2020,38(4):737-746. Guo Qiheng, Jin Zhenkui, Shi Shuting, et al. Characteristics of ooid size and its environmental significance: A case study from the Cambrian Zhangxia Formation at Xiaweidian outcrop, Beijing[J]. Acta Sedimentologica Sinica, 2020, 38(4): 737-746. [14] Gerdes G, Dunajtschik‐Piewak K, Riege H, et al. Structural diversity of biogenic carbonate particles in microbial mats[J]. Sedimentology, 1994, 41(6): 1273-1294. [15] Wu X C. Carnian (Upper Triassic) sponge mounds of the northwestern Sichuan Basin, China: Stratigraphy, facies and paleoecology[J]. Facies, 1989, 21(1): 171-187. [16] 姬国锋,范鸿,时志强,等. 川西北汉旺地区卡尼期鲕粒灰岩特征及地质意义[J]. 成都理工大学学报(自然科学版),2016,43(1):68-76. Ji Guofeng, Fan Hong, Shi Zhiqiang, et al. Characteristics and geological significance of the Late Triassic Carnian oolitic limestone in Hanwang area, northwest Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 68-76. [17] 吴熙纯,张亮鉴. 川西北晚三叠世海綿点礁组合的岩石学特征[J]. 矿物岩石,1983,3(4):59-67. Wu Xichun, Zhang Liangjian. Lithological features of Late Triassic sponge patch reef complex in north-western Sichuan, China[J]. Minerals and Rocks, 1983, 3(4): 59-67. [18] 吴熙纯. 川西北晚三叠世海绵点礁的古生态特征[J]. 成都地质学院学报,1984(1):43-54. Wu Xichun. Paleoecological characteristics of Late Triassic sponge patch reefs in north-western Sichuan, China[J] Journal of Chengdu College of Geology, 1984(1): 43-54. [19] Wendt J, Wu X C, Reinhardt J W. Deep-water hexactinellid sponge mounds from the Upper Triassic of northern Sichuan (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 76(1/2): 17-29. [20] 金鑫. 川西北地区晚三叠世卡尼期气候事件沉积的微相及环境演化[D]. 成都:成都理工大学,2015:1-62. Jin Xin. The sedimentary microfacies and the environmental evolution of the Carnian (Late Triassic) climate event in the northwestern Sichuan[D]. Chengdu: Chengdu University of Technology, 2015: 1-62. [21] Jin X, Shi Z Q, Rigo M, et al. Carbonate platform crisis in the Carnian (Late Triassic) of Hanwang (Sichuan Basin, South China): Insights from conodonts and stable isotope data[J]. Journal of Asian Earth Sciences, 2018, 164: 104-124. [22] Jin X, McRoberts C A, Shi Z Q, et al. The aftermath of the CPE and the Carnian-Norian transition in northwestern Sichuan Basin, South China[J]. Journal of the Geological Society, 2019, 176(1): 179-196. [23] Jiang H S, Yuan J L, Chen Y, et al. Synchronous onset of the mid-Carnian pluvial episode in the east and west tethys: Conodont evidence from Hanwang, Sichuan, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 520: 173-180. [24] 时志强,欧莉华,罗凤姿,等. 晚三叠世卡尼期黑色页岩事件在龙门山地区的沉积学和古生物学响应[J]. 古地理学报,2009,11(4):375-383. Shi Zhiqiang, Lihua Ou, Luo Fengzi, et al. Black shale event during the Late Triassic Carnian age: Implications from sedimentary and palaeontological records in Longmen Mountains region[J]. Journal of Palaeogeography, 2009, 11(4): 375-383. [25] 金鑫,时志强,王艳艳,等. 晚三叠世中卡尼期极端气候事件:研究进展及存在问题[J]. 沉积学报,2015,33(1):105-115. Jin Xin, Shi Zhiqiang, Wang Yanyan, et al. Mid-Carnian (Late Triassic) extreme climate event: Advances and unsolved problems[J]. Acta Sedimentologica Sinica, 2015, 33(1): 105-115. [26] 孙晓猛,简平. 滇川西部金沙江古特提斯洋的威尔逊旋回[J]. 地质论评,2004,50(4):343-350. Sun Xiaomeng, Jian Ping. The Wilson cycle of the Jinshajiang paleo-tethys ocean, in western Yunnan and western Sichuan provinces[J]. Geological Review, 2004, 50(4): 343-350. [27] 张箭,徐强,廖仕孟,等. 川西龙门山前陆盆地构造沉降初步分析[J]. 沉积与特提斯地质,2002,22(4):67-72. Zhang Jian, Xu Qiang, Liao Shimeng, et al. Tectonic subsidence of the Longmenshan Foreland Basin in western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2002, 22(4): 67-72. [28] 张彪. 川西北地区晚三叠世卡尼期气候事件研究[D]. 成都:成都理工大学,2013:1-58. Zhang Biao. The research of Late Triassic Carnian paleoclimate event in northwestern Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2013: 1-58. [29] Jin X, Gianolla P, Shi Z Q, et al. Synchronized changes in shallow water carbonate production during the Carnian Pluvial Episode (Late Triassic) throughout tethys[J]. Global and Planetary Change, 2020, 184: 103035. [30] 钱利军,欧莉华. 龙门山地区中段晚三叠世早期岩相古地理研究[J]. 内蒙古石油化工,2010,36(7):123-124. Qian Lijun, Lihua Ou. Study on lithofacies paleogeography of early Late Triassic in the middle part of Longmenshan area[J]. Inner Mongolia Petrochemical Industry, 2010, 36(7): 123-124. [31] 刘树根,杨荣军,吴熙纯,等. 四川盆地西部晚三叠世海相碳酸盐岩—碎屑岩的转换过程[J]. 石油与天然气地质,2009,30(5):556-565. Liu Shugen, Yang Rongjun, Wu Xichun, et al. The Late Triassic transition from marine carbonate rock to clastics in the western Sichuan Basin[J]. Oil & Gas Geology, 2009, 30(5): 556-565. [32] 邓康龄,何鲤,秦大有,等. 四川盆地西部晚三叠世早期地层及其沉积环境[J]. 石油与天然气地质,1982,3(3):204-210. Deng Kangling, He Li, Qin Dayou, et al. The earlier Late Triassic sequence and its sedimentary environment in western Sichuan Basin[J]. Oil & Gas Geology, 1982, 3(3): 204-210. [33] 冯增昭,鲍志东,吴胜和,等. 中国南方早中三叠世岩相古地理[J]. 地质科学,1997,32(2):212-220. Feng Zengzhao, Bao Zhidong, Wu Shenghe, et al. Lithofacies palaeogeography of the Early and Middle Triassic of South China[J]. Scientia Geologica Sinica, 1997, 32(2): 212-220. [34] 赵玉峰. 川西地区中晚三叠世多重地层划分对比及沉积体系分析[D]. 成都:成都理工大学,2009:1-61. Zhao Yufeng. Tmultiple stratigraphic division and correlation and depositional system analysis of middle Late Triassic in west of Sichuan[D]. Chengdu: Chengdu University of Technology, 2009: 1-61. [35] 梅冥相. 中上扬子印支运动的地层学效应及晚三叠世沉积盆地格局[J]. 地学前缘,2010,17(4):99-111. Mei Mingxiang. Stratigraphic impact of the Indo-China Movement and its related evolution of sedimentary-basin pattern of the Late Triassic in the Middle-Upper Yangtze region, South China[J]. Earth Science Frontiers, 2010, 17(4): 99-111. [36] 杨荣军,刘树根,吴熙纯,等. 龙门山前缘上三叠统马鞍塘组沉积分布特征及其控制因素[J]. 成都理工大学学报(自然科学版),2008,35(4):455-462. Yang Rongjun, Liu Shugen, Wu Xichun, et al. Distribution characteristics and controlling factors of Upper Triassic Ma’antang Formation in the front of Longmen Mountians, Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2008, 35(4): 455-462. [37] 陆胜杰. 龙门山前陆盆地南部上三叠统马鞍塘组页岩沉积特征[D]. 成都:成都理工大学,2017:1-42. Lu Shengjie. The shale sedimentary characteristics about Upper Triassic Ma’antang Formation in the southern part of Longmen Shan Foreland Basin[D] Chengdu: Chengdu University of Technology, 2017: 1-42. [38] 邓涛,李勇. 龙门山前陆盆地南段须五段页岩气富集条件及有利区评价[J]. 特种油气藏,2018,25(4):51-56. Deng Tao, Li Yong. Shale gas enrichment condition and favorable area evaluation of the Xu5 member in the southern section of Longmenshan Foreland Basin[J]. Special Oil and Gas Reservoirs, 2018, 25(4): 51-56. [39] 杨荣军,刘树根,吴熙纯,等. 川西上三叠统海绵生物礁的分布及其控制因素[J]. 地球学报,2009,30(2):227-234. Yang Rongjun, Liu Shugen, Wu Xichun, et al. Distribution and controlling factors of siliceous sponge reefs in western Sichuan province[J]. Acta Geoscientica Sinica, 2009, 30(2): 227-234. [40] 李勇,苏德辰,董顺利,等. 晚三叠世龙门山前陆盆地早期(卡尼期)碳酸盐缓坡和海绵礁的淹没过程与动力机制[J]. 岩石学报,2011,27(11):3460-3470. Li Yong, Su Dechen, Dong Shunli, et al. Dynamic of drowning of the carbonate ramp and sponge build-up in the early stage (Carnian) of Longmen Shan Foreland Basin, Late Triassic, China[J]. Acta Petrologica Sinica, 2011, 27(11): 3460-3470. [41] 金鑫,姬国锋,时志强,等. 绵竹汉旺观音崖剖面沉积微相:卡尼期湿润事件前后的环境演化[J]. 矿物岩石地球化学通报,2015,34(6):1173-1182. Jin Xin, Ji Guofeng, Shi Zhiqiang, et al. The sedimentary microfacies of the Guanyinya section in Hanwang, Mianzhu, Sichuan: Implications for the environment evolution before and after the Triassic Carnian Humid Event[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(6): 1173-1182. [42] Jin X, Franceschi M, Martini R, et al. Eustatic sea-level fall and global fluctuations in carbonate production during the Carnian Pluvial Episode[J]. Earth and Planetary Science Letters, 2022, 594: 117698. [43] Sun Y D, Wignall P B, Joachimski M M, et al. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China[J]. Earth and Planetary Science Letters, 2016, 444: 88-100. [44] Sun Y D, Orchard M J, Kocsis Á T, et al. Carnian-Norian (Late Triassic) climate change: Evidence from conodont oxygen isotope thermometry with implications for reef development and Wrangellian tectonics[J]. Earth and Planetary Science Letters, 2020, 534: 116082. [45] Krumbein W C. Size frequency distributions of sediments[J]. Journal of sedimentary Research, 1934, 4(2): 65-77. [46] Friedman G M. Comparison of moment measures for sieving and thin-section data in sedimentary petrological studies[J]. Journal of Sedimentary Research, 1962, 32(1): 15-25. [47] Middleton G V. On sorting, sorting coefficients, and the lognormality of the grain-size distribution of sandstones: A discussion[J]. The Journal of Geology, 1962, 70(6): 754-756. [48] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. [49] ImageJ User Guide. Part V Menu commands: 30 analyze[EB/OL]. (2012-10-02). http://imagej.nih.gov/ij/docs/guide/146-30.html#toc-Subsection-30.2. [50] Dunham R J. Classification of carbonate rocks according to depositional texture[M]//Ham W E. Classification of carbonate rocks-a symposium. Tulsa: AAPG, 1962: 108-121. [51] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin: Springer, 2010: 704-704. [52] Bádenas B, Aurell M. Facies models of a shallow-water carbonate ramp based on distribution of non-skeletal grains (Kimmeridgian, Spain)[J]. Facies, 2010, 56(1): 89-110. [53] Tomašových A. Microfacies and depositional environment of an Upper Triassic intra-platform carbonate basin: The fatric unit of the West Carpathians (Slovakia)[J]. Facies, 2004, 50(1): 77-105. [54] 马志鑫,李波,颜佳新,等. 四川广元中二叠统栖霞组似球粒灰岩微相特征及沉积学意义[J]. 沉积学报,2011,29(3):449-457. Ma Zhixin, Li Bo, Yan Jiaxin, et al. Microfacies of peloidal limestone of Middle Permian Chihsia Formation at Guangyuan, Sichuan province and its sedimentary significance[J]. Acta Sedimentologica Sinica, 2011, 29(3): 449-457. [55] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354. [56] 梅冥相. 寒武纪苗岭世特别的光养碳酸盐岩工厂:以江苏徐州贾旺剖面张夏组为例[J]. 地质学报,2022,96(3):744-768. Mei Mingxiang. A particular photozoan factory of carbonate rock of the Cambrian Miaolingian: A case study of the Zhangxia Formation at the Jiawang section in Xuzhou city of Jiangsu province[J]. Acta Geologica Sinica, 2022, 96(3): 744-768. [57] Riding R, Virgone A. Hybrid carbonates: In situ abiotic, microbial and skeletal co-precipitates[J]. Earth-Science Reviews, 2020, 208: 103300. [58] 李勇,颜照坤,苏德辰,等. 印支期龙门山造山楔推进作用与前陆型礁滩迁移过程研究[J]. 岩石学报,2014,30(3):641-654. Li Yong, Yan Zhaokun, Su Dechen, et al. The advance of Longmen Shan orogenic wedge and migration of the foreland reef and shoal during the Indosinian orogeny, China[J]. Acta Petrologica Sinica, 2014, 30(3): 641-654. [59] 杨荣军. 四川盆地西部上三叠统生物礁及其油气地质条件研究[D]. 成都:成都理工大学,2009:1-138. Yang Rongjun. Research on the Upper Triassic reefs and their petroleum geology conditions in the western Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2009: 1-138. [60] Sun S Q, Wright V P. Peloidal fabrics in Upper Jurassic reefal limestones, Weald Basin, southern England[J]. Sedimentary Geology, 1989, 65(1/2): 165-181. [61] 李飞,易楚恒,李红,等. 微生物成因鲕粒研究进展[J]. 沉积学报,2022,40(2):319-334. Li Fei, Yi Chuheng, Li Hong, et al. Recent advances in ooid microbial origin: A review[J]. Acta Sedimentologica Sinica, 2022, 40(2): 319-334. [62] 埃里克·弗吕格尔. 碳酸盐岩微相:分析、解释及应用[M]. 马永生,刘波,郭荣涛,等译. 2版. 北京:地质出版社,2016:587-590. Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Ma Yongsheng, Liu Bo, Guo Rongtao, et al, trans. 2nd ed. Beijing: Geological Publishing House, 2016: 587-590. [63] 吴熙纯,张亮鉴. 四川盆地西北部晚三叠世卡尼期的海绵斑块礁[J]. 地质科学,1982(4):379-385. Wu Xichun, Zhang Liangjian. Late Triassic (Carnian) sponge patchreefs in northwestern Sichuan Basin[J]. Scientia Geologica Sinica, 1982(4): 379-385. [64] 白莹,罗平,徐旺林,等. 北京寒武系第二统昌平组凝块石特征及成因[J]. 沉积学报,2021,39(4):873-885. Bai Ying, Luo Ping, Xu Wanglin, et al. Characteristics and genesis of thrombolites in the Cambrian Changping Formation, series 2, Beijing[J]. Acta Sedimentologica Sinica, 2021, 39(4): 873-885. [65] Rebelo T B, Batezelli A, Luna J S. Stratigraphic evolution and carbonate factory implications: Case study of the Albian carbonates of the Campos Basin, Brazil[J]. The Depositional Record, 2021, 7(2): 271-293. [66] Krencker F N, Fantasia A, Danisch J, et al. Two-phased collapse of the shallow-water carbonate factory during the Late Pliensbachian-Toarcian driven by changing climate and enhanced continental weathering in the northwestern Gondwana margin[J]. Earth-Science Reviews, 2020, 208: 103254. [67] Schlager W. Carbonate sedimentology and sequence stratigraphy[M]. Tulsa: SEPM Society for Sedimentary Geology, 2005: 208. [68] Brigaud B, Vincent B, Carpentier C, et al. Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): Interplay of climate change, eustasy and tectonics[J]. Marine and Petroleum Geology, 2014, 53: 3-29. [69] Jiang L Q, Feely R A, Carter B R, et al. Climatological distribution of aragonite saturation state in the global oceans[J]. Global Biogeochemical Cycles, 2015, 29(10): 1656-1673. [70] Opdyke B N, Wilkinson B H. Paleolatitude distribution of Phanerozoic marine ooids and cements[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 78(1/2): 135-148. [71] Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian-Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis[J]. Earth-Science Reviews, 2015, 149: 163-180. [72] Schultze L K P, Merckelbach L M, Carpenter J R. Storm-induced turbulence alters shelf sea vertical fluxes[J]. Limnology and Oceanography Letters, 2020, 5(3): 264-270. [73] Rumyantseva A, Lucas N, Rippeth T, et al. Ocean nutrient pathways associated with the passage of a storm[J]. Global Biogeochemical Cycles, 2015, 29(8): 1179-1189. [74] 龚峤林,李飞,苏成鹏,等. 细粒浊积岩特征、分布及发育机制:以川北唐家河剖面寒武系郭家坝组为例[J]. 古地理学报,2018,20(3):349-364. Gong Qiaolin, Li Fei, Su Chengpeng, et al. Characteristics, distribution and mechanisms of fine-grained turbidite: A case study from the Cambrian Guojiaba Formation in Tangjiahe section, northern Sichuan Basin[J]. Journal of Palaeogeography, 2018, 20(3): 349-364. [75] Li H, Li F, Li X, et al. Development and collapse of the Early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583: 110665. [76] Mutti M, Hallock P. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints[J]. International Journal of Earth Sciences, 2003, 92(4): 465-475. [77] 李杨凡,李飞,王夏,等. 上扬子北缘寒武纪早期后生动物礁特征及古环境意义[J]. 地球科学,2023,48(11):4321-4334. Li Yangfan, Li Fei, Wang Xia, et al. Sedimentary characteristics and paleoenvironmental significance of Early Cambrian metazoan reefs in northern margin of Upper Yangtze Block[J]. Journal of Earth Science, 2023, 48(11): 4321-4334. [78] Peryt T M. Oncoids: Comment to recent developments[M]//Peryt T M. Coated grains. Berlin Heidelberg: Springer, 1983: 273-275. [79] Halfar J, Godinez-Orta L, Mutti M, et al. Nutrient and temperature controls on modern carbonate production: An example from the gulf of California, Mexico[J]. Geology, 2004, 32(3): 213-216. [80] Dahanayake K, Gerdes G, Krumbein W E. Stromatolites, oncolites and oolites biogenically formed in situ[J]. Naturwissenschaften, 1985, 72(10): 513-518. [81] Kahle C F J. Proposed origin of aragonite Bahaman and some Pleistocene marine ooids involving bacteria, nannobacteria (?), and biofilms[J]. Carbonates and Evaporites, 2007, 22(1): 10-22.