-
莱州湾位于郯庐断裂带山东段(沂沭断裂)的东西两支之间,中新世中晚期以来整体处于稳定的沉降环境,表现为地震剖面上不整合面以上同相轴基本平行、连续稳定,地层无较大的起伏[46⁃47]。
莱州湾地区第四纪地层主要包含冲洪积、海积、湖积沉积层,由南向北、自东向西地层厚度逐渐增加,央子断裂以北、白浪河—虞河一带厚度最大,可划分为平原组、潍北组、旭口组、临沂组、沂河组等。晚第四纪三次主要海侵事件由赵松龄等[10]命名,从老到新包括沧州海侵(第三海侵层)、黄骅海侵(部分地区包括次级的渤海海侵)(第二海侵层)和献县海侵(第一海侵层)。
自西向东有小清河、弥河、白浪河、潍河、胶莱河等河流,自南向北注入莱州湾。这些河流发源于鲁中山区,蜿蜒北流,河流长度多介于100~200 km,年输沙量可达百万吨。由于降水主要集中在夏季,这些河流的径流量和输沙量也以夏季为多,占全年的一半以上[19];河水从鲁中山区直接进入山前平原地带,形成面积广大的冲洪积扇与古河道。
-
用于本项研究的11支钻孔岩心取自莱州湾及沿岸(图1),由天津地质调查中心和自然资源部第一海洋研究所完成钻进取心。其中,HLL01、HLL02、BH1、BH2、Lz908、W5、W9和GD02等8支已在此前的研究中有所涉及,G2、H5和X1孔是本研究首次报道。11支钻孔岩心的具体信息已在表1中列出。
表 1 研究钻孔信息及其发表情况
站位 经度 纬度 高程/m 进尺/m 取心率/% 文献 HLL01 119.119°E 37.107°N 2.3 452 94 文献[48] HLL02 119.137°E 37.033°N 3.4 425 90 文献[1] BH1 119.110°E 37.311°N -4.0 199 94 文献[1] BH2 119.075°E 37.182°N 3.0 228 95 文献[1] Lz908 118.972°E 37.150°N 6.0 101 75 文献[2,19] W5 119.044°E 36.707°N 31.0 64 90 文献[11] W9 119.209°E 36.819°N 10.2 95 93 文献[11] GD02 119.129°E 36.848°N 11.4 137 90 文献[11] G2 119.149°E 36.901°N 6.3 130 92 本研究 H5 119.041°E 37.094°N 3.5 150 95 本研究 X1 119.018°E 37.253°N -4.0 160 95 本研究 -
前人研究已指出,莱州湾沉积的载磁矿物主要是磁铁矿,部分样品含有少量的赤铁矿成分[49]。因此,本研究中涉及的磁性地层研究选用交变退磁和热退磁方法,对3支未定年钻孔岩心的定向样品进行系统退磁。具体的测试内容包括:(1)G2孔,交变退磁46块(上部16 m),热退磁242块;(2)H5孔,交变退磁114块(上部48 m),热退磁364块;(3)X1孔,交变退磁442块。剩磁测量在天津地质调查中心和同济大学海洋地质国家重点实验室的低温超导磁力仪2G-755K(2G Enterprises,USA)上完成。测量数据,采用PuffinPlot数据处理软件[50],利用主成分分析法进行特征剩磁方向的计算。特征剩磁方向通过线性拟合方式[51]获得,每次拟合利用不少于4个连续数据点进行,且最大角偏差(MAD)小于15°。
Framework of Quaternary Stratigraphy in Laizhou Bay, Bohai Sea, and Its Paleoenvironmental Significance
-
摘要: 目的 莱州湾位于渤海陆架的南端,是研究第四纪东北亚地理与环境重组的关键地点之一,较为连续地记录了渤海盆地陆—海转换时区域环境变化的历史。 方法 为揭示区域地层特征及其可能的环境意义,以莱州湾地区11支钻孔岩心为研究对象,详细分析了第四纪地层对比框架与沉积演化过程。 结果 (1)通过布容正极性时和松山负极性时两个等时面的对比分析,推测莱州湾地区向海一侧在早更新世经历了显著的沉降过程,导致盆地向南(山区一侧)广泛扩张;(2)基于11支钻孔岩心的地层特征对比,初步构建了区域第四纪地层框架,识别出17个水退—水进旋回,包括全新统1个、中更新统上部—上更新统2个、下更新统上部—中更新统7个、下更新统7个;(3)开展环渤海地区地层对比研究,基于加拉米诺正极性亚时的等时面对比,推测中更新世渤海盆地向东、西北缘显著扩张。 结论 初步重建了渤海盆地陆—海转换的主要过程,包括晚上新世的泛湖—湖群环境,早更新世的大湖发育(最近一期“渤海古湖”),中更新世大湖萎缩—弱海侵过程,晚更新世大海侵—陆架沉积环境等阶段。因此,莱州湾第四系的初步框架为重构盆地演化和区域古环境过程提供了新证据,也为探讨更大区域内盆地演化的协同性积累了新素材;不过由于缺少生物化石序列等证据,这些推测仍需更多的检验。Abstract: Objective Laizhou Bay is located in the southern Bohai Sea, where the Quaternary history of regional environmental changes during the transition from land to sea is continuously recorded in coastal sediments. Studying these geological records provides critical insights into the geographical and environmental reorganization of northeastern Asia during the Quaternary. Previous studies have reported a major transition from lacustrine to shelf environment in the Middle Pleistocene. Three transgression events have been dated to marine isotope stage (MIS) 7-6, MIS 5-3, and the Holocene. However, the evolution of the Bohai paleolake was not clear, since the framework of these lacustrine deposits had not yet been established. Methods To reveal the evolutional history of the Bohai paleolake/sea, analyses of the Quaternary sedimentary strata in 11 drilling cores from Laizhou Bay were carried out to establish a preliminary framework. These mainly included magnetostratigraphy, sediment grain size and stratigraphic correlation. Results (1) The magnetostratigraphy of three new cores implied newly defined magnetozones generally correlated to the Brunhes, Matuyama and Gauss chrons in the geological polarity timescale, consistent with previous studies of Laizhou Bay. (2) Three major types of Quaternary sediment were identified (fluvial-alluvial, lacustrine, and continental-shelf); the sedimentary properties and the relationships of sediment grain-size parameters are distinctive and potentially useful for paleoenvironmental inferences. (3) Stratigraphic analyses and isochronous strata correlation (Brunhes and Matuyama chrons) found that Laizhou Bay may have experienced significant subsidence in the Early Pleistocene. (4) In establishing a stratigraphic framework for Quaternary sediments in Laizhou Bay, 17 alternations between extension and shrinking of sea/lake water were identified: one in the Holocene; two in the Upper Pleistocene and latter part of the Middle Pleistocene; seven in the Middle Pleistocene; and seven in the Early Pleistocene. (5) The preliminary framework indicates predominant periodicities of 100 ka in the upper transgression-related strata and 200 ka in the lower lacustrine/fluvial strata, implying a dominant role of orbital eccentricity in these regional paleoenvironmental processes. (6) Correlations of Quaternary strata around the Bohai Basin and of isochronous strata based on the Jaramillo subchron indicated significant subsidence of the eastern and northwestern margins during the Middle Pleistocene. [Conclusions and Prospects] It is inferred that the land/sea transition of the Bohai Basin has experienced the following processes: alluvial and diluvial systems in the Early Pliocene or earlier; a lake-group environment prior to the early part of the Early Pleistocene; the latest stage of a Bohai paleolake in the Early Pleistocene; shrinking of the lake and weak transgression in the Middle Pleistocene; and shelf deposition since the Late Pleistocene. Preliminary correlation of these developmental stages of the Bohai Basin indicate the evolution of a series of paleolakes in the middle and upper reaches of the Yellow River, possibly implying potential covariation. However, the main finding in the work is the lack of fossil evidence, which is worthy of further investigation.
-
Key words:
- magnetostratigraphy /
- Laizhou Bay /
- Bohai paleolake /
- continental shelf evolution /
- Quaternary
-
图 3 新增三支钻孔岩心典型样品的系统退磁结果
空心圆上的数字代表退磁的交变场强mT或热退磁温度℃;实心方块代表水平投影,空心圆代表垂直投影;NRM为天然剩磁
Figure 3. Orthogonal diagrams of demagnetization results of the representative samples
numbers on open circles = alternating fields in mT or thermal demagnetization temperature in ℃; open (solid) circles (squares) = vertical (horizontal) plane; NRM = natural remanent magnetization
图 4 新增三支钻孔岩心的古地磁结果与对比方案
N1~N6.古地磁正极性区间;MAD.最大角偏差;B.布容正极性时;M.松山负极性时;J.加拉米诺正极性亚时;CM.Cobb Mountain正极性事件;O.奥杜维尔正极性时;Ga.高斯正极性时;Gi.吉尔伯特负极性时;GPTS.国际地层极性年表[55];以下各图相同
Figure 4. Magnetostratigraphy of three cores
N1⁃N6. normal polarity chrons; MAD. maximum angular deviation; B. Brunhes chron; M. Matuyama chron; J. Jaramillo subchron; CM. Cobb Mountain excursion; O. Olduvai chron; Ga. Gauss chron; Gi. Gilbert chron; GPTS. geological polarity time scale[55]; same in following figures
图 5 莱州湾第四纪地层年代对比
(a)布容等时线;(b)高斯等时线;HLL01孔(据文献[48]);HLL02、BH1、BH2孔(据文献[1]);Lz908孔(据文献[2,19,52]);W5、W9、GD02孔(据文献[11]);G2、H5、X1孔为本研究新增
Figure 5. Chronostratigraphical correlation of Laizhou Bay in the Quaternary
core HLL01 (after reference [48]); cores HLL02, BH1, BH2 (after reference [1]); core Lz908 (after references [2,19,52]); cores W5, W9, GD02 (after reference [11]); cores G2, H5, X1 from this study
图 7 环渤海地层对比与中更新世盆地扩张(据文献[1]修改)
BH08孔(据文献[36]);MT04孔(据文献[77]);BZ2孔(据文献[66]);TJC1孔(据文献[42]);BH1孔和HLL02孔(据文献[1])
Figure 7. Lithological and magnetostratigraphical correlations around Bohai Sea and Middle Pleistocene basin evolution(modified from reference [1])
core BH08 (after reference [36]); core MT04 (after reference [77]); core BZ2 (after reference [66]); core TJC1 (after reference [42]); cores BH1 and HLL02 (after reference [1])
表 1 研究钻孔信息及其发表情况
站位 经度 纬度 高程/m 进尺/m 取心率/% 文献 HLL01 119.119°E 37.107°N 2.3 452 94 文献[48] HLL02 119.137°E 37.033°N 3.4 425 90 文献[1] BH1 119.110°E 37.311°N -4.0 199 94 文献[1] BH2 119.075°E 37.182°N 3.0 228 95 文献[1] Lz908 118.972°E 37.150°N 6.0 101 75 文献[2,19] W5 119.044°E 36.707°N 31.0 64 90 文献[11] W9 119.209°E 36.819°N 10.2 95 93 文献[11] GD02 119.129°E 36.848°N 11.4 137 90 文献[11] G2 119.149°E 36.901°N 6.3 130 92 本研究 H5 119.041°E 37.094°N 3.5 150 95 本研究 X1 119.018°E 37.253°N -4.0 160 95 本研究 -
[1] Yi L, Deng C L, Tian L Z, et al. Plio-Pleistocene evolution of Bohai Basin (East Asia): Demise of Bohai paleolake and transition to marine environment[J]. Scientific Reports, 2016, 6(1): 29403. [2] Yi L, Deng C L, Xu X Y, et al. Paleo-megalake termination in the Quaternary: Paleomagnetic and water-level evidence from south Bohai Sea, China[J]. Sedimentary Geology, 2015, 319: 1-12. [3] 中国科学院海洋研究所海洋地质研究室. 渤海地质[M]. 北京:科学出版社,1985:1-232. Laboratory of Marine Geology Institute of Oceanology, Chinese Academy of Sciences. Bohai geology[M]. Beijing: Science Press, 1985: 1-232. [4] Allen M B, Macdonald D I M, Xun Z, et al. Early Cenozoic two-phase extension and Late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China[J]. Marine and Petroleum Geology, 1997, 14(7/8): 951-972. [5] He L J, Wang J Y. Cenozoic thermal history of the Bohai Bay Basin: Constraints from heat flow and coupled basin-mountain modeling[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(9/10/11): 421-429. [6] Hu S B, O'Sullivan P B, Raza A, et al. Thermal history and tectonic subsidence of the Bohai Basin, northern China: A Cenozoic rifted and local pull-apart basin[J]. Physics of the Earth and Planetary Interiors, 2001, 126(3/4): 221-235. [7] 石学法,乔淑卿,杨守业,等. 亚洲大陆边缘沉积学研究进展(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(2):319-336. Shi Xuefa, Qiao Shuqing, Yang Shouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319-336. [8] 刘东生. 黄土与干旱环境[M]. 合肥:安徽科学技术出版社,2009:1-537. Liu Tungsheng. Loess and arid environment[M]. Hefei: Anhui Science and Technology Press, 2009: 1-537. [9] 姚政权,刘健,万世明,等. 中国东部陆架第四纪沉积环境演化研究进展与展望[J]. 海洋地质与第四纪地质,2022,42(5):42-57. Yao Zhengquan, Liu Jian, Wan Shiming, et al. Progress and prospects of research on the Quaternary sedimentary environment in the eastern shelf of China[J]. Marine Geology & Quaternary Geology, 2022, 42(5): 42-57. [10] 赵松龄,杨光复,苍树溪,等. 关于渤海湾西岸海相地层与海岸线问题[J]. 海洋与湖沼,1978,9(1):15-25. Zhao Songling, Yang Guangfu, Cang Shuxi, et al. On the marine stratigraphy and coastlines of the western coast of the gulf of Bohai[J]. Oceanologia et Limnologia Sinica, 1978, 9(1): 15-25. [11] 易亮,姜兴钰,田立柱,等. 渤海盆地演化的年代学研究[J]. 第四纪研究,2016,36(5):1075-1087. Yi Liang, Jiang Xingyu, Tian Lizhu, et al. Geochronological study on Plio-Pleistocene evolution of Bohai Basin[J]. Quaternary Science, 2016, 36(5): 1075-1087. [12] 阎玉忠,王宏,李凤林,等. 渤海湾西岸BQ1孔揭示的沉积环境与海面波动[J]. 地质通报,2006,25(3):357-382. Yan Yuzhong, Wang Hong, Li Fenglin, et al. Sedimentary environment and sea-level fluctuations revealed by borehole BQ1 on the west coast of the Bohai Bay, China[J]. Geological Bulletin of China, 2006, 25(3): 357-382. [13] 韩德亮. 莱州湾E孔中更新世末期以来的地球化学特征[J]. 海洋学报,2001,23(2):79-85. Han Deliang. Geochemistry of core E in the Laizhou Bay since late stage of Middle Pleistocene[J]. Acta Oceanologica Sinica, 2001, 23(2): 79-85. [14] 庄振业,许卫东,刘东生,等. 渤海南部S3孔晚第四纪海相地层的划分及环境演变[J]. 海洋地质与第四纪地质,1999,19(2):27-35. Zhuang Zhenye, Xu Weidong, Liu Dongsheng, et al. Division and environmental evolution of Late Quaternary marine beds of S3 hole in the Bohai Sea[J]. Marine Geology & Quaternary Geology, 1999, 19(2): 27-35. [15] 张祖陆,聂晓红,刘恩峰,等. 莱州湾南岸咸水入侵区晚更新世以来的古环境演变[J]. 地理研究,2005,24(1):105-112. Zhang Zulu, Nie Xiaohong, Liu Enfeng, et al. The accumulation records of environmental evolution on the salt-water intruded area south of Laizhou Bay since Late Pleistocene[J]. Geographical Research, 2005, 24(1): 105-112. [16] 姚政权,郭正堂,陈宇坤,等. 渤海湾海陆交互相沉积的磁性地层学[J]. 海洋地质与第四纪地质,2006,26(1):9-15. Yao Zhengquan, Guo Zhengtang, Chen Yukun, et al. Magnetostratigraphy of marine-terrigenous facies deposits in Bohai Bay[J]. Marine Geology & Quaternary Geology, 2006, 26(1): 9-15. [17] 陈宇坤,李振海,邵永新,等. 天津地区第四纪年代地层剖面研究[J]. 地震地质,2008,30(2):383-399. Chen Yukun, Li Zhenhai, Shao Yongxin, et al. Study on the Quaternary chronostratigraphic section in Tianjin area[J]. Seismology and Geology, 2008, 30(2): 383-399. [18] 肖国桥,郭正堂,陈宇坤,等. 渤海湾西岸BZ1钻孔的磁性地层学研究[J]. 第四纪研究,2008,28(5):909-916. Xiao Guoqiao, Guo Zhengtang, Chen Yukun, et al. Magnetostratigraphy of BZ1 borehole in west coast of Bohai Bay, northern China[J]. Quaternary Sciences, 2008, 28(5): 909-916. [19] Yi L, Yu H J, Ortiz J D, et al. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330: 101-117. [20] Wang Q, Li F L, Li Y D, et al. Shoreline changes in west-southern coastal plain of the Bohai Sea since 150 ka[M]//Qin Y, Zhao S. Late Quaternary sea-level changes. Beijing: China Ocean Press, 1986: 62-71. [21] Zhao S L. Transgression and coastal changes in Bohai Sea and its vicinities since the Late Pleistocene[M]//Qin Y, Zhao S. Late Quaternary sea-level changes. Beijing: China Ocean Press, 1986: 53-62. [22] 赵松龄. 陆架沙漠化[M]. 北京:海洋出版社,1996:1-212. Zhao Songling. Shelf desertification[M]. Beijing: China Ocean Press, 1996: 1-212. [23] Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 287-302. [24] Liu J, Saito Y, Wang H, et al. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea[J]. Journal of Asian Earth Sciences, 2009, 36(4/5): 318-331. [25] Li Y, Tsukamoto S, Shang Z W, et al. Constraining the transgression history in the Bohai coast China since the Middle Pleistocene by luminescence dating[J]. Marine Geology, 2019, 416: 105980. [26] 汪品先,闵秋宝,卞云华,等. 我国东部第四纪海侵地层的初步研究[J]. 地质学报,1981(1):1-13. Wang Pinxian, Min Qiu bao, Bian Yunhua, et al. Strata of Quaternary transgressions in east China: A preliminary study[J]. Acta Geologica Sinica, 1981(1): 1-13. [27] 汪品先,闵秋宝. 我国第四纪海侵研究中的几个基本问题[J]. 海洋地质与第四纪地质,1985,5(1):15-25. Wang Pinxian, Min Qiubao. Quaternary marine transgressions in China: Some basic questions[J]. Marine Geology & Quaternary Geology, 1985, 5(1): 15-25. [28] 王张华,丘金波,冉莉华,等. 长江三角洲南部地区晚更新世年代地层和海水进退[J]. 海洋地质与第四纪地质,2004,24(4):1-8. Wang Zhanghua, Qiu Jinbo, Ran Lihua, et al. Chronostratigraphy and transgression/regression during Late Pleistocene in the southern Changjiang (Yangize) River delta plain[J]. Marine Geology & Quaternary Geology, 2004, 24(4): 1-8. [29] 王中波,张江勇,梅西,等. 中国陆架海MIS5(74~128 ka)以来地层及其沉积环境[J]. 中国地质,2020,47(5):1370-1394. Wang Zhongbo, Zhang Jiangyong, Mei Xi, et al. The stratigraphy and depositional environments of China’s sea shelves since MIS5(74-128) ka[J]. Geology in China, 2020, 47(5): 1370-1394. [30] 刘健,段宗奇,梅西,等. 南黄海中部隆起晚新近纪:第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质,2021,41(5):25-43. Liu Jian, Duan Zongqi, Mei Xi, et al. Stratigraphic classification and sedimentary evolution of the Late Neogene to Quaternary sequence on the central uplift of the south Yellow Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 25-43. [31] Yi L, Ye X Y, Chen J B, et al. Magnetostratigraphy and luminescence dating on a sedimentary sequence from northern East China Sea: Constraints on evolutionary history of eastern marginal seas of China since the Early Pleistocene[J]. Quaternary International, 2014, 349: 316-326. [32] Wang Z H, Xu H, Zhan Q, et al. Lithological and palynological evidence of Late Quaternary depositional environments in the subaqueous Yangtze Delta, China[J]. Quaternary Research, 2010, 73(3): 550-562. [33] Mei X, Li R H, Zhang X H, et al. Evolution of the Yellow Sea warm current and the yellow sea cold water mass since the Middle Pleistocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 442: 48-60. [34] Duan Z Q, Liu Q S, Shi X F, et al. Reconstruction of high-resolution magnetostratigraphy of the Changjiang (Yangtze) River delta, China[J]. Geophysical Journal International, 2016, 204(2): 948-960. [35] Gao L, Li J, Hu B Q, et al. Luminescence dating of a sedimentary sequence in the eastern north Yellow Sea[J]. Marine and Petroleum Geology, 2022, 138: 105543. [36] Yao Z Q, Shi X F, Liu Q S, et al. Paleomagnetic and astronomical dating of sediment core BH08 from the Bohai Sea, China: Implications for glacial-interglacial sedimentation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393: 90-101. [37] Yao Z Q, Shi X F, Qiao S Q, et al. Persistent effects of the Yellow River on the Chinese marginal seas began at least ~880 ka ago[J]. Scientific Reports, 2017, 7(1): 2827. [38] Shi X F, Yao Z Q, Liu Q S, et al. Sedimentary architecture of the Bohai Sea China over the last 1 Ma and implications for sea-level changes[J]. Earth and Planetary Science Letters, 2016, 451: 10-21. [39] Xu Q M, Yang J L, Hu Y Z, et al. Magnetostratigraphy of two deep boreholes in southwestern Bohai Bay: Tectonic implications and constraints on the ages of volcanic layers[J]. Quaternary Geochronology, 2018, 43: 102-114. [40] Yang J L, Liang M Y, Algeo T J, et al. Upper Miocene-Quaternary magnetostratigraphy and magnetic susceptibility from the Bohai Bay Basin (eastern China) and implications for regional volcanic and basinal subsidence history[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109469. [41] Liu J X, Liu Q S, Zhang X H, et al. Magnetostratigraphy of a long Quaternary sediment core in the south Yellow Sea[J]. Quaternary Science Reviews, 2016, 144: 1-15. [42] 李翔,李日辉,陈晓辉,等. 渤海西部TJC-1孔磁性地层研究[J]. 第四纪研究,2016,36(1):208-215. Li Xiang, Li Rihui, Chen Xiaohui, et al. Quaternary magnetostratigraphy recorded in the sediments of core TJC-1 in the western Bohai sea[J]. Quaternary Sciences, 2016, 36(1): 208-215. [43] 王忠蕾,郑洪波,梅西,等. 辽东湾北部钻孔磁性地层年代框架及地质意义[J]. 第四纪研究,2020,40(3):616-632. Wang Zhonglei, Zheng Hongbo, Mei Xi, et al. Magnetic stratigraphy of boreholes in the north of Liaodong Bay and its significance[J]. Quaternary Sciences, 2020, 40(3): 616-632. [44] Zhou X Y, Yang J L, Wang S Q, et al. Vegetation change and evolutionary response of large mammal fauna during the Mid-Pleistocene transition in temperate northern East Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 287-294. [45] Li M Y, Yang X S, Ni X M, et al. The role of landscape evolution in the genetic diversification of a stream fish Sarcocheilichthys parvus from southern China[J]. Frontiers in Genetics, 2023, 13: 1075617. [46] 吴时国,余朝华,邹东波,等. 莱州湾地区郯庐断裂带的构造特征及其新生代演化[J]. 海洋地质与第四纪地质,2006,26(6):101-110. Wu Shiguo, Yu Zhaohua, Zou Dongbo, et al. Structural features and Cenozoic evolution of the Tan-Lu Fault Zone in the Laizhou Bay, Bohai Sea[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 101-110. [47] Yu Z H, Wu S G, Zou D B, et al. Seismic profiles across the Middle Tan-Lu Fault Zone in Laizhou Bay, Bohai Sea, eastern China[J]. Journal of Asian Earth Sciences, 2008, 33(5/6): 383-394. [48] 姜兴钰,易亮,田立柱,等. 莱州湾南岸HLL01孔磁性地层定年[J]. 地质通报,2016,35(10):1669-1678. Jiang Xingyu, Yi Liang, Tian Lizhu, et al. Magnetostratigraphic chronology of borehole HLL01, south coast of Laizhou Bay[J]. Geological Bulletin of China, 2016, 35(10): 1669-1678. [49] 李倩,易亮,刘素贞,等. 渤海南部莱州湾Lz908孔沉积物的岩石磁学性质[J]. 地球物理学报,2016,59(5):1717-1728. Li Qian, Yi Liang, Liu Suzhen, et al. Rock magnetic properties of the Lz908 borehole sediments from the southern Bohai Sea, eastern China[J]. Chinese Journal of Geophysics, 2016, 59(5): 1717-1728. [50] Lurcock P C, Wilson G S. PuffinPlot: A versatile, user-friendly program for paleomagnetic analysis[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(6): Q06Z45. [51] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 1980, 62(3): 699-718. [52] Yi L, Yu H J, Ortiz J D, et al. A reconstruction of Late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis[J]. Sedimentary Geology, 2012, 281: 88-100. [53] Chen Y P, Lyu W Z, Fu T F, et al. Centennial impacts of the East Asian summer monsoon on Holocene deltaic evolution of the Huanghe River, China[J]. Applied Sciences, 2021, 11(6): 2799. [54] Liu G, Han X B, Chen Y P, et al. Early-Holocene paleo-tropical cyclone activity inferred from a sedimentary sequence in south Yellow Sea, East Asia[J]. Journal of Earth Science, 2022, 33(3): 789-801. [55] Gradstein F M, Ogg J G, Schmitz M D, et al. Geologic time scale 2020[M]. Amsterdam: Elsevier, 2020. [56] Yi L, Lai Z P, Yu H J, et al. Chronologies of sedimentary changes in the south Bohai Sea, China: Constraints from luminescence and radiocarbon dating[J]. Boreas, 2013, 42(2): 267-284. [57] 李思田,杨士恭,林畅松. 论沉积盆地的等时地层格架和基本建造单元[J]. 沉积学报,1992,10(4):11-22. Li Sitian, Yang Shigong, Lin Changsong. On the chronostratigraphic framwork and basic building blocks of sedimentary basin[J]. Acta Sedimentologica Sinica, 1992, 10(4): 11-22. [58] 胡光明,王军,纪友亮,等. 河流相层序地层模式与地层等时对比[J]. 沉积学报,2010,28(4):745-751. Hu Guangming, Wang Jun, Ji Youliang, et al. Fluvial sequence stratigraphy mode and isochronous strata correlation[J]. Acta Sedimentologica Sinica, 2010, 28(4): 745-751. [59] 王多云,陈应泰,刘文彬,等. 用最大熵谱分析进行等时沉积序列的相关性对比[J]. 沉积学报,1992,10(2):62-68. Wang Duoyun, Chen Yingtai, Liu Wenbin, et al. Determining relativity of isochronous sedimentary sequences with maximum entropy matrix analysis[J]. Acta Sedimentologica Sinica, 1992, 10(2): 62-68. [60] 刘英辉,黄导武,段冬平,等. 煤层等时格架下中深层储层地震沉积学预测[J]. 沉积学报,2018,36(5):957-968. Liu Yinghui, Huang Daowu, Duan Dongping, et al. Application of seismic sedimentology to the prediction of middle-deep sand body in coal-bearing isochronous stratigraphic framework[J]. Acta Sedimentologica Sinica, 2018, 36(5): 957-968. [61] 郑荣才,彭军. 陕北志丹三角洲长6油层组高分辨率层序分析与等时对比[J]. 沉积学报,2002,20(1):92-100. Zheng Rongcai, Peng Jun. Analysis and isochronostratigraphic correlation of high-resolution sequence stratigraphy for chang-6 oil reservoir set in Zhidan delta, northern Ordos Basin[J]. Acta Sedimentologica Sinica, 2002, 20(1): 92-100. [62] 李维,朱筱敏,陈刚,等. 基于等时界面识别的浅水三角洲—河流沉积体系研究:以高邮凹陷黄珏地区古近系垛一段为例[J]. 沉积学报,2018,36(1):110-119. Li Wei, Zhu Xiaomin, Chen Gang, et al. Research based on isochronous surface about shallow-water deltas and fluvial sedimentary system: A case from Duo1 member of Paleogene in Huangjue area, Gaoyou Sag[J]. Acta Sedimentologica Sinica, 2018, 36(1): 110-119. [63] 李彦泽,王志坤,商琳,等. 小湖盆浅水三角洲沉积特征及其等时格架划分方案:以南堡4-3区东二段为例[J]. 沉积学报,2019,37(5):1079-1086. Li Yanze, Wang Zhikun, Shang Lin, et al. Study on sedimentary characteristics of shallow‑water deltas and isochronous stratigraphic framework: An example of Ed2 of 4-3 zone of Nanpu oilfield[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1079-1086. [64] 施林峰,翟子梅,王强,等. 从天津CQJ4孔探讨中国东部海侵层的年代问题[J]. 地质论评,2009,55(3):375-384. Shi Linfeng, Zhai Zimei, Wang Qiang, et al. Geochronological study on transgression layers of the CQJ4 borehole at Dagang area in Tianjin, China[J]. Geological Review, 2009, 55(3): 375-384. [65] Liu J, Wang H, Wang F F, et al. Sedimentary evolution during the last ~ 1.9 Ma near the western margin of the modern Bohai Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451: 84-96. [66] Yao Z Q, Guo Z T, Xiao G Q, et al. Sedimentary history of the western Bohai coastal plain since the Late Pliocene: Implications on tectonic, climatic and sea-level changes[J]. Journal of Asian Earth Sciences, 2012, 54-55: 192-202. [67] 田立柱, 施佩歆, 姜兴钰, 等.中华人民共和国区域地质调查报告(比例尺: 1:50000), 小清河口幅(J50E017021)、横里路幅(J50E018021)、固堤镇幅(J50E019021)、潍坊市幅(J50E020021)[R]. 中国地质调查局天津地质调查中心, 2018. Tian Lizhu, Shi Peixin, Jiang Xingyu, et al. Regional geological survey report, People's Republic of China (Scale: 1:50000), Xiaoqinghekou Panel (J50E017021), Hengli Road Panel (J50E018021), Gudi Town Panel (J50E019021), Weifang City Panel (J50E020021)[R]. Tianjin Geological Survey Center, China Geological Survey, 2018. [68] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285. [69] Hilgen F, Zeeden C, Laskar J. Paleoclimate records reveal elusive~200-kyr eccentricity cycle for the first time[J]. Global and Planetary Change, 2020, 194: 103296. [70] Huang H, Gao Y, Ma C, et al. Organic carbon burial is paced by a ~173-ka obliquity cycle in the middle to high latitudes[J]. Science Advances, 2021, 7(28): eabf9489. [71] Beaufort L. Climatic importance of the modulation of the 100 kyr cycle inferred from 16 m.y. long Miocene records[J]. Paleoceanography, 1994, 9(6): 821-834. [72] Boulila S, Vahlenkamp M, De Vleeschouwer D, et al. Towards a robust and consistent Middle Eocene astronomical timescale[J]. Earth and Planetary Science Letters, 2018, 486: 94-107. [73] Hilgen F J, Abels H A, Kuiper K F, et al. Towards a stable astronomical time scale for the Paleocene: Aligning Shatsky rise with the Zumaia-Walvis ridge ODP site 1262 composite[J]. Newsletters on Stratigraphy, 2015, 48(1): 91-110. [74] Liebrand D, Beddow H M, Lourens L J, et al. Cyclostratigraphy and eccentricity tuning of the Early Oligocene through Early Miocene (30.1-17.1 Ma): Cibicides mundulus stable oxygen and carbon isotope records from Walvis Ridge Site 1264[J]. Earth and Planetary Science Letters, 2016, 450: 392-405. [75] Westerhold T, Bickert T, Röhl U. Middle to Late Miocene oxygen isotope stratigraphy of ODP site 1085 (SE Atlantic): New constrains on Miocene climate variability and sea-level fluctuations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217(3/4): 205-222. [76] Yi L, Hu B Q, Zhao J T, et al. Magnetostratigraphy of abyssal deposits in the central Philippine Sea and regional sedimentary dynamics during the Quaternary[J]. Paleoceanography and Paleoclimatology, 2022, 37(5): e2021PA004365. [77] 胥勤勉,袁桂邦,秦雅飞,等. 滦河三角洲南部MT04孔磁性地层研究及其构造与气候耦合关系的探讨[J]. 第四纪研究,2014,34(3):540-552. Xu Qinmian, Yuan Guibang, Qin Yafei, et al. Magnetostratigraphy and discussion of coupling relationship between tectonic movement and climate change of MT04 borehole in southern Luanhe River delta[J]. Quaternary Sciences, 2014, 34(3): 540-552. [78] 郭玉贵,莫杰,郭平. 东海及邻域大地构造特征及ODP钻孔选位[J]. 海洋科学,1996(3):31-34. Guo Yugui, Mo Jie, Guo Ping. Analysis on the tectonic features of East China Sea and its adjacent area and proposal on the drilling site of ODP[J]. Marine Sciences, 1996(3): 31-34. [79] 邱占祥.中国北方“第四纪(或亚代)”环境变化与大哺乳动物演化 [J]. 古脊椎动物学报,2006,44(2):109-132. Qiu Zhanxiang. Quaternary environmental changes and evolution of large mammals in north China[J]. Vertebrata Palasiatica, 2006, 44(2): 109-132. [80] 姜兴钰,王琳,郝秀东,等. 晚上新世以来莱州湾南岸HLL02钻孔的孢粉记录及其古环境演变[J]. 地质调查与研究,2020,43(4):341-347. Jiang Xingyu, Wang Lin, Hao Xiudong, et al. Late Pliocene palynological record and paleoenvironmental change from the borehole HLL02 in the south coast of Laizhou Bay, Bohai Sea, China[J]. Geological Survey and Research, 2020, 43(4): 341-347. [81] 季军良,郑洪波,李盛华,等. 山西平陆黄河阶地与古三门湖消亡、黄河贯通三门峡时代问题的探讨[J]. 第四纪研究,2006,26(4):665-672. Ji Junliang, Zheng Hongbo, Li Shenghua, et al. The terraces of the Huanghe River in Pinglu county, Shanxi province and their relationship with the disappearance of the Sanmen palaeolake and the formation of the Huanghe[J]. Quaternary Sciences, 2006, 26(4): 665-672. [82] 王苏民,吴锡浩,张振克,等. 三门古湖沉积记录的环境变迁与黄河贯通东流研究[J]. 中国科学(D辑):地球科学,2001,31(9):760-768. Wang Sumin, Wu Xihao, Zhang Zhenke, et al. Environmental changes in the sedimentary records of Sanmen ancient lake and research on the eastward flow of the Yellow River[J]. Science China (Seri. D): Earth Sciences, 2001, 31(9): 760-768. [83] 岑敏,董树文,施炜,等. 大同盆地形成机制的构造研究[J]. 地质论评,2015,61(6):1235-1247. Cen Min, Dong Shuwen, Shi Wei, et al. Structural analysis on the formation mechanism of Datong Basin[J]. Geological Review, 2015, 61(6): 1235-1247. [84] 吉云平,王贵玲,赵华,等. 河北阳原盆地中更新世湖相地层顶部文石的发现及其科学意义[J]. 地学前缘,2016,23(3):178-185. Ji Yunping, Wang Guiling, Zhao Hua, et al. The discovery of aragonite sedimentary on the top of lacustrine sedimentary in the Middle Pleistocene in Yangyuan Basin, Hebei province and its scientific significance[J]. Earth Science Frontiers, 2016, 23(3): 178-185. [85] Zhao H, Lu Y C, Wang C M, et al. ReOSL dating of aeolian and fluvial sediments from Nihewan Basin, northern China and its environmental application[J]. Quaternary Geochronology, 2010, 5(2/3): 159-163. [86] 年小美,周力平,袁宝印. 泥河湾陆相沉积物光释光年代学研究及其对古湖泊演化的指示意义[J]. 第四纪研究,2013,33(3):403-414. Xiaomei Nian, Zhou Liping, Yuan Baoyin. Optically stimulated luminescence dating of terrestrial sediments in the Nihewan Basin and its implication for the evolution of ancient Nihewan Lake[J]. Quaternary Sciences, 2013, 33(3): 403-414. [87] Ao H, Liu C R, Roberts A P, et al. An updated age for the Xujiayao hominin from the Nihewan Basin, North China: Implications for Middle Pleistocene human evolution in East Asia[J]. Journal of Human Evolution, 2017, 106: 54-65. [88] Dennell R W, Martinón-Torres M, Bermúdez De Castro J M. Hominin variability, climatic instability and population demography in Middle Pleistocene Europe[J]. Quaternary Science Reviews, 2011, 30(11/12): 1511-1524. [89] Harington C R. The evolution of Arctic marine mammals[J]. Ecological Applications, 2008, 18(2 Suppl): S23-S40. [90] Barnosky A D. Effects of Quaternary climatic change on speciation in mammals[J]. Journal of Mammalian Evolution, 2005, 12(1/2): 247-264. [91] Lister A M. The impact of Quaternary ice ages on mammalian evolution[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359(1442): 221-241. [92] Gao J X, Yu D, Liu H Z. Phylogeographic analysis revealed allopatric distribution pattern and biogeographic processes of the widespread pale chub Opsariichthys acutipinnis-evolans complex (Teleostei: Cyprinidae) in southeastern China[J]. Frontiers in Ecology and Evolution, 2023, 11: 1142810.