Theoretical System and Research Progress of Eolian Deposits
-
摘要: 意义 风成沉积作为风对地球表层沉积物剥蚀、搬运和堆积的产物,在地质历史时期具有广泛的时空分布,其形成演化与以干旱为主的气候条件和相对持续沉降的古地理背景密切相关,是开展区域古地理和古气候研究的重要载体和理想材料。经过近百年的研究,目前国际上已形成较为完善的风成沉积理论体系,有效地促进了古风成沉积的识别和解释。鉴于国内还没有系统的风成沉积理论体系介绍,有必要对其进行综述以此增进对风成沉积理论和研究方法的了解。【 进展 】通过解读前人文献资料,并结合自身研究经历,从大气的流动特征、风的流体性质与风场、沉积物的搬运、风成沉积的组成与结构、风成床沙形体、风成地层、风成界面、风成沉积体系、风成沉积的形成与保存等方面,对风成沉积理论体系进行了较为全面的梳理。【 结论与展望 】提出具有逆粒序的风成波痕、风成沙波层、颗粒表面的沙漠漆、石英显微形貌中的碟形撞击坑、新月形撞击坑、分级弧和上翻解理薄片可作为风成沉积鉴别的绝对标志。综合分析风成地层和风蚀界面是重建古沙丘类型的基本方法。利用多学科手段,有效提取风成沉积所蕴含的古地理和古气候信息,对于开展区域和全球性重大地质事件的研究具有重要科学意义。Abstract: Significance Eolian deposition, a product of wind erosion, transportation, and accumulation on the surface of the Earth, has a wide spatiotemporal distribution in geological history. Its formation and evolution are closely related to arid climatic conditions and the relatively continuous subsidence of paleogeographic backgrounds, making it an important carrier and ideal material for regional paleogeography and paleoclimatology research. After nearly a century of research, a relatively complete theoretical system of eolian deposition has been formed internationally, effectively promoting the identification and interpretation of ancient eolian deposits. Given the lack of a systematic introduction to eolian deposition theory in China, it is necessary to provide a review to enhance understanding of eolian deposition theory and research methods. [Progress] By reviewing previous literature and drawing upon personal research experience, a comprehensive review of the theoretical framework of eolian deposition was conducted, focusing on aspects such as atmospheric flow characteristics, fluid properties and wind fields, sediment transport, composition and structure of eolian deposits, eolian bedforms, eolian stratigraphy, eolian bounding surfaces, eolian depositional systems, and the formation and preservation of eolian deposits. [Conclusions and Prospects] Inverse grain size sequences in wind ripple marks, wind ripple strata, desert varnish on particle surfaces, dish-shaped impact craters, crescent-shaped impact craters, graded arcs, and overturned laminations in quartz microtextures can serve as absolute indicators for identifying eolian deposition. A comprehensive analysis of aeolian stratigraphy and erosional bounding surfaces is a fundamental method for reconstructing ancient dune types. Using interdisciplinary approaches, it is possible to effectively extract paleogeographic and paleoclimatic information contained within eolian deposits, which is of great scientific significance for studying regional and global geological events.
-
Key words:
- eolian deposition /
- paleogeography /
- paleoclimatology /
- theoretical system
-
图 2 地表气流结构与风速剖面
(a)光滑表面气流结构(据文献[60]修改);(b)粗糙表面气流结构(据文献[60]修改);(c)风速剖面(据文献[61]修改)
Figure 2. Structure of wind at the ground surface and the wind speed profile
(a) smooth surface airflow structure (modified from reference [60]); (b) rough surface airflow structure (modified from reference [60]); (c) wind speed profile (modified from reference [61])
图 4 沙丘表层气流特征
(a)沙丘纵向剖面气流变化(据文献[65]修改);(b)沙丘气流流线二维结构模拟(据文献[60]修改);(c~f)沙丘迎风坡主风向与背风坡二次流关系,(c,d)横向沙丘,(e)斜向沙丘,(f)线性沙丘(据文献[65]修改)
Figure 4. Airflow over dunes
(a) vertical profile of airflow in sand dunes (modified from reference [65]); (b) two⁃dimensional structural simulation of airflow in sand dunes (modified from reference [60]); (c⁃f) relationship between the primary wind direction on the windward slope and the secondary flow on the leeward slope of sand dunes, (c, d) represent transverse dunes, (e) represents oblique dunes, (f) represents linear dunes (modified from reference [65])
图 6 风成颗粒搬运方式(据文献[19]修改)
(a)颗粒在地表的蠕动和滚动;(b)跳跃的颗粒在空中产生多次撞击(颗粒运动照片来自文献[58]);(c)跳跃的颗粒落地撞击地表颗粒,并导致其发生滚动;(d)颗粒跳跃的弹道轨迹
Figure 6. Methods of eolian grain transport (modified from reference [19])
(a) creep and rolling of particles on the ground; (b) multiple impacts in the air caused by jumping particles (photograph in b is derived from reference [58]); (c) jumping particles hitting the ground and causing surface particles to roll; (d) trajectory of particle jumping
图 9 风成砂稳定单矿物颗粒显微表面形貌特征(据文献[47]修改)
(a~c)锆石颗粒表面蝶形撞击坑;(d~f)金红石颗粒表面蝶形撞击坑、上翻解理薄片;(g~i)石英颗粒表面蝶形撞击坑、上翻解理薄片、溶蚀坑/孔洞和再生石英
Figure 9. Microscopic surface characteristics of stable monominerals from eolian sandstone (modified from reference [47])
(a⁃c) zircon surfaces with dish⁃shaped impact features; (d⁃f) rutile surfaces with dish⁃shaped impact features and up⁃bent cleavage flake; (g⁃i) quartz surfaces with dish⁃shaped impact features, up⁃bent cleavage flake and dissolution pits/hollows and recrystallized quartz
图 11 风成沙波与风成波痕
(a,b)现代沙丘风成沙波(来源于网站https://unsplash.com/images/nature/desert);(c,d)风成波痕,以高波痕指数、峰粗谷细为特征(山东蒙阴盆地三台组风成砂)
Figure 11. Eolian ripples and ripple marks
(a, b) modern dune eolian sand ripples (derived from website https://unsplash.com/images/nature/desert); (c, d) wind ripple marks characterized by high ripple index and coarse⁃grained crest to fine⁃grained trough (eolian sand of the Santai Formation in the Mengyin Basin, Shandong province)
图 12 风成沙波形成过程示意图(据文献[19]修改)
(a)风成沙波的迁移形成波峰粗、波谷细的结构,且纹层近于平行;(b)迎风坡高角度撞击促使粗颗粒向波峰处移动,而背风坡(阴影区)则为细粒物质的沉降区
Figure 12. Formation processes of eolian ripples (modified from reference [19])
(a) migration of eolian sand ripples leads to the formation of coarse⁃grained peaks and fine⁃grained troughs, with nearly parallel laminae; (b) high⁃angle impacts on the windward slope cause coarse⁃grained particles to move towards the ripple crests, while the leeward slope (shadow zone) serves as a deposition area for fine⁃grained material
图 14 沙丘类型的主要控制因素与风向特征
(a)沙丘类型的主要控制因素(据文献[23]修改);(b)现代不同类型沙丘中的主风向特征(据文献[93]修改)
Figure 14. Major controlling factors and wind directions of different dune types
(a) major controlling factors of dune types (modified from reference [23]); (b) primary winds of different modern dune types (modified from reference [93])
图 15 风成沙波层与条纹层沉积特征
(a,b)沙丘间沉积中的风成砂波层(鄂尔多斯盆地早白垩世洛河组);(c)颗粒流层底部出现的条纹层(滇西北剑川盆地始新世宝相寺组)
Figure 15. Wind⁃ripple strata and pin⁃stripe laminations
(a, b) wind⁃ripple strata in interdune deposits (Early Cretaceous Luohe Formation in the Ordos Basin); (c) pin⁃stripe laminations in the base of grainflow strata (Eocene Baoxiangsi Formation in the Jianchuan Basin, northwestern Yunnan province)
图 17 风成地层分布及特征
(a,b)现代沙丘中颗粒流的分布和形态特征(来源于网站https://unsplash.com/images/nature/desert);(c,d)沙丘沉积中风成地层的类型及分布(据文献[98⁃99]修改)
Figure 17. Distribution and characteristics of eolian stratigraphy
(a, b) distribution and morphological characteristics of grainflow in modern dunes (derived from website https://unsplash.com/images/nature/desert); (c, d) olian stratigraphy types and distribution in dune deposits (derived from references [98⁃99])
图 18 典型风成地层野外露头照片(山东蒙阴盆地三台组)
(a)颗粒流层与风成沙波层交互,颗粒流层呈楔状向下剪灭;(b)小型楔状颗粒流层夹于风成沙波层中;(c)厘米级颗粒流层与毫米级颗粒飘落层韵律,颗粒流层显逆粒序
Figure 18. Photographs showing symbolic eolian stratigraphy in the field (Santai Formation in the Mengyin Basin, Shandong province)
(a) grainflow strata interbedded with wind⁃ripple strata, with grainflow strata wedges downward; (b) small⁃scale wedge⁃shaped grainflow strata interbedded within wind⁃ripple strata; (c) centimeter⁃scale grainflow strata characterized by inverse⁃grading interbedded with grainfall laminae
图 20 风成界面分类(据文献[19]修改)
(a)简单交错层系(内部无界面);(b)复合交错层系(内部有界面);(c)复合交错层系(组合层系组)
Figure 20. Classification of eolian bounding surfaces (modified from reference [19])
(a) simple set of cross strata (no internal bounding surfaces); (b) compound set of cross strata (internal bounding surfaces); (c) compound set of cross strata which together form a coset
图 24 线性沙丘内部结构及演化过程(据文献[120]修改)
(a)阶段1.线性沙丘初始床沙形体;(b)阶段2.大型线性沙丘/发育滑动面的巨型沙丘;(c)阶段3.无滑面巨型线性沙丘
Figure 24. Internal architecture and evolution process of linear dune (modified from reference [120])
(a) Phase 1, incipient bedform/seif; (b) Phase 2, large linear dune/slipfaced megadune; (c) Phase 3, slipfaceless linear megadune
图 25 风成交错层系中的风成地层组合(据文献[15]修改)
(a)颗粒流层与颗粒飘落层韵律型;(b)颗粒流层为主型;(c)颗粒流层夹楔状颗粒飘落层型;(d)颗粒流层与风成沙波层指状交互型;(e)颗粒流层夹楔状风成沙波层型;(f)颗粒流层与风成沙波层韵律型;(g)风成沙波层为主型
Figure 25. Stratification configurations for eolian sets (modified from reference [15])
(a) alternations of grainflow strata and grainfall laminae; (b) grainflow strata; (c) grainflow strata interbedded with wedge⁃shaped grainfall laminae; (d) interfingering of grainflow strata and wind⁃ripple strata; (e) grainflow strata interbedded with wedge⁃shaped wind⁃ripple strata; (f) alternations of grainflow strata and wind⁃ripple strata; (g) wind⁃ripple strata
图 27 湿润型沙丘间沉积中的水成沉积(据文献[47]修改)
(a)洪泛平原、季节性河道和沙丘沉积的韵律;(b)透镜状河道砂岩下切入洪泛沉积泥岩之中,其上被沙丘交错层理砂岩覆盖;(c)透镜状河道砂岩夹在洪泛平原泥岩之中;(d)洪泛泥岩、粉砂岩;(e)洪泛泥岩中的虫迹构造;(f)洪泛泥岩中巨型泥裂中充填的楔状砂体平面多边形特征;(g)洪泛泥岩中的泥裂截面特征
Figure 27. Photographs showing water⁃laid deposits interbedded within wet eolian interdune deposits (modified from reference [47])
(a) alternation of floodplain, ephemeral fluvial channel and eolian dune deposits; (b) lenticular fluvial channel sandstone cutting into underlying floodplain mudstone and overlain by eolian dune cross⁃bedded sandstone; (c) lenticular fluvial channelized sandstone interbedded within floodplain mudstone; (d) mudstone and siltstone from the floodplain; (e) burrows in the mudstone of the floodplain; (f) planar polygon features of large scale desiccation cracks with sandstone fillings present in the mudstone of the floodplain; (g) vertical features of desiccation cracks in the mudstone of floodplain
图 28 风成沙席沉积特征(据文献[47]修改)
(a)平行层状风成沙席沉积夹在风成沙丘沉积交错层理砂岩之间,侧向延伸超过600 m;(b)沙席沉积叠盖在沙丘沉积之上,二者被风蚀界面所分隔;(c)沙席沉积中薄层风层沙波层;(d)沙丘沉积叠盖在沙席沉积之上;(e)平行层状沙席沉积夹于沙丘沉积和洪泛平原沉积之间
Figure 28. Photographs showing characteristics of eolian sandsheet deposits (modified from reference [47])
(a) parallel laminated eolian sandsheet deposits interbedded within eolian dune cross⁃bedded sandstone, with the lateral extension exceeding 600 m; (b) eolian sandsheet deposits overlying eolian dune deposits with eolian deflation surfaces; (c) thin⁃bedded wind⁃ripple strata in eolian sandsheet deposits; (d) eolian dune deposits overlying on eolian sandsheet deposits; (e) parallel laminated eolian sandsheet deposits interbedded within eolian dune and floodplain deposits
-
[1] Sullivan R, Banfield D, Bell III J F, et al. Aeolian processes at the Mars exploration rover Meridiani Planum landing site[J]. Nature, 2005, 436(7047): 58-61. [2] Radebaugh J. Dunes on Saturn’s moon Titan as revealed by the Cassini Mission[J]. Aeolian Research, 2013, 11: 23-41. [3] Kreslavsly M A, Bondarenko N V. Aeolian sand transport and aeolian deposits on Venus: A review[J]. Aeolian Research, 2017, 26: 29-46. [4] Ehrenberg C G. The sirocco dust that fell at Genoa on the 16th May 1846[J]. Quarterly Journal of the Geological Society of London, 1847, 3: 25-26. [5] Blake W P. On the grooving and polishing of hard rocks and minerals by dry sand[J]. American Journal of Science and Arts (1820-1879), 1855, 20(59): 178. [6] Bagnold R A. The physics of blown sand and desert dunes[M]. London: Methuen, 1941: 1-265. [7] Glennie K W. Desert sedimentary environments[M]. Amsterdam: Elsevier, 1970: 1-222. [8] Wilson I G. Desert sandflow basins and a model for the development of ergs[J]. The Geographical Journal, 1971, 137(2): 180-199. [9] Wilson I G. Ergs[J]. Sedimentary Geology, 1973, 10(2): 77-106. [10] McKee E D, Douglass J R, Rittenhouse S. Deformation of lee-side laminae in eolian dunes[J]. GSA Bulletin, 1971, 82(2): 359-378. [11] McKee E D, Bigarella J J. Sedimentary structures in dunes[M]// McKee E D. A study of global sand seas. Virginia: United States Geological Survey, Professional Paper, Reston, 1979: 83-134. [12] McKee E D. Sedimentary structures in dunes of the Namib Desert, south west Africa[M]. Boulder: The Geological Society of America, 1982: 1-64. [13] Rubin D M, Hunter R E. Bedform climbing in theory and nature[J]. Sedimentology, 1982, 29(1): 121-138. [14] Rubin D M, Hunter R E. Reconstructing bedform assemblages from compound crossbedding[J]. Developments in Sedimentology, 1983, 38: 407-427. [15] Kocurek G. Interpretation of ancient eolian sand dunes[J]. Annual Review of Earth and Planetary Sciences, 1991, 19: 43-75. [16] Kocurek G. Aeolian system response to external forcing factors-a sequence stratigraphic view of the Saharan region[M]//Alsharhan A S, Glennie K W, Whittle G L. Quaternary deserts and climatic change. London: CRC Press, 1998: 327-337. [17] Bristow C, Pugh J, Goodall T. Internal structure of aeolian dunes in Abu Dhabi determined using ground‐penetrating radar[J]. Sedimentology, 1996, 43(6): 995-1003. [18] Bristow C S, Bailey S D, Lancaster N. The sedimentary structure of linear sand dunes[J]. Nature, 2000, 406(6791): 56-59. [19] Mountney N P. Eolian facies models[M]//Posamentier H W, Walker R G. Facies models revisited. Tulsa: Society for Sedimentary Geology, 2006: 19-83. [20] Mountney N P. A stratigraphic model to account for complexity in aeolian dune and interdune successions[J]. Sedimentology, 2012, 59(3): 964-989. [21] Rodríguez‐López J P, Clemmensen L B, Lancaster N, et al. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects[J]. Sedimentology, 2014, 61(6): 1487-1534. [22] Lancaster N, Baas A C W, Sherman D J. Aeolian geomorphology: Introduction[M]//Shroder J. Treatise on geomorphology. London: Academic Press, 2013: 1-6. [23] Livingstone I, Warren A. Aeolian geomorphology: A new introduction[M]. Hoboken: John Wiley & Sons, Inc, 2019: 1-318. [24] Parrish J T, Rasbury E T, Chan M A, et al. Earliest Jurassic U-Pb ages from carbonate deposits in the Navajo sandstone, southeastern Utah, USA[J]. Geology, 2019, 47(11): 1015-1019. [25] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985:1-481. Liu Tungsheng. Loess and environment[M]. Beijing: Science Press, 1985: 1-481. [26] 董光荣,李森,李保生,等. 中国沙漠形成演化的初步研究[J]. 中国沙漠,1991,11(4):23-32. Dong Guangrong, Li Sen, Li Baosheng, et al. A preliminary study on the formation and evolution of deserts in China[J]. Journal of Desert Research, 1991, 11(4): 23-32. [27] 董光荣,王贵勇,陈惠忠,等. 中国沙漠形成、演化与青藏高原隆升的关系[C]//青藏高原与全球变化研讨会论文集. 北京:中国青藏高原研究会,1994:13-29. Dong Guangrong, Wang Guiyong, Chen Huizhong, et al. The relationship between the formation and evolution of desert in China and the uplift of Qinghai-Tibet Plateau[C]//Collection of research papers on Qinghai-Tibet Plateau in China. Beijing: Meteorological Press, 1994: 13-29. [28] 江新胜,李玉文. 中国中东部白垩纪沙漠的时空分布及其气候意义[J]. 岩相古地理,1996,16(2):42-51. Jiang Xinsheng, Li Yuwen. Spato-temporal distribution of the Cretaceous deserts in central and eastern China and its climatic significance[J]. Sedimentary Facies and Palaeogeography, 1996, 16(2): 42-51. [29] 江新胜,潘忠习,傅清平. 四川盆地白垩纪沙漠风向变化规律及其意义[J]. 岩相古地理,1999,19(1):1-11. Jiang Xinsheng, Pan Zhongxi, Fu Qingping. The variations of palaeowind direction of the Cretaceous desert in the Sichuan Basin and their significance[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 1-11. [30] 潘忠习,江新胜,傅清平. 四川盆地白垩纪沙漠沉积磁组构特征及其古风向意义[J]. 岩相古地理,1999,19(1):12-19. Pan Zhongxi, Jiang Xinsheng, Fu Qingping. The magnetic fabrics and palaeowind direction significance of the Cretaceous desert sediments in the Sichuan Basin[J]. Sedimentary Facies and Palaeogeography, 1999, 19(1): 12-19. [31] 江新胜,潘忠习,付清平. 白垩纪时期东亚大气环流格局初探[J]. 中国科学(D辑):地球科学,2000,30(5):526-532. Jiang Xinsheng, Pan Zhongxi, Fu Qingping. A preliminary study on the atmospheric circulation pattern in East Asia during the Cretaceous period[J]. Science China (Seri. D): Earth Sciences, 2000, 30(5): 526-532. [32] 江新胜,潘忠习,付清平. 鄂尔多斯盆地早白垩世沙漠古风向变化规律及其气候意义[J]. 中国科学(D辑):地球科学,2000,30(2):195-201. Jiang Xinsheng, Pan Zhongxi, Fu Qingping. Regularity of paleowind directions of the Early Cretaceous desert in Ordos Basin and climatic significance[J]. Science China (Seri. D): Earth Sciences, 2000, 30(2): 195-201. [33] 江新胜,徐金沙,潘忠习. 鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积学报,2003,21(3):416-422. Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. Microscopic features on quartz sand grain surface in the Cretaceous desert of Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(3): 416-422. [34] 江新胜,徐金沙,潘忠习. 四川盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积与特提斯地质,2003,23(1):60-68. Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. The surface features of the quartz sand grains from the Cretaceous desert in the Sichuan Basin[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(1): 60-68. [35] 江新胜,潘忠习,谢渊,等. 鄂尔多斯盆地白垩纪沙漠旋回、风向和水循环变化:白垩纪气候非均一性的证据[J]. 中国科学(D辑):地球科学,2004,34(7):649-657. Jiang Xinsheng, Pan Zhongxi, Xie Yuan, et al. Cretaceous desert cycles, wind direction and hydrologic cycle variations in Ordos Basin: Evidence for Cretaceous climatic unequability[J]. Science China (Seri. D): Earth Sciences, 2004, 34(7): 649-657. [36] 江新胜,潘忠习,徐金沙,等. 江西信江盆地晚白垩世风成沙丘的发现及其古风向[J]. 地质通报,2006,25(7):833-838. Jiang Xinsheng, Pan Zhongxi, Xu Jinsha, et al. Late Cretaceous eolian dunes and wind directions in Xinjiang Basin, Jiangxi province, China[J]. Geological Bulletin of China, 2006, 25(7): 833-838. [37] 江新胜,蔡习尧,潘忠习,等. 塔里木盆地西南部早白垩世风成沙丘古风向测量与古风带恢复[J]. 沉积与特提斯地质,2009,29(4):1-4. Jiang Xinsheng, Cai Xiyao, Pan Zhongxi, et al. Palaeowind direction measurements and palaeowind belt reconstruction of the Early Cretaceous eolian dunes in southwastern Tarim Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(4): 1-4. [38] 江新胜,潘忠习. 中国白垩纪沙漠及气候[M]. 北京:地质出版社,2005:1-117. Jiang Xinsheng, Pan Zhongxi. Cretaceous deserts and climate in China[M]. Beijing: Geological Publishing House, 2005: 1-117. [39] Jiang X S, Pan Z X, Fu Q P. Primary study on pattern of general circulation of atmosphere before uplift of the Tibetan Plateau in eastern Asia[J]. Science China (Seri. D): Earth Sciences, 2001, 44(8): 680-688. [40] Jiang X S, Pan Z X, Xu J S, et al. Late Cretaceous aeolian dunes and reconstruction of palaeo-wind belts of the Xinjiang Basin, Jiangxi province, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257(1/2): 58-66. [41] 许欢,柳永清,旷红伟,等. 华北晚侏罗世—早白垩世风成砂沉积及其古地理和古生态学意义[J]. 古地理学报,2013,15(1):11-30. Xu Huan, Liu Yongqing, Kuang Hongwei, et al. Sedimentology, palaeogeography and palaeoecology of the Late Jurassic-Early Cretaceous eolian sands in North China[J]. Journal of Palaeogeography, 2013, 15(1): 11-30. [42] 黄乐清,黄建中,罗来,等. 湖南衡阳盆地东缘白垩系风成沉积的发现及其古环境意义[J]. 沉积学报,2019,37(4):735-748. Huang Leqing, Huang Jianzhong, Luo Lai, et al. The discovery of Cretaceous eolian deposits at the eastern margin of the Hengyang Basin, Hunan, and its paleoenvironmental significance[J]. Acta Sedimentologica Sinica, 2019, 37(4): 735-748. [43] Wu C H, Liu C L, Yi H S, et al. Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 529-544. [44] Wu C H, Rodríguez-López J P, Liu C L, et al. Late Cretaceous climbing erg systems in the western Xinjiang Basin: Palaeoatmosphere dynamics and East Asia margin tectonic forcing on desert expansion and preservation[J]. Marine and Petroleum Geology, 2018, 93: 539-552. [45] Wu C H, Rodríguez-López J P, Santosh M. Plateau archives of lithosphere dynamics, cryosphere and paleoclimate: The formation of Cretaceous desert basins in East Asia[J]. Geoscience Frontiers, 2022, 13(6): 101454. [46] Li G J, Wu C H, Rodríguez-López J P, et al. Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia[J]. Sedimentary Geology, 2018, 364: 121-140. [47] Xu H, Liu Y Q, Kuang H W, et al. Late Jurassic fluvial-eolian deposits from the Tianchihe Formation, Ningwu-Jingle Basin, Shanxi province, China[J]. Journal of Asian Earth Sciences, 2019, 174: 245-262. [48] Xu H, Liu Y Q, Kuang H W, et al. Late Jurassic-Early Cretaceous erg deposits in the Mengyin Basin, western Shandong province, China: Inferences about the wind regime and paleogeography[J]. Open Journal of Geology, 2019, 9(10): 700-703. [49] Xu H, Liu Y Q, Kuang H W, et al. Diverse preserved dinosaur footprint assemblage from Jurassic-Cretaceous transition eolian dune deposits of western Shandong province, China[J]. Cretaceous Research, 2021, 121: 104733. [50] 陈政宇,柳永清,江小均,等. 柴达木旺尕秀煤矿东南晚侏罗世—早白垩世风成砂古风向及古地理意义[J]. 地学前缘,2020,27(4):82-97. Chen Zhengyu, Liu Yongqing, Jiang Xiaojun, et al. Paleo-wind direction and paleogeographic significance of Late Jurassic to Early Cretaceous anemoarenyte in the southeastern Wanggaxiu coal mine, Qaidam Basin[J]. Earth Science Frontiers, 2020, 27(4): 82-97. [51] Cao S, Zhang L M, Wang C S, et al. Sedimentological characteristics and aeolian architecture of a plausible intermountain erg system in southeast China during the Late Cretaceous[J]. GSA Bulletin, 2020, 132(11/12): 2475-2488. [52] Jiao H J, Wu C H, Rodríguez-López J P, et al. Late Cretaceous plateau deserts in the South China Block, and Quaternary analogues; sedimentology, dune reconstruction and wind-water interactions[J]. Marine and Petroleum Geology, 2020, 120: 104504. [53] Yu X C, Liu C L, Wang C L, et al. Eolian deposits of the northern margin of the South China (Jianghan Basin): Reconstruction of the Late Cretaceous East Asian landscape in central China[J]. Marine and Petroleum Geology, 2020, 117: 104390. [54] Yu X C, Liu C L, Wang C L, et al. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: Palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110299. [55] Yu X C, Wang C L, Bertolini G, et al. Damp-to dry aeolian systems: Sedimentology, climate forcing, and aeolian accumulation in the Late Cretaceous Liyou Basin, South China[J]. Sedimentary Geology, 2021, 426: 106030. [56] Wu C H, Rodríguez-López J P. Cryospheric processes in Quaternary and Cretaceous hyper‐arid plateau desert oases[J]. Sedimentology, 2021, 68(2): 755-770. [57] Qiao D W, Peng N, Kuang H W, et al. Changes in prevailing surface-paleowinds reveal the atmospheric circulation transition during Early Cretaceous in North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 586: 110784. [58] Lorenz R D, Zimbelman J R. Dune worlds: How windblown sand shapes planetary landscapes[M]. Heidelberg: Springer, 2014: 1-308. [59] Stull R B. An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988: 1-666. [60] Pye K, Tsoar H. Aeolian sand and sand dunes[M]. Berlin: Springer, 2009: 1-458. [61] Greeley R, Iversen J D. Wind as a geological process on Earth, Mars, Venus and Titan[M]. New York: Cambridge University Press, 1985: 1-333. [62] Sweet M L, Kocurek G. An empirical model of aeolian dune lee‐face airflow[J]. Sedimentology, 1990, 37(6): 1023-1038. [63] Burkinshaw J R, Illenberger W K, Rust I C. Wind-speed profiles over a reversing transverse dune[J]. Geological Society, London, Special Publications, 1993, 72(1): 25-36. [64] Frank A J, Kocurek G. Airflow up the stoss slope of sand dunes: Limitations of current understanding[J]. Geomorphology, 1996, 17(1/2/3): 47-54. [65] Kocurek G. Desert aeolian systems[M]//Reading H G. Sedimentary environments; processes, facies and stratigraphy. 3rd ed. Oxford: Blackwell, 1996: 125-153. [66] Tsoar H. Dynamic processes acting on a longitudinal (seif) sand dune[J]. Sedimentology, 1983, 30(4): 567-578. [67] Lancaster N. Geomorphology of desert dunes[M]. New York: Routledge, 1995: 1-290. [68] Folk R L. Longitudinal dunes of the northwestern edge of the Simpson Desert, northern Territory, Australia, 1. Geomorphology and grain size relationships[J]. Sedimentology, 1971, 16(1/2): 5-54. [69] Pye K. Aeolian dust and dust deposits[M]. London: Academic Press, 1987: 1-334. [70] Nickling W G. Aeolian sediment transport and deposition[M]//Pye K. Sediment transport and depositional processes. Oxford: Blackwell, 1994: 293-350. [71] Nichols G. Sedimentology and stratigraphy[M]. 2nd ed. Chichester: Wiley-Blackwell, 2009: 1-419. [72] Anderson R S. A theoretical model for aeolian impact ripples[J]. Sedimentology, 1987, 34(5): 943-956. [73] De Ploey J. Some field measurements and experimental data on wind-blown sands[M]//De Boodt M D, Gabriels D. Assessment of erosion. Chichester: John Wiley and Sons Ltd, 1980: 541-552. [74] Draga M. Eolian activity as a consequence of beach nourishment-observations at Westerland (Sylt), German North Sea coast[J]. Zeitschift für Geomorphologie Supplementband, 1983, 45: 303-319. [75] Anderson R S, Hallet B. Sediment transport by wind: Toward a general model[J]. GSA Bulletin, 1986, 97(5): 523-535. [76] Willetts B B, Rice M A. Practical representation of characteristic grain shape of sands: A comparison of methods[J]. Sedimentology, 1983, 30(4): 557-565. [77] Hunt J C R, Nalpanis P. Saltating and suspended particles over flat and sloping surfaces. I. Modelling concepts[M]//Barndorff-Nielsen O E, Møller J T, Rasmussen K R, et al. Proceedings of international workshop on the physics of blown sand. Aarhus: University of Aarhus, 1985: 9-36. [78] Abegg F E R, Loope D B, Harris P M M. Carbonate eolianites:Depositional models and diagenesis[M]. Tulsa: Society for Sedimentary Geology, 2001: 17-30. [79] Besler H. The north-eastern Rub'al Khālī within the borders of the United Arab Emirates[J]. Zeitschrift für Geomorphologie, 1982, 26(4): 495-504. [80] Caputo M V. Eolian structures and textures in oolitic-skeletal calcarenites from the Quaternary of San Salvador Island, Bahamas: A new perspective on eolian limestones[C]//Keith B D, Zuppann C W. Mississippian oolites and modern analogs. Tulsa: American Association of Petroleum Geologists, 1993: 243-259. [81] Mountney N P, Russell A J. Sedimentology of cold-climate aeolian sandsheet deposits in the Askja region of northeast Iceland[J]. Sedimentary Geology, 2004, 166(3/4): 223-244. [82] Kocurek G, Ewing R C. Source-to-sink: An Earth/Mars comparison of boundary conditions for eolian dune systems[C]// Grotzinger John P, Milliken Ralph E. Sedimentary Geology of Mars. Tulsa: SEPM Special Publication, 2012, 102: 151-168. [83] Ahlbrandt T S. Textural parameters of eolian deposits[M]//McKee E D. A study of global sand seas. Washington: Government Printing Office, 1979: 21-52. [84] Brookfield M E, Silvestro S. Eolian systems[M]//James N P, Darlymple R W. Facies models 4. Ottawa: Geological Association of Canada, 2010: 139-166. [85] Whalley W B, Smith B J, McAlister J J, et al. Aeolian abrasion of quartz particles and the production of silt-size fragments: Preliminary results[J]. Geological Society, London, Special Publications, 1987, 35(1): 129-138. [86] Vos K, Vandenberghe N, Elsen J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation[J]. Earth-Science Reviews, 2014, 128: 93-104. [87] Wilson I G. Aeolian bedforms-their development and origins[J]. Sedimentology, 1972, 19(3/4): 173-210. [88] Seppälä M, Lindé K. Wind tunnel studies of ripple formation[J]. Geografiska Annaler: Series A, Physical Geography, 1978, 60(1/2): 29-42. [89] Milana J P. Largest wind ripples on Earth?[J]. Geology, 2009, 37(4): 343-346. [90] Sharp R P. Wind ripples[J]. The Journal of Geology, 1963, 71(5): 617-636. [91] Cooke R, Warren A, Goudie A. Desert geomorphology[M]. London: UCL Press, 1993: 256. [92] Wasson R J, Hyde R. Factors determining desert dune type[J]. Nature, 1983, 304(5924): 337-339. [93] Fryberger S G, Schenk C. Wind sedimentation tunnel experiments on the origins of aeolian strata[J]. Sedimentology, 1981, 28(6): 805-821. [94] Livingstone I, Bristow C, Bryant R G, et al. The Namib Sand Sea digital database of aeolian dunes and key forcing variables[J]. Aeolian Research, 2010, 2(2/3): 93-104. [95] Havholm K G, Kocurek G. A preliminary study of the dynamics of a modern draa, Algodones, southeastern California, USA[J]. Sedimentology, 1988, 35(4): 649-669. [96] Clemmensen L B. Preservation of interdraa and plinth deposits by the lateral migration of large linear draas (Lower Permian Yellow Sands, northeast England)[J]. Sedimentary Geology, 1989, 65(1/2): 139-151. [97] Chrintz T, Clemmensen L B. Draa reconstruction, the Permian Yellow Sands, northeast England[M]//Pye K, Lancaster N. Aeolian sediments: Ancient and modern. Alger: International Association of Sedimentologists, 1993: 151-161. [98] Hunter R E. Stratification styles in eolian sandstones: Some Pennsylvanian to Jurassic examples from the western interior U.S.A.[M]//Ethridge F G, Flores R M. Recent and ancient nonmarine depositional environments: Models for exploration. Tulsa: SEPM, 1981: 315-329. [99] Kocurek G, Dott R H. Distinctions and uses of stratification types in the interpretation of eolian sand[J]. Journal of Sedimentary Research, 1981, 51(2): 579-595. [100] Bristow C S, Mountney N P. Aeolian stratigraphy[M]//Shroder J F. Treatise on geomorphology. London: Academic Press, 2013: 246-268. [101] Fryberger S G, Schenk C J, Krystinik L F. Stokes surfaces and the effects of near‐surface groundwater‐table on aeolian deposition[J]. Sedimentology, 1988, 35(1): 21-41. [102] Mountney N, Howell J. Aeolian architecture, bedform climbing and preservation space in the Cretaceous Etjo Formation, NW Namibia[J]. Sedimentology, 2000, 47(4): 825-849. [103] Allen J R L. Intensity of deposition from avalanches and the loose packing of avalanche deposits[J]. Sedimentology, 1972, 18(1/2): 105-111. [104] Nickling W G, Neuman C M, Lancaster N. Grainfall processes in the lee of transverse dunes, Silver Peak, Nevada[J]. Sedimentology, 2002, 49(1): 191-209. [105] Anderson R S. The pattern of grainfall deposition in the lee of aeolian dunes[J]. Sedimentology, 1988, 35(2): 175-188. [106] Reineck H E. Haftrippeln und haftwarzen, Ablagerungsformen von Flugsand[J]. Senckenbergiana Lethaea, 1955, 36(5/6): 347-352. [107] Kocurek G, Fielder G. Adhesion structures[J]. Journal of Sedimentary Research, 1982, 52(4): 1229-1241. [108] Olsen H, Due P H, Clemmensen L B. Morphology and genesis of asymmetric adhesion warts: A new adhesion surface structure[J]. Sedimentary Geology, 1989, 61(3/4): 277-285. [109] Hummel G, Kocurek G. Interdune areas of the back-island dune field, North Padre Island, Texas[J]. Sedimentary Geology, 1984, 39(1/2): 1-26. [110] Brookfield M E. The origin of bounding surfaces in ancient aeolian sandstones[J]. Sedimentology, 1977, 24(3): 303-332. [111] Fryberger S G. A review of aeolian bounding surfaces, with examples from the Permian Minnelusa Formation, USA[M]//North C P, Prosser D J. Characterization of fluvial and aeolian reservoirs. London: Geological Society Special Publications, 1993: 167-197. [112] Rodríguez-López J P, Meléndez N, De Boer P L, et al. Aeolian sand sea development along the mid-Cretaceous western Tethyan margin (Spain): Erg sedimentology and palaeoclimate implications[J]. Sedimentology, 2008, 55(5): 1253-1292. [113] Rubin D M. Cross-bedding, bedforms, and paleocurrents[M]. Tulsa: Society of Economic Paleontologists and Mineralogists, 1987: 1-187. [114] Mountney N, Howell J, Flint S, et al. Relating eolian bounding-surface geometries to the bed forms that generated them: Etjo Formation, Cretaceous, Namibia[J]. Geology, 1999, 27(2): 159-162. [115] Benan C A A, Kocurek G. Catastrophic flooding of an aeolian dune field: Jurassic Entrada and Todilto Formations, Ghost Ranch, New Mexico, USA[J]. Sedimentology, 2000, 47(6): 1069-1080. [116] Kocurek G, Havholm K G. Eolian sequence stratigraphy: A conceptual framework[M]. Tulsa: American Association of Petroleum Geologists, 1993: 393-409. [117] Edwin D M. Primary structures in some recent sediments[J]. AAPG Bulletin, 1957, 41(8): 1704-1747. [118] McKee E D. Structures of dunes at White Sands National Monument, New Mexico (and a comparison with structures of dunes from other selected areas)[J]. Sedimentology, 1966, 7(1): 3-69. [119] Rubin D M, Hunter R E. Why deposits of longitudinal dunes are rarely recognized in the geologic record[J]. Sedimentology, 1985, 32(1): 147-157. [120] Scotti A A, Veiga G D. Sedimentary architecture of an ancient linear megadune (Barremian, Neuquén Basin): Insights into the long‐term development and evolution of aeolian linear bedforms[J]. Sedimentology, 2019, 66(6): 2191-2213. [121] Nielson J, Kocurek G. Surface processes, deposits, and development of star dunes: Dumont dune field, California[J]. GSA Bulletin, 1987, 99(2): 177-186. [122] Wang T, Zhang W M, Dong Z B, et al. The dynamic characteristics and migration of a pyramid dune[J]. Sedimentology, 2005, 52(3): 429-440. [123] Hunter R E, Rubin D M. Interpreting cyclic crossbedding, with an example from the Navajo sandstone[J]. Developments in Sedimentology, 1983, 38: 429-454. [124] Parrish J T, Peterson F. Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States-A comparison[J]. Sedimentary Geology, 1988, 56(1/2/3/4): 261-282. [125] Loope D B, Rowe C M, Joeckel R M. Annual monsoon rains recorded by Jurassic dunes[J]. Nature, 2001, 412(6842): 64-66. [126] Ahlbrandt T S, Fryberger S G. Sedimentary features and significance of interdune deposits[M]//Ethridge F G, Flores R M. Recent and ancient nonmarine depositional environments: Models for exploration. Tulsa: SEPM, 1981: 293-314. [127] Jones F H, dos Santos Scherer C M, Kuchle J. Facies architecture and stratigraphic evolution of aeolian dune and interdune deposits, Permian Caldeirão member (Santa Brígida Formation), Brazil[J]. Sedimentary Geology, 2016, 337: 133-150. [128] Langford R, Chan M A. Flood surfaces and deflation surfaces within the Cutler Formation and Cedar Mesa sandstone (Permian), southeastern Utah[J]. GSA Bulletin, 1988, 100(10): 1541-1549. [129] Kocurek G, Nielson J. Conditions favourable for the formation of warm‐climate aeolian sand sheets[J]. Sedimentology, 1986, 33(6): 795-816. [130] Simplicio F, Basilici G. Unusual thick eolian sand sheet sedimentary succession: Paleoproterozoic Bandeirinha Formation, Minas Gerais[J]. Brazilian Journal of Geology, 2015, 45(Suppl.1): 3-11. [131] Warren A. Dunes in the tenere desert[J]. The Geographical Journal, 1971, 137(4): 458-461. [132] Fryberger S G, Al-Sari A M, Clisham T J, et al. Wind sedimentation in the Jafurah sand sea, Saudi Arabia[J]. Sedimentology, 1984, 31(3): 413-431. [133] Lancaster N. Winds and sand movements in the Namib Sand Sea[J]. Earth Surface Processes and Landforms, 1985, 10(6): 607-619. [134] Khalaf F. Textural characteristics and genesis of the aeolian sediments in the Kuwaiti Desert[J]. Sedimentology, 1989, 36(2): 253-271. [135] Kocurek G, Lancaster N. Aeolian system sediment state: Theory and Mojave Desert Kelso dune field example[J]. Sedimentology, 1999, 46(3): 505-515. [136] El-Baz F, Maingue M, Robinson C. Fluvio-aeolian dynamics in the north-eastern Sahara: The relationship between fluvial/aeolian systems and ground-water concentration[J]. Journal of Arid Environments, 2000, 44(2): 173-183. [137] Nielson J, Kocurek G. Climbing zibars of the Algodones[J]. Sedimentary Geology, 1986, 48(1/2): 1-15. [138] Mountney N P, Jagger A. Stratigraphic evolution of an aeolian erg margin system: The Permian Cedar Mesa sandstone, SE Utah, USA[J]. Sedimentology, 2004, 51(4): 713-743. [139] Langford R P, Chan M A. Fluvial-aeolian interactions: Part II, ancient systems[J]. Sedimentology, 1989, 36(6): 1037-1051. [140] Trewin N H. Mixed Aeolian sandsheet and fluvial deposits in the Tumblagooda sandstone, western Australia[M]//North C P, Prosser D J. Characterisation of fluvial and Aeolian reservoirs. London: Geological Society, Special Publications, 1993, 73(1): 219-230. [141] Chakraborty T, Chakraborty C. Eolian-aqueous interactions in the development of a Proterozoic sand sheet: Shikaoda Formation, Hosangabad, India[J]. Journal of Sedimentary Research, 2001, 71(1): 107-117. [142] Biswas A. Coarse aeolianites: Sand sheets and zibar-interzibar facies from the Mesoproterozoic Cuddapah Basin, India[J]. Sedimentary Geology, 2005, 174(1/2): 149-160. [143] Scherer C M S, Lavina E L C. Sedimentary cycles and facies architecture of aeolian-fluvial strata of the Upper Jurassic Guará Formation, southern Brazil[J]. Sedimentology, 2005, 52(6): 1323-1341. [144] Basilici G, Bó P F F D, Ladeira F S B. Climate‐induced sediment‐palaeosol cycles in a Late Cretaceous dry aeolian sand sheet: Marília Formation (North‐West Bauru Basin, Brazil)[J]. Sedimentology, 2009, 56(6): 1876-1904. [145] Kocurek G. The Aeolian rock record (Yes, Virginia, it exists, but it really is rather special to create one)[M]//Goudie A S, Livingstone I, Stokes S. Aeolian environments, sediments and landforms. Chichester: John Wiley, 1999: 239-259. [146] Williams G. Some aspects of the eolian saltation load[J]. Sedimentology, 1964, 3(4): 257-287. [147] Willetts B B, Rice M A, Swaine S E. Shape effects in aeolian grain transport[J]. Sedimentology, 1982, 29(3): 409-417. [148] Hotta S, Kubota S, Katori S, et al. Sand transport by wind on a wet sand surface[J]. Coastal Engineering, 1984, 1984: 1265-1281. [149] Nickling W G. The stabilizing role of bonding agents on the entrainment of sediment by wind[J]. Sedimentology, 1984, 31(1): 111-117. [150] Wasson R J, Nanninga P M. Estimating wind transport of sand on vegetated surfaces[J]. Earth Surface Processes and Landforms, 1986, 11(5): 505-514. [151] Stockton P H, Gillette D A. Field measurement of the sheltering effect of vegetation on erodible land surfaces[J]. Land Degradation & Development, 1990, 2(2): 77-85. [152] Mainguet M, Chemin M C. Sand seas of the Sahara and Sahel: An explanation of their thickness and sand dune type by the sand budget principle[J]. Developments in Sedimentology, 1983, 38: 353-363. [153] Pulvertaft T C R. Aeolian dune and wet interdune sedimentation in the Middle Proterozoic Dala sandstone, Sweden[J]. Sedimentary Geology, 1985, 44(1/2): 93-111. [154] Kocurek G, Lancaster N, Carr M, et al. Tertiary Tsondab sandstone formation: Preliminary bedform reconstruction and comparison to modern Namib Sand Sea dunes[J]. Journal of African Earth Sciences, 1999, 29(4): 629-642. [155] Glennie K W, Buller A T. The Permian Weissliegend of NW Europe: The partial deformation of aeolian dune sands caused by the Zechstein transgression[J]. Sedimentary Geology, 1983, 35(1): 43-81. [156] Scherer C M S. Preservation of aeolian genetic units by lava flows in the Lower Cretaceous of the Paraná Basin, southern Brazil[J]. Sedimentology, 2002, 49(1): 97-116.