[1]
|
谢树成,焦念志,罗根明,等. 海洋生物碳泵的地质演化:微生物的碳汇作用[J]. 科学通报,2022,67(15):1715-1726.
Xie Shucheng, Jiao Nianzhi, Luo Genming, et al. Evolution of biotic carbon pumps in Earth history: Microbial roles as a carbon sink in oceans[J]. Chinese Science Bulletin, 2022, 67(15): 1715-1726. |
[2]
|
Hazen R M, Ferry J M. Mineral evolution: Mineralogy in the fourth dimension[J]. Elements, 2010, 6(1): 9-12. |
[3]
|
史晓颖,张传恒,蒋干清,等. 华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力[J]. 现代地质,2008,22(5):669-682.
Shi Xiaoying, Zhang Chuanheng, Jiang Ganqing, et al. Microbial mats from the Mesoproterozoic carbonates of the North China Platform and their potential for hydrocarbon-generation[J]. Geoscience, 2008, 22(5): 669-682. |
[4]
|
Schrag D P, Higgins J A, MacDonald F A, et al. Authigenic carbonate and the history of the global carbon cycle[J]. Science, 2013, 339(6119): 540-543. |
[5]
|
Greene S E, Bottjer D J, Corsetti F A, et al. A subseafloor carbonate factory across the Triassic-Jurassic transition[J]. Geology, 2012, 40(11): 1043-1046. |
[6]
|
李飞,易楚恒,李红,等. 微生物成因鲕粒研究进展[J]. 沉积学报,2022,40(2):319-334.
Li Fei, Yi Chuheng, Li Hong, et al. Recent advances in ooid microbial origin: A review[J] Acta Sedimentologica Sinica, 2022, 40(2): 319-334. |
[7]
|
Riaz M, Banerjee S, Latif K, et al. Understanding the origin of ancient carbonate ooids: Recent findings[J]. International Geology Review, 2023, doi: 101080/00206814.2023.2220390 . |
[8]
|
郭芪恒,金振奎,史书婷,等. 鲕粒成因研究进展[J]. 沉积学报,2023,41(4):959-967.
Guo Qiheng, Jin Zhenkui, Shi Shuting, et al. Research progress on the formation of ooids[J]. Acta Sedimentologica Sinica, 2023, 41(4): 959-967. |
[9]
|
Li F, Yan J X, Chen Z Q, et al. Global oolite deposits across the Permian-Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis[J]. Earth-Science Reviews, 2015, 149: 163-180. |
[10]
|
Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222. |
[11]
|
Qiu X, Wang H M, Yao Y C, et al. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52[J]. Earth and Planetary Science Letters, 2017, 472: 197-205. |
[12]
|
Liu D, Yu N, Papineau D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2019, 263: 31-49. |
[13]
|
Li M T, Song H J, Algeo T J, et al. A dolomitization event at the oceanic chemocline during the Permian-Triassic transition[J]. Geology, 2018, 46(12): 1043-1046. |
[14]
|
Chang B, Li C, Liu D, et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14005-14014. |
[15]
|
Konhauser K O, Urrutia M M. Bacterial clay authigenesis: A common biogeochemical process[J]. Chemical Geology, 1999, 161(4): 399-413. |
[16]
|
谢树成,刘邓,邱轩,等. 微生物与地质温压的一些等效地质作用[J]. 中国科学(D辑):地球科学,2016,46(8):1087-1094.
Xie Shucheng, Liu Deng, Qiu Xuan, et al. Microbial roles equivalent to geological agents of high temperature and pressure in deep Earth[J]. Science China (Seri. D): Earth Sciences, 2016, 46(8): 1087-1094. |
[17]
|
Liu D, Dong H L, Wang H M, et al. Low-temperature feldspar and illite formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic bacterium[J]. Chemical Geology, 2015, 406: 25-33. |
[18]
|
McMahon W J, Davies N S. Evolution of alluvial mudrock forced by early land plants[J]. Science, 2018, 359(6379): 1022-1024. |
[19]
|
Liang C, Zhu X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Science China Earth Sciences, 2021, 64(4): 545-558. |
[20]
|
Kennedy M, Droser M, Mayer L M, et al. Late Precambrian oxygenation; Inception of the clay mineral factory[J]. Science, 2006, 311(5766): 1446-1449. |
[21]
|
Konhauser K O, Planavsky N J, Hardisty D S, et al. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172: 140-177. |
[22]
|
Song H J, Jiang G Q, Poulton S W, et al. The onset of widespread marine red beds and the evolution of ferruginous oceans[J]. Nature Communications, 2017, 8(1): 399. |
[23]
|
Veizer J, Mackenzie F T. Evolution of sedimentary rocks[J]. Treatise on Geochemistry, 2003, 7: 369-407. |
[24]
|
Peters S E, Husson J M, Wilcots J. The rise and fall of stromatolites in shallow marine environments[J]. Geology, 2017, 45(6): 487-490. |
[25]
|
Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315. |
[26]
|
Pomar L. Chapter 12, Carbonate systems[M]// Scarselli N, Adam J, Chiarella D, et al. Regional Geology and Tectonics (Second Edition). Elsevier, 2020: 235-311. |
[27]
|
Noffke N, Knoll A H, Grotzinger J P. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the Upper Neoproterozoic Nama Group, Namibia[J]. Palaios, 2002, 17(6): 533-544. |
[28]
|
Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169. |
[29]
|
Falkowski P G, Katz M E, Knoll A H, et al. The evolution of modern eukaryotic phytoplankton[J]. Science, 2004, 305(5682): 354-360. |
[30]
|
Ridgwell A. A Mid Mesozoic revolution in the regulation of ocean chemistry[J]. Marine Geology, 2005, 217(3/4): 339-357. |
[31]
|
Eichenseer K, Balthasar U, Smart C W, et al. Jurassic shift from abiotic to biotic control on marine ecological success[J]. Nature Geoscience, 2019, 12(8): 638-642. |
[32]
|
Chen Z Q, Tu C Y, Pei Y, et al. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic[J]. Earth-Science Reviews, 2019, 189: 21-50. |
[33]
|
Sepkoski Jr J J. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions[J]. Paleobiology, 1984, 10(2): 246-267. |
[34]
|
赵小明,牛志军,童金南,等. 早三叠世生物复苏期的特殊沉积:“错时相”沉积[J]. 沉积学报,2010,28(2):314-323.
Zhao Xiaoming, Niu Zhijun, Tong Jinnan, et al. The distinctive sediments in the Early Triassic recovery time: “anachronistic facies”[J]. Acta Sedimentologica Sinica, 2010, 28(2): 314-323. |
[35]
|
谢树成,罗根明,朱宗敏. 地球表层系统对深部圈层时空演变的影响[J/OL]. 科学通报,2023,doi: 10.1360/TB-2023-0002 .
Xie Shucheng, Luo Genming, Zhu Zongmin. Surface system impact on the spatiotemporal evolution of deep Earth[J/OL]. Chinese Science Bulletin, 2023, doi: 10.1360/TB-2023-0002 . |
[36]
|
Keller D S, Tassara S, Robbins L J, et al. Links between large igneous province volcanism and subducted iron formations[J]. Nature Geoscience, 2023, 16(6): 527-533. |
[37]
|
Zhang S X, Li Y L, Leng W, et al. Photoferrotrophic bacteria initiated plate tectonics in the Neoarchean[J]. Geophysical Research Letters, 2023, 50(13): e2023GL103553. |
[38]
|
Zeichner S S, Nghiem J, Lamb M P, et al. Early plant organics increased global terrestrial mud deposition through enhanced flocculation[J]. Science, 2021, 371(6528): 526-529. |
[39]
|
Sobolev S V, Brown M. Surface erosion events controlled the evolution of plate tectonics on Earth[J]. Nature, 2019, 570(7759): 52-57. |
[40]
|
Nisbet E G, Mattey D P, Lowry D. Can diamonds be dead bacteria?[J]. Nature, 1994, 367(6465): 694-697. |
[41]
|
Müller R D, Mather B, Dutkiewicz A, et al. Evolution of Earth's tectonic carbon conveyor belt[J]. Nature, 2022, 605(7911): 629-639. |