[1]
|
Saller A H, Budd D A, Harris P M. Unconformities and porosity development in carbonate strata: Ideas from a Hedberg Conference[J]. AAPG Bulletin, 1994, 78(6): 857-872. |
[2]
|
刘波,王英华,钱祥麟. 华北奥陶系两个不整合面的成因与相关区域性储层预测[J]. 沉积学报,1997,15(1):25-30.
Liu Bo, Wang Yinghua, Qian Xianglin. The two Ordovician unconformities in N. China: Their origins and related regional reservoirs prediction[J]. Acta Sedimentologica Sinica, 1997, 15(1): 25-30. |
[3]
|
Gao Z Q, Fan T L. Unconformities and their influence on Lower Paleozoic petroleum reservoir development in the Tarim Basin[J]. Journal of Petroleum Science and Engineering, 2015, 133: 335-351. |
[4]
|
Corsetti F A, Hagadorn J W. Precambrian-Cambrian transition: Death valley, United States[J]. Geology, 2000, 28(4): 299-302. |
[5]
|
Banerjee D M, Schidlowski M, Siebert F, et al. Geochemical changes across the Proterozoic–Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1/2/3/4): 183-194. |
[6]
|
Brasier M D, Magaritz M, Corfield R, et al. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation[J]. Geological Magazine, 1990, 127(4): 319-332. |
[7]
|
何金有,邬光辉,徐备,等. 塔里木盆地震旦系—寒武系不整合面特征及油气勘探意义[J]. 地质科学,2010,45(3):698-706.
He Jinyou, Wu Guanghui, Xu Bei, et al. Characteristics and petroleum exploration significance of unconformity between Sinian and Cambrian in Tarim Basin [J]. Chinese Journal of Geology, 2010, 45(3): 698-706. |
[8]
|
杨海军,陈永权,田军,等. 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探,2020,25(2):62-72.
Yang Haijun, Chen Yongquan, Tian Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. |
[9]
|
李朋威,罗平,陈敏,等. 塔里木盆地西北缘上震旦统微生物碳酸盐岩储层特征与成因[J]. 石油与天然气地质,2015,36(3):416-428.
Li Pengwei, Luo Ping, Chen Min, et al. Characteristics and origin of the Upper Sinian microbial carbonate reservoirs at the northwestern margin of Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 416-428. |
[10]
|
严威,杨果,易艳,等. 塔里木盆地柯坪地区上震旦统白云岩储层特征与成因[J]. 石油学报,2019,40(3):295-307,321.
Yan Wei, Yang Guo, Yi Yan, et al. Characteristics and genesis of Upper Sinian dolomite reservoirs in Keping area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(3): 295-307, 321. |
[11]
|
朱永进,沈安江,刘玲利,等. 塔里木盆地晚震旦世—中寒武世构造沉积充填过程及油气勘探地位[J]. 沉积学报,2020,38(2):398-410.
Zhu Yongjin, Shen Anjiang, Liu Lingli, et al. Tectonic-sedimentary filling history through the Later Sinian to the Mid-Cambrian in Tarim Basin and its explorational potential[J]. Acta Sedimentologica Sinica, 2020, 38()2: 398-410. |
[12]
|
郑剑锋,沈安江,杨翰轩,等. 塔里木盆地西北缘震旦系微生物白云岩地球化学、年代学特征及其地质意义[J]. 岩石学报,2021,37(7):2189-2202.
Zheng Jianfeng, Shen Anjiang, Yang Hanxuan, et al. Geochemistry and geochronology characteristics and their geological significance of microbial dolomite in Upper Sinian, NW Tarim Basin[J]. Acta Petrologica Sinica, 2021, 37(7): 2189-2202. |
[13]
|
Tang P, Chen D Z, Qian Y X, et al. Types, petrophysical properties and pore evolution of Late Ediacaran microbial carbonates, Tarim Basin, NW China[J]. Acta Geologica Sinica, 2022, 96(4): 1362-1375. |
[14]
|
贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质,1999,20(3):177-183.
Jia Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183. |
[15]
|
Shen W B, Zhu X K, Xie H Z, et al. Tectonic–sedimentary evolution during initiation of the Tarim Basin: Insights from Late Neoproterozoic sedimentary records in the NW basin[J]. Precambrian Research, 2022, 371: 106598. |
[16]
|
管树巍,吴林,任荣,等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报,2017,38(1):9-22.
Guan Shuwei, Wu Lin, Ren Rong, et al. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38(1): 9-22. |
[17]
|
石开波,刘波,姜伟民,等. 塔里木盆地南华纪—震旦纪构造—沉积格局[J]. 石油与天然气地质,2018,39(5):862-877.
Shi Kaibo, Liu Bo, Jiang Weimin, et al. Nanhua-Sinian tectono-sedimentary framework of Tarim Basin, NW China[J]. Oil & Gas Geology, 2018, 39(5): 862-877. |
[18]
|
吴林,管树巍,杨海军,等. 塔里木北部新元古代裂谷盆地古地理格局与油气勘探潜力[J]. 石油学报,2017,38(4):375-385.
Wu Lin, Guan Shuwei, Yang Haijun, et al. The paleogeographic framework and hydrocarbon exploration potential of Neoproterozoic rift basin in northern Tarim Basin[J]. Acta Petrolei Sinica, 2017, 38(4): 375-385. |
[19]
|
杨云坤,石开波,刘波,等. 塔里木盆地西北缘震旦纪构造—沉积演化特征[J]. 地质科学,2014,49(1):19-29.
Yang Yunkun, Shi Kaibo, Liu Bo, et al. Tectono-sedimentary evolution of the Sinian in the northwest Tarim Basin[J]. Chinese Journal of Geology, 2014, 49(1): 19-29. |
[20]
|
Turner S A. Sedimentary record of Late Neoproterozoic rifting in the NW Tarim Basin, China[J]. Precambrian Research, 2010, 181(1/2/3/4): 85-96. |
[21]
|
刘若涵,何碧竹,焦存礼,等. 新疆阿克苏地区新元古代沉积特征对裂谷发育过程的指示[J]. 岩石学报,2020,36(10):3225-3242.
Liu Ruohan, He Bizhu, Jiao Cunli, et al. The indication of Neoproterozoic sedimentary characteristics to rift development process in Aksu area, Xinjiang[J]. Acta Petrologica Sinica, 2020, 36(10): 3225-3242. |
[22]
|
Zhou X Q, Chen D Z, Qing H R, et al. Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin, northwest China[J]. International Geology Review, 2014, 56(15): 1906-1918. |
[23]
|
石开波,刘波,田景春,等. 塔里木盆地震旦纪沉积特征及岩相古地理[J]. 石油学报,2016,37(11):1343-1360.
Shi Kaibo, Liu Bo, Tian Jingchun, et al. Sedimentary characteristics and lithofacies paleogeography of Sinian in Tarim Basin[J]. Acta Petrolei Sinica, 2016, 37(11): 1343-1360. |
[24]
|
Wang R M, Shen B, Lang X G, et al. A great Late Ediacaran ice age[J]. National Science Review, 2023, 10(8): nwad117. |
[25]
|
汪远征. 塔里木盆地西北部埃迪卡拉系上部碳酸盐序列的地层―沉积格架与台地演化的动力机制[D]. 北京:中国科学院大学,2022:35-40.
Wang Yuanzheng. The strati-depositional framework of the Upper Ediacaran carbonate successions, and dynamics of platform evolution in the northwestern Tarim Basin[D]. Beijing: University of Chinese Academy of Sciences, 2022: 35-40. |
[26]
|
高振家,吴绍祖,李永安,等. 新疆阿克苏—柯坪地区震旦纪—寒武纪地层研究[J]. 科学通报,1981,26(12):741-743.
Gao Zhenjia, Wu Shaozu, Li Yong'an, et al. Study of Sinian-Cambrian strata in Aksu-Keping area, Xinjiang[J]. Chinese Science Bulletin, 1981, 26(12): 741-743. |
[27]
|
何金有,贾承造,邬光辉,等. 新疆阿克苏地区震旦系风化壳古岩溶特征及其发育模式[J]. 岩石学报,2010,26(8):2513-2518.
He Jinyou, Jia Chengzao, Wu Guanghui, et al. Characteristics and model of Sinian weathering paleo-karst in Aksu area, Xinjiang[J]. Acta Petrologica Sinica, 2010, 26(8): 2513-2518. |
[28]
|
Zhu D Y, Liu Q Y, Wang J B, et al. Stable carbon and oxygen isotope data of Late Ediacaran stromatolites from a hypersaline environment in the Tarim Basin (NW China) and their reservoir potential[J]. Facies, 2021, 67(3): 25. |
[29]
|
何秀彬,徐备,袁志云. 新疆柯坪地区新元古代晚期地层碳同位素组成及其对比[J]. 科学通报,2007,52(1):107-113.
He Xiubin, Xu Bei, Yuan Zhiyun. C-isotope composition and correlation of the Upper Neoproterozoic in Keping area, Xinjiang[J]. Chinese Science Bulletin, 2007, 52(1): 107-113. |
[30]
|
Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49. |
[31]
|
Walter M R, Veevers J J, Calver C R, et al. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulfur in seawater, and some interpretative models[J]. Precambrian Research, 2000, 100(1/2/3): 371-433. |
[32]
|
Shang Y X, Gao Z Q, Fan T L, et al. The Ediacaran–Cambrian boundary in the Tarim Basin, NW China: Geological data anomalies and reservoir implication[J]. Marine and Petroleum Geology, 2020, 111: 557-575. |
[33]
|
Vernhet E, Reijmer J J G. Sedimentary evolution of the Ediacaran Yangtze Platform shelf (Hubei and Hunan provinces, central China)[J]. Sedimentary Geology, 2010, 225(3/4): 99-115. |
[34]
|
Ruiz-Ortiz P A, Bosence D W J, Rey J, et al. Tectonic control of facies architecture, sequence stratigraphy and drowning of a Liassic carbonate platform (Betic Cordillera, southern Spain)[J]. Basin Research, 2004, 16(2): 235-257. |
[35]
|
Trower E J, Grotzinger J P. Sedimentology, diagenesis, and stratigraphic occurrence of giant ooids in the Ediacaran Rainstorm member, Johnnie Formation, Death Valley region, California[J]. Precambrian Research, 2010, 180(1/2): 113-124. |
[36]
|
Grotzinger J P, James N P. Precambrian carbonates: Evolution of understanding[M]//Grotzinger J P, James N P. Carbonate sedimentation and diagenesis in the evolving Precambrian world. Tulsa: SEPM Society for Sedimentary Geology, 2000: 3-20. |
[37]
|
Abadi M S, Kulagina E I, Voeten D F A E, et al. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations[J]. Sedimentary Geology, 2017, 348: 19-36. |
[38]
|
Jiang G, Christie-Blick N, Kaufman A J, et al. Sequence stratigraphy of the Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India[J]. Journal of Sedimentary Research, 2002, 72(4): 524-542. |
[39]
|
Tucker M E, Wright V P. Carbonate sedimentology[M]. Oxford: Blackwell Science, 1990: 1-482. |
[40]
|
Kah L C, Bartley J K, Frank T D, et al. Reconstructing sea-level change from the internal architecture of stromatolite reefs: An example from the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada[J]. Canadian Journal of Earth Sciences, 2006, 43(6): 653-669. |
[41]
|
Kerans C, Donaldson J A. Deepwater conical stromatolite reef, Sulky Formation (Dismal Lakes Group), Middle Proterozoic, N.W.T.[M]//Geldsetzer H H J, James N P, Tebbutt G E. Reef, Canada and adjacent areas. Calgary: Canadian Society of Petroleum Geologists Memoir, 1988: 81-88. |
[42]
|
曹瑞骥,袁训来. 叠层石[M]. 合肥:中国科学技术大学出版社,2006:1-383.
Cao Ruiji, Yuan Xunlai. Stromatolites[M]. Hefei: University of Science and Technology of China Press, 2006: 1-383. |
[43]
|
Basilone L, Sulli A, Morticelli M G. Integrating facies and structural analyses with subsidence history in a Jurassic–Cretaceous intraplatform basin: Outcome for paleogeography of the Panormide southern Tethyan margin (NW Sicily, Italy)[J]. Sedimentary Geology, 2016, 339: 258-272. |
[44]
|
Chen D, Tucker M E, Zhu J, et al. Carbonate sedimentation in a starved pull-apart basin, Middle to Late Devonian, southern Guilin, South China[J]. Basin Research, 2001, 13(2): 141-167. |
[45]
|
Ding Y, Chen D Z, Zhou X Q, et al. Tectono-depositional pattern and evolution of the Middle Yangtze Platform (South China) during the Late Ediacaran[J]. Precambrian Research, 2019, 333: 105426. |
[46]
|
Vernhet E, Heubeck C, Zhu M Y, et al. Large-scale slope instability at the southern margin of the Ediacaran Yangtze Platform (Hunan province, central China)[J]. Precambrian Research, 2006, 148(1/2): 32-44. |
[47]
|
Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin: Springer, 2010: 1-924. |
[48]
|
Guo C, Chen D Z, Zhou X Q, et al. Depositional facies and cyclic patterns in a subtidal-dominated ramp during the Early-Middle Ordovician in the western Tarim Basin (NW China)[J]. Facies, 2018, 64(3): 16. |
[49]
|
宋亚芳,陈代钊,郭川,等. 塔里木盆地肖尔布拉克剖面肖尔布拉克组下段微生物碳酸盐岩沉积特征[J]. 沉积学报,2020,38(1):55-63.
Song Yafang, Chen Daizhao, Guo Chuan, et al. Depositional characteristics of microbial carbonates from the lower Xiaoerbulak Formation in the Xiaoerbulake section, Tarim Basin[J]. Acta Sedimentologica Sinica, 2020, 38(1): 55-63. |
[50]
|
Loucks R G. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999, 83(11): 1795-1834. |
[51]
|
Lin C S, Li H, Liu J Y. Major unconformities, tectonostratigraphic frameword, and evolution of the superimposed Tarim Basin, northwest China[J]. Journal of Earth Science, 2012, 23(4): 395-407. |
[52]
|
魏国齐,朱永进,郑剑锋,等. 塔里木盆地寒武系盐下构造—岩相古地理、规模源储分布与勘探区带评价[J]. 石油勘探与开发,2021,48(6):1114-1126.
Wei Guoqi, Zhu Yongjin, Zheng Jianfeng, et al. Tectonic-lithofacies paleogeography, large-scale source-reservoir distribution and exploration zones of Cambrian subsalt formation, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(6): 1114-1126. |
[53]
|
He J Y, Qing H R, Xu B. The unconformity-related palaeokarst in the uppermost Ediacaran carbonate rocks in the northwestern Tarim Block, NW China: Implication for sedimentary evolution during the Ediacaran-Cambrian transition[J]. International Geology Review, 2019, 61(7): 839-852. |
[54]
|
Zhang C L, Zou H B, Li H K, et al. Tectonic framework and evolution of the Tarim Block in NW China[J]. Gondwana Research, 2013, 23(4): 1306-1315. |
[55]
|
Peters S E, Gaines R R. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion[J]. Nature, 2012, 484(7394): 363-366. |
[56]
|
Saylor B Z, Kaufman A J, Grotzinger J P, et al. A composite reference section for terminal Proterozoic strata of southern Namibia[J]. Journal of Sedimentary Research, 1998, 68(6): 1223-1235. |
[57]
|
Germs G J B, Gaucher C. Nature and extent of A Late Ediacaran (ca. 547 Ma) glacigenic erosion surface in southern Africa[J]. South African Journal of Geology, 2012, 115(1): 91-102. |
[58]
|
Xu B, Zou H B, Chen Y, et al. The Sugetbrak basalts from northwestern Tarim Block of northwest China: Geochronology, geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic[J]. Precambrian Research, 2013, 236: 214-226. |
[59]
|
Ren R, Guan S W, Zhang S C, et al. How did the peripheral subduction drive the Rodinia breakup: Constraints from the Neoproterozoic tectonic process in the northern Tarim Craton[J]. Precambrian Research, 2020, 339: 105612. |
[60]
|
何碧竹,焦存礼,黄太柱,等. 塔里木盆地新元古代裂陷群结构构造及其形成动力学[J]. 中国科学(D辑):地球科学,2019,49(4):635-655.
He Bizhu, Jiao Cunli, Huang Taizhu, et al. Structural architecture of Neoproterozoic rifting depression groups in the Tarim Basin and their formation dynamics[J]. Science China (Seri. D): Earth Sciences, 2019, 49(4): 635-655. |
[61]
|
管树巍,张春宇,任荣,等. 塔里木北部早寒武世同沉积构造:兼论寒武系盐下和深层勘探[J]. 石油勘探与开发,2019,46(6):1075-1086.
Guan Shuwei, Zhang Chunyu, Ren Rong, et al. Early Cambrian syndepositional structure of the northern Tarim Basin and a discussion of Cambrian subsalt and deep exploration[J]. Petroleum Exploration and Development, 2019, 46(6): 1075-1086. |
[62]
|
Clarke P, Parnell J. Facies analysis of a back-tilted lacustrine basin in a strike-slip zone, Lower Devonian, Scotland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 151(1/2/3): 167-190. |
[63]
|
谈明轩,朱筱敏,张自力,等. 构造掀斜主导的断陷湖盆缓坡层序“源—汇”正演模拟定量研究[J]. 沉积学报,2022,40(6):1481-1493.
Tan Mingxuan, Zhu Xiaomin, Zhang Zili, et al. Source-to-sink quantitative stratigraphic forward modeling on the tilted hanging-wall sequence architecture of a tectonically-driven lacustrine rift basin[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1481-1493. |
[64]
|
Zhou X Q, Chen D Z, Zhang L Y, et al. Silica-rich seawater in the Early Cambrian: Sedimentological evidence from bedded cherts[J]. Terra Nova, 2021, 33(5): 494-501. |
[65]
|
金值民,谭秀成,唐浩,等. 浅水超覆沉积富有机质细粒沉积物沉积环境与岩石学特征:以塔里木盆地西北部寒武系玉尔吐斯组为例[J]. 石油勘探与开发,2020,47(3):476-489.
Jin Zhimin, Tan Xiucheng, Tang Hao, et al. Sedimentary environment and petrological features of organic-rich fine sediments in shallow water overlapping deposits: A case study of Cambrian Yuertus Formation in northwestern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 476-489. |