-
鄂尔多斯盆地延长组经历了四十多年的研究,关于基本地质成藏条件等已形成了共识,指导油田生产也取得了显著的成效。本文主要对与传统“平起平落、基本等厚”的沉积模式差别较大的三维地震前积现象和层序地层格架进行了分析,对盆地西南部延长组的层序格架提出了新的认识,其差异主要表现为三个方面:一是烃源岩标志层没变、单井之间的对应关系变;二是湖盆范围没变、湖退充填演化过程变;三是砂岩总体规律没变、砂层之间的连通性变。
-
湖盆底形受构造沉降、水体范围、古水深等方面因素的控制[32⁃33]。鄂尔多斯晚三叠世延长组受印支运动的影响,快速沉降过程中形成了面积大、水域宽的大型内陆坳陷淡水湖盆,沉积了一套厚度大、面积广的富有机质的暗色泥页岩,为中生界最主要的优质烃源岩,烃源岩展布形态可指示沉积时水体的分布范围[34]。根据3.1节的分析,烃源岩在单井和地震剖面上极易识别,也可互相标定,所以无论是传统的垂向加积还是本文的进积主导模式,烃源岩的分布范围是一致的,长7最大湖泛期烃源岩分布约6.3×104 km2,后期长3期萎缩至约0.5×104 km2。
前人对延长组的水深研究认识差异较大,长庆油田采用印模法恢复古水深介于40~80 m,邱欣卫[35]采用地球化学法恢复水体深度介于60~100 m[35⁃36]。传统等厚地层方案具有穿时性,恢复结果普遍较小,本文根据地震强连续同相轴指示的湖泛面凝缩层进行分析。根据地震同相轴的顶底界面可恢复沉积地层的最大可容空间垂深,近似等于古水深,岩石压实率平均约为0.3(砂岩0.2、泥岩0.6),恢复陇东地区延长组沉积期古水深介于90~310 m,地形坡度一般介于0.9°~1.8°,最大坡度为2.25°(表3)。
表 3 陇东地区延长组古水深及斜坡坡度统计表
Table 3. Ancient water depth and slope angle of the Yanchang Formation in the Longdong area
井区 斜坡高度/m 压实校正 古水深/m 斜坡长度/m 斜坡坡度/(°) L63 134 198 6 783 1.67 Z311 74 96 3 236 1.70 X302 130 169 6 039 1.60 X42 80 104 6 023 0.99 X378 170 221 5 623 2.25 X23 110 143 7 673 1.07 X321 108 140 4 476 1.80 X121 210 310 4 317 2.21 X117 126 164 6 025 1.56 X304 124 161 5 778 1.60 -
传统观点认为自长7最大湖泛期之后的湖退过程是“铺毯子”式的垂向叠加。按照传统沉积模式,延长组长7湖盆范围达到最大,然后水体萎缩,在全盆地范围内进行沉积卸载,随后进入第二次湖泛期,再进行新一轮的全盆地沉积,像“铺毯子”一样,湖泛规模越来越小,湖盆逐渐变小并最终萎缩消亡。
本文研究认为,延长组具有“填湖造田”式的进积充填特征,长7最大湖泛期之后湖盆是连续震荡湖退过程[17],由于长7最大湖泛时盆地可容空间非常大,水体阻力强,沉积物无法搬运至湖盆中心深水区,而是从湖盆边部向中心依次进积推进,经过层序CHQ1~CHQ3等三期沉积之后,斜坡体系逐步延伸到湖盆中心,且沉积坡度逐渐变大,在此基础上,层序CHQ4~CHQ7对应进积充填的中晚期,沉积坡度和水体深度逐渐变小,斜坡由进积为主转向加积为主,随着地层不断加积填充,湖盆逐渐萎缩消失。
这种“填湖造田”式的进积充填是导致湖盆中部表现出“满盆砂”的重要因素。首先,长7最大湖泛期之后,鄂尔多斯盆地具备深水重力流广泛发育的优越条件:(1)延长组最大湖泛期半深湖—深湖范围超过4万平方千米,水体深度在100 m以上,这为重力流沉积提供了足够的可容纳空间;(2)前积斜坡坡度一般介于1°~3°,为重力流的形成提供了足够的坡度;(3)盆地西南部秦岭地区抬升加剧,气候湿润,陆源碎屑物质供给充足,为重力流形成提供了充沛的物质基础;(4)晚三叠世鄂尔多斯盆地附近构造(火山)活动频繁,加上震荡湖退背景,斜坡上部的三角洲砂体受洪水、构造等因素影响滑塌至斜坡末端,在坡脚位置形成具有变形、包卷构造及泥岩撕裂屑的大型朵状深水重力流沉积。其次,随着斜坡向湖盆中心逐步推进,坡脚重力流砂体多期叠置,从而在半深湖—深湖区形成大面积、横向连片的重力流沉积,成为深水区最重要的储集体[20,34]。
-
延长组砂体展布规律主要受沉积环境和沉积相控制,无论是传统等厚方案还是本文的层序地层格架,总体上富集层段和平面形态基本类似,有利砂体主要富集在斜坡带上部的三角洲前缘亚相和下部的湖泊深水重力流亚相。中间部位的沉积斜坡发育前三角洲亚相泥岩,局部见小型浊积砂岩;上部三角洲前缘发育牵引流为主的水下分流河道砂体,单层砂厚3~10 m,主河道宽度一般介于5~10 km,平面呈鸟足状展布;下部深水重力流砂体规模非常大,由砂质碎屑流和滑塌浊积岩组成,单层砂厚5~30 m,平面呈扇状在斜坡脚堆积,长轴延伸超过30 km,长轴呈北西—南东向展布,短轴与物源方向平行,单期延伸距离8~15 km。
如图9所示,与传统等厚方案相比,顺物源方向的砂体对应关系和单井之间的小层砂体连通性及油藏组合关系差异大。一是随着湖盆的逐渐萎缩,斜坡上部三角洲分流河道砂体分布范围逐渐增大,部分长2、长3砂岩向湖盆中心方向可延伸至长3、长4+5段。二是受滑塌沉积的输砂动力和深水泥岩的卸载阻力双重影响,如果输砂动力较强,来自上部的砂体切蚀替换原坡脚部位沉积的泥岩,一直搬运到最底部的下超面,反之如果搬运动力弱,则主要富集在坡脚部位形成厚层砂岩,基本对应传统方案的长71、长72层段,每一期层序单元内的砂体向上可追踪到长6油层组,向下可与长73小层砂体连通。这些坡脚沉积的重力流砂体邻近长73深湖相富有机质页岩,具有优越的成藏条件,发育大面积岩性油藏。层序格架下的油层精细对比表明,在顺物源方向,油层通常表现为前积式叠置特征,油藏单元之间被稳定分布的湖泛泥岩层分隔,单个油层可以从传统的长6油层组延伸至长7油层组,这与等厚格架下近似平行和等厚的油藏组合特征表现出较大差异[20]。目前,在鄂尔多斯盆地环江地区的油藏开发过程中,已经注意到等时地层格架下的油层对比关系与空间非均质性变化,并且在新的地层格架下重新认识油藏和注采对应关系。
图 9 陇东地区延长组地层叠前反演连井剖面(位置见图2)
Figure 9. Seismic inversion and well profiles of the Yanchang Formation in the Longdong area
需要指出的是,鄂尔多斯盆地延长组湖盆范围大,沉积类型复杂多样,本文讨论的陇东地区斜坡坡度和水体深度较大,西南物源持续稳定供给,地层前积结构明显,在湖平面震荡过程中形成的湖退、湖侵体系域能够较好识别,因此本文的地层层序和格架对类似的坳陷湖盆地层研究具有借鉴意义;而对于鄂尔多斯盆地东北缓坡区以及湖盆中部物源交汇区来说,该研究方法可参考,但地层结构不可照搬套用,其层序格架还需进一步的深入研究。
New Insight into Sequence Stratigraphy and Its Geological Significance in the Yanchang Formation, Longdong Area, Ordos Basin
-
摘要: 目的 最新三维地震资料显示延长组存在大量强反射同相轴前积现象,与传统“平起平落、等厚分布”的地层方案差异较大,为重新认识延长组地层格架提供了新视角。 方法 通过岩心观察、井震标定及三维地震解释,结合地震反演技术,对鄂尔多斯盆地陇东地区的地震相、层序地层及沉积体系等进行系统研究。 结果 延长组地震强反射连续同相轴可指示湖泛面凝缩层沉积。不同方向的地震相特征差异较大,平行物源方向的地震剖面包括中等振幅中等连续性亚平行结构、强振幅强连续性前积结构、弱振幅差连续性乱岗状结构三类,其中前积结构“穿层”最明显;垂直物源方向包括强振幅强连续性平行结构、强—中振幅中连续性丘状结构、弱振幅差连续性乱岗状结构三类地震相。陇东地区延长组湖盆充填演化经历了多期快速湖侵、缓慢湖退的震荡过程,可划分为多期湖侵—湖退体系域(T-R)组成的三级层序单元,呈透镜状依次向湖中心进积叠置,发育“斜坡富泥、两端富砂”的沉积序列。 结论 新的层序格架与传统等厚沉积模式存在三个方面的差异:一是烃源岩标志层没变,单井之间的对应关系变;二是延长组湖盆范围没变,湖盆充填演化过程变;三是砂岩总体分布规律没变,砂层之间的连通性变。Abstract: Objective The latest three-dimensional (3D) seismic data displays a large amount of strong reflection seismic event progradation in the Yanchang Formation; this is significantly different from the traditional stratigraphic scheme of "flat rise flat fall and equal thickness distribution." This difference provides a new perspective for understanding the stratigraphic framework of the Yanchang Formation. Methods The seismic facies, sequence stratigraphy, and sedimentary system in the Longdong area of the Ordos Basin are systematically studied through core observation, well seismic calibration, and 3D seismic interpretation combined with seismic inversion technology. Results The continuous seismic events of strong reflections in the Yanchang Formation can indicate the deposition of condensed layers during lake flooding. The seismic facies along and across provenance are extremely different. The seismic profiles along provenance can be divided into three types: sub-parallel structures with medium amplitude and medium continuity, progradational reflections with strong amplitude and strong continuity, and disordered structures with low amplitude and low continuity, among which the progradational type are the most evident. The seismic profiles across provenance can also be divided into three types: parallel structures with strong amplitude and strong continuity, mound structure with medium-strong amplitude and strong continuity, and disordered structures with low amplitude and low continuity. The lake basin evolution of the Yanchang Formation in the Longdong area with rapid lake transgression and slow lake regression fluctuating processes can be divided into a third-order sequence unit consisting of multi-stage transgressive-regressive (T-R) system tracts. The sequence units prograded and overlapped as they formed wedges toward the center of the lake, developing the sedimentary sequence of "slope rich in mudstone and both top-set and bottom-set rich in sand bodies." Conclusion This region differs from the traditional sedimentary model in three aspects. First, the mudstone marker layer has not changed, and the corresponding relationship between individual wells has changed. Second, the extent of the lake in the Yanchang Formation has not changed; however, the evolution of basin filling has changed. Third, the overall distribution of sandstone has not changed, whereas the connectivity between sand layers has changed.
-
表 1 平行物源方向地震相类型
Table 1. Types of seismic facies in the parallel provenance direction
表 2 垂直物源方向地震相类型
Table 2. Types of seismic facies in the vertical provenance direction
表 3 陇东地区延长组古水深及斜坡坡度统计表
Table 3. Ancient water depth and slope angle of the Yanchang Formation in the Longdong area
井区 斜坡高度/m 压实校正 古水深/m 斜坡长度/m 斜坡坡度/(°) L63 134 198 6 783 1.67 Z311 74 96 3 236 1.70 X302 130 169 6 039 1.60 X42 80 104 6 023 0.99 X378 170 221 5 623 2.25 X23 110 143 7 673 1.07 X321 108 140 4 476 1.80 X121 210 310 4 317 2.21 X117 126 164 6 025 1.56 X304 124 161 5 778 1.60 -
[1] 李相博,刘化清,陈启林,等. 大型坳陷湖盆沉积坡折带特征及其对砂体与油气的控制作用:以鄂尔多斯盆地三叠系延长组为例[J]. 沉积学报,2010,28(4):717-729. Li Xiangbo, Liu Huaqing, Chen Qilin, et al. Characteristics of slope break belt in large depression lacustrine basin and its controlling effect on sandbody and petroleum: Taking the Triassic Yanchang Formation in the Ordos Basin as an example[J]. Acta Sedimentologica Sinica, 2010, 28(4): 717-729. [2] 李相博,郭彦如,刘化清,等. 浅谈小波分析在鄂尔多斯盆地延长组层序地层划分中的应用[J]. 天然气地球科学,2006,17(6):779-782. Li Xiangbo, Guo Yanru, Liu Huaqing, et al. The application of wavelet analysis in sequence stratigraphic subdivision of the Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2006, 17(6): 779-782. [3] 刘池洋,赵红格,桂小军,等. 鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应[J]. 地质学报,2006,80(5):617-638. Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin [J]. Acta Geologica Sinica, 2006, 80(5): 617-638. [4] 赵俊峰,刘池洋,喻林,等. 鄂尔多斯盆地中生代沉积和堆积中心迁移及其地质意义[J]. 地质学报,2008,82(4):540-552. Zhao Junfeng, Liu Chiyang, Yu Lin, et al. The transfer of depocenters and accumulation centers of Ordos Basin in Mesozoic and its meaning [J]. Acta Geologica Sinica, 2008, 82(4): 540-552. [5] 王峰,田景春,范立勇,等. 鄂尔多斯盆地三叠系延长组沉积充填演化及其对印支构造运动的响应[J]. 天然气地球科学,2010,21(6):882-889. Wang Feng, Tian Jingchun, Fan Liyong, et al. Evolution of sedimentary fillings in Triassic Yanchang Formation and its response to Indosinian Movement in Ordos Basin[J]. Natural Gas Geoscience, 2010, 21(6): 882-889. [6] 王西强,舒成龙,高雪,等. 对鄂尔多斯盆地三叠系延长组传统地层划分方案的反思:以姬塬油田罗38区、罗211区为例[J]. 大庆石油地质与开发,2020,39(6):21-30. Wang Xiqiang, Shu Chenglong, Gao Xue, et al. Reflection on the traditional stratigraphic dividion program for Triassic Yanchang Formation in Ordos Basin: A case of block Luo-38 and Luo-211 of Jiyuan oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(6): 21-30. [7] 李文厚,刘溪,张倩,等. 鄂尔多斯盆地中晚三叠世延长期沉积演化[J]. 西北大学学报(自然科学版),2019,49(4):605-621. Li Wenhou, Liu Xi, Zhang Qian, et al. Deposition evolution of Middle-Late Triassic Yanchang Formation in Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(4): 605-621. [8] 陈洪德,倪新锋. 陇东地区三叠系延长组沉积层序及充填响应特征[J]. 石油与天然气地质,2006,27(2):143-151. Chen Hongde, Ni Xinfeng. Depositional sequence and filling response characte-ristics of Triassic Yanchang Formation in Longdong area[J]. Oil & Gas Geology, 2006, 27(2): 143-151. [9] 李树同,王多云,王彬,等. 坳陷型湖盆缓坡边缘沉积坡折带的识别:以鄂尔多斯盆地三叠纪延长期沉积坡折带为例[J]. 天然气地球科学,2008,19(1):83-88. Li Shutong, Wang Duoyun, Wang Bin, et al. Identification of sedimentary slope breaks in the margin of a down warped lake basin's ramp belt: A case from Triassic Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2008, 19(1): 83-88. [10] 郭彦如,刘化清,李相博,等. 大型坳陷湖盆层序地层格架的研究方法体系:以鄂尔多斯盆地中生界延长组为例[J]. 沉积学报,2008,26(3):384-391. Guo Yanru, Liu Huaqing, Li Xiangbo, et al. Method system on studying sequence stratigraphic framework of large sagged lacustrine basin: A case study from Mesozoic Yanchang Fm., Ordos Basin[J]. Acta Sedimentologica Sinica, 2008, 26(3): 384-391. [11] 赵俊兴,申赵军,李良,等. 大型内陆拗陷湖盆层序结构充填特征及其分布规律:以鄂尔多斯盆地延长组为例[J]. 岩石学报,2011,27(8):2318-2326. Zhao Junxing, Shen Zhaojun, Li Liang, et al. Sequence filling characteristics and distribution laws of large continental depressed lake basin: A case study of Yanchang Formation, Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2318-2326. [12] 李树同,王多云,陶辉飞,等. 鄂尔多斯盆地三叠纪延长期湖水分布特征及演化规律[J]. 沉积学报,2009,27(1):41-47. Li Shutong, Wang Duoyun, Tao Huifei, et al. The lake distribution and evolution law of the Ordos Basin, in Triassic Yanchang period[J]. Acta Sedimentologica Sinica, 2009, 27(1): 41-47. [13] 李思田,林畅松,解习农,等. 大型陆相盆地层序地层学研究:以鄂尔多斯中生代盆地为例[J]. 地学前缘,1995,2(3/4):133-136,148. Li Sitian, Lin Changsong, Xie Xinong, et al. Approaches of nonmarine sequence stratigraphy: A case study on the Mesozoic Ordos Basin[J]. Earth Science Frontiers, 1995, 2(3/4): 133-136, 148. [14] 张凤奎,张忠义,张林. 鄂尔多斯盆地三叠系延长组层序地层特征新认识[J]. 地层学杂志,2008,32(1):99-105. Zhang Fengkui, Zhang Zhongyi, Zhang Lin. New sequence stratigraphic observations of the Triassic Yanchang Formation in the Ordos Basin[J]. Journal of Stratigraphy, 2008, 32(1): 99-105. [15] 王居峰,郭彦如,张延玲,等. 鄂尔多斯盆地三叠系延长组层序地层格架与沉积相构成[J]. 现代地质,2009,23(5):803-808. Wang Jufeng, Guo Yanru, Zhang Yanling, et al. Sequence stratigraphic framework and sedimentary facies of Yanchang Formation, Triassic system in Ordos Basin[J]. Geoscience, 2009, 23(5): 803-808. [16] 陈飞,胡光义,孙立春,等. 鄂尔多斯盆地南部上三叠统延长组层序地层格架内沉积相特征与演化[J]. 古地理学报,2012,14(3):321-330. Chen Fei, Hu Guangyi, Sun Lichun, et al. Characteristics of sedimentary facies and evolution in sequence stratigraphic framework of the Upper Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2012, 14(3): 321-330. [17] 惠潇,侯云超,喻建,等. 大型陆相坳陷湖盆深湖区前积型地震地层特征及砂体分布规律:以鄂尔多斯盆地陇东地区延长组中段为例[J]. 沉积学报,2022,40(3):787-800. Hui Xiao, Hou Yunchao, Yu Jian, et al. Progradational seismic strata features and distribution of sandstone in the deep-water area of a large-scale lacustrine depression basin: A case study of the Middle Yanchang Formation in Longdong, Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 787-800. [18] 付金华,郭正权,邓秀芹. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义[J]. 古地理学报,2005,7(1):34-44. Fu Jinhua, Guo Zhengquan, Deng Xiuqin. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin[J]. Journal of Palaeogeography, 2005, 7(1): 34-44. [19] 杨华,刘自亮,朱筱敏,等. 鄂尔多斯盆地西南缘上三叠统延长组物源与沉积体系特征[J]. 地学前缘,2013,20(2):10-18. Yang Hua, Liu Ziliang, Zhu Xiaomin, et al. Provenance and depositional systems of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. Earth Science Frontiers, 2013, 20(2): 10-18. [20] 邓秀芹,蔺昉晓,刘显阳,等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J]. 古地理学报,2008,10(2):159-166. Deng Xiuqin, Lin Fangxiao, Liu Xianyang, et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(2): 159-166. [21] Berton F, Vesely F F. Stratigraphic evolution of Eocene clinoforms from northern Santos Basin, offshore Brazil: Evaluating controlling factors on shelf-margin growth and deep-water sedimentation[J]. Marine and Petroleum Geology, 2016, 78: 356-372. [22] 曾洪流,朱筱敏,朱如凯,等. 陆相坳陷型盆地地震沉积学研究规范[J]. 石油勘探与开发,2012,39(3):275-284. Zeng Hongliu, Zhu Xiaomin, Zhu Rukai, et al. Guidelines for seismic sedimentologic study in non-marine postrift basins[J]. Petroleum Exploration and Development, 2012, 39(3): 275-284. [23] Houseknecht D W. Petroleum systems framework of significant new oil discoveries in a giant Cretaceous (Aptian–Cenomanian) clinothem in Arctic Alaska[J]. AAPG Bulletin, 2019, 103(3): 619-652. [24] 顾家裕,郭彬程,张兴阳. 中国陆相盆地层序地层格架及模式[J]. 石油勘探与开发,2005,32(5):11-15. Gu Jiayu, Guo Bincheng, Zhang Xingyang. Sequence stratigraphic framework and model of the continental basins in China[J]. Petroleum Exploration and Development, 2005, 32(5): 11-15. [25] Liu K Y, Liang T C K, Paterson L, et al. Computer simulation of the influence of basin physiography on condensed section deposition and maximum flooding[J]. Sedimentary Geology, 1998, 122(1/2/3/4): 181-191. [26] 徐怀大. 地震地层学在沉积学研究中的意义:从中国东部盆地下第三系地震地层及沉积学研究中得到的某些新认识[J]. 地球科学:武汉地质学院学报,1986,11(3):259-265. Xu Huaida. Significance of seismo-stratigraphy in sedimentologic study [J]. Earth Science:Journal of China University of Geo-sciences, 1986, 11(3): 259-265. [27] 张晨晨,张顺,魏巍,等. 松辽盆地嫩江组凝缩层形成机制及其地质意义[J]. 沉积学报,2015,33(5):891-898. Zhang Chenchen, Zhang Shun, Wei Wei, et al. The mechanism and significance of the Cretaceous condensed section in the Nenjiang Formation, Songliao Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 891-898. [28] 刘池洋,王建强,邱欣卫,等. 鄂尔多斯盆地延长期富烃坳陷形成的动力学环境与构造属性[J]. 岩石学报,2020,36(6):1913-1930. Liu Chiyang, Wang Jianqiang, Qiu Xinwei, et al. Geodynamic environment and tectonic attributes of the hydrocarbon-rich sag in Yanchang period of Middle-Late Triassic, Ordos Basin[J]. Acta Petrologica Sinica, 2020, 36(6): 1913-1930. [29] Galloway W E. Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding-surface bounded depositional units[J]. AAPG Bulletin, 1989, 73(2):125-142. [30] 王俊,鲍志东,王云龙,等. 松辽盆地南部乾安地区上白垩统青三段高分辨率层序地层及沉积特征[J]. 古地理学报,2017,19(2):327-340. Wang Jun, Bao Zhidong, Wang Yunlong, et al. High-resolution sequence stratigraphy and sedimentary characte-ristics of the member 3 of Qingshankou Formation of Upper Cretaceous in Qian'an area, south Songliao Basin[J]. Journal of Palaeogeography, 2017, 19(2): 327-340. [31] 秦祎,朱筱敏,王彤,等. 陆相断陷湖盆强制湖退及沉积响应:以莱州湾凹陷沙三段为例[J]. 古地理学报,2020,22(3):457-468. Qin Yi, Zhu Xiaomin, Wang Tong, et al. Forced regression and its sedimentary response to continental lacustrine rift basin: A case of the member 3 of Shahejie Formation in Laizhouwan Sag, Bohai Bay Basin[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(3): 457-468. [32] 禚喜准,王琪,朱筱敏,等. 松辽盆地南部拗陷期湖盆底形演化及充填序列[J]. 石油学报,2009,30(4):536-541. Zhuo Xizhun, Wang Qi, Zhu Xiaomin, et al. Relationship between bottom morphology of lake basin and filling sequence during depression period in the southern Songliao Basin[J]. Acta Petrolei Sinica, 2009, 30(4): 536-541. [33] 丁晓琪,张哨楠,熊迪,等. 鄂尔多斯盆地西南缘延长组湖盆底形演化研究[J]. 西南石油大学学报(自然科学版),2011,33(6):1-6. Ding Xiaoqi, Zhang Shaonan, Xiong Di, et al. Evolution of basin bottom morphology of Yanchang Formation, UpperTriassic, southwestern Ordos Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2011, 33(6): 1-6. [34] 杨华,邓秀芹. 构造事件对鄂尔多斯盆地延长组深水砂岩沉积的影响[J]. 石油勘探与开发,2013,40(5):513-520. Yang Hua, Deng Xiuqin. Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(5): 513-520. [35] 邱欣卫. 鄂尔多斯盆地延长期富烃凹陷特征及其形成的动力学环境[D]. 西安:西北大学,2011. Qiu Xinwei. Characteristics and dynamic settings of Yanchang period hydrocarbon-rich depression in Ordos Basin, China[D]. Xi’an: Northwest University, 2011. [36] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43. Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.