高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网纹红土微区内元素的分布特征及网纹化过程

蒋旭霞 王天阳 李凤全 朱丽东 叶玮 郭忠雪

蒋旭霞, 王天阳, 李凤全, 朱丽东, 叶玮, 郭忠雪. 网纹红土微区内元素的分布特征及网纹化过程[J]. 沉积学报, 2025, 43(3): 1049-1058. doi: 10.14027/j.issn.1000-0550.2023.050
引用本文: 蒋旭霞, 王天阳, 李凤全, 朱丽东, 叶玮, 郭忠雪. 网纹红土微区内元素的分布特征及网纹化过程[J]. 沉积学报, 2025, 43(3): 1049-1058. doi: 10.14027/j.issn.1000-0550.2023.050
JIANG XuXia, WANG TianYang, LI FengQuan, ZHU LiDong, YE Wei, GUO ZhongXue. Distribution Characteristics of Reticular Red Clay Micro-areas and the Formation Process of the Reticulated Mechanism[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1049-1058. doi: 10.14027/j.issn.1000-0550.2023.050
Citation: JIANG XuXia, WANG TianYang, LI FengQuan, ZHU LiDong, YE Wei, GUO ZhongXue. Distribution Characteristics of Reticular Red Clay Micro-areas and the Formation Process of the Reticulated Mechanism[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1049-1058. doi: 10.14027/j.issn.1000-0550.2023.050

网纹红土微区内元素的分布特征及网纹化过程

doi: 10.14027/j.issn.1000-0550.2023.050
基金项目: 

国家自然科学基金项目 41971111

详细信息
    作者简介:

    蒋旭霞,女,1998年出生,硕士研究生,自然地理学,E-mail: jxxzjnu@qq.com

    通讯作者:

    王天阳,女,副教授,E-mail: lyg159@zjnu.cn

Distribution Characteristics of Reticular Red Clay Micro-areas and the Formation Process of the Reticulated Mechanism

Funds: 

National Natural Science Foundation of China 41971111

  • 摘要: 目的 中国南方网纹红土对重建南方第四纪气候环境具有重要的意义,但对网纹化过程的微观认认识尚显薄弱。 方法 将微区分析技术、地统计分析和因子分析等方法相结合,对安徽郎溪网纹红土剖面的白色条纹微区和红白条纹过渡微区进行了元素地球化学分析。 结果 (1)从元素的含量来看,白色条纹中Fe2O3(3.43%~16.97%)、Mn(0.01×10-6~0.37×10-6)和Co(21×10-6~230×10-6)等铁族元素的含量呈现出条纹中心为低值区,外围为高值区且从条纹中心到外围逐渐增加的趋势,而K2O(0.78%~1.48%)、MgO(0.18%~0.45%)等其他常量元素以及Ti(4 054×10-6~7 190×10-6)、Zr(310×10-6~330×10-6)等稳定性元素含量的分布趋势则与之相异。(2)白色条纹微区与红白条纹过渡微区皆以因子1为主,其主要体现了铁和铁族元素等在白色条纹中的淋溶迁移,以及K、Ca、Mg等易溶常量元素和Ti、Zr等稳定性元素的相对富集过程;因子2则主要与铁及铁族元素的淀积过程,以及铁氧化物对Cu、Zn的吸附过程等有关。 结论 通过微区技术方法和因子分析等方法对网纹红土进行分析,发现白色条纹内部并非是均质的,而是存在由白色条纹中心到外围的渐变特征。白色条纹到红色条纹微区变化规律与白色条纹微区相似,网纹化是一个持续发育的过程。网纹化过程中铁和铁族元素的淋溶迁移占主导,铁和铁族元素淀积过程与淋溶迁移同时存在,网纹化过程相对复杂。
  • 图  1  观测点位置示意图

    (a) topographic map of Xuancheng; (b) sectional feature map; (c) sample map of the red and white transition micro⁃area(12 mm×10 mm); (d) sample map of white vein micro⁃area(19 mm×17 mm); red line is the junction between the white vein and red matrix; blue cross is the central test area of the sample

    Figure  1.  Schematic diagram of the observation sites

    Fig.1

    图  2  白色条纹与红色条纹过渡微区元素变化

    Figure  2.  Elemental changes in the transition micro⁃area of the white and red veins

    图  3  白色条纹微区元素变化

    Figure  3.  Elemental changes in the micro⁃area of the white vein

    表  1  网纹红土常量元素组成(%)

    Table  1.   Reticular red clay chemical composition (%) of constant elements

    样品(数量)SiO2Al2O3Fe2O3MgOCaONa2OK2O
    红白过渡微区样品(n=121)
    平均值53.9411.007.610.340.370.231.41
    最小值45.789.785.770.230.370.211.11
    最大值56.4711.4813.020.370.380.261.51
    白色网纹微区样品(n=121)
    平均值51.9413.317.60.360.480.241.26
    最小值39.8210.193.430.180.440.210.78
    最大值58.3614.5216.970.450.510.311.48
    下载: 导出CSV

    表  2  网纹红土部分微量元素组成(×10-6

    Table  2.   Composition of trace element of reticular red clay (×10-6)

    样品(数量)CuCoZnCrMnNiRbSrTiZr
    红白过渡微区样品(n=121)
    平均值74.8841.9851.207 088.04771.08860.218.6614.366 164.67360.62
    最小值2474980253294104 950354
    最大值2371405427 6172 2773 33912176 544371
    白色网纹微区样品(n=121)
    平均值138.6192.0971.5416 591.060.131 815.17113.6419.066 093.00317.51
    最小值3321667580.0110297114 054310
    最大值3862307748 1870.375 371121247 190330
    下载: 导出CSV

    表  3  微区样品数据的因子分析结果

    Table  3.   Factor analysis results of the sample data in the micro⁃area

    元素因子1(白红过渡)因子2(白红过渡)因子1(白色条纹)因子2(白色条纹)
    Cu-0.830.56-0.990.11
    Co-0.820.57-0.980.15
    Zn-0.140.540.080.80
    Cr-0.820.57-0.990.16
    Mn-0.820.57-0.990.16
    Ni-0.830.56-0.990.15
    Rb0.64-0.610.82-0.08
    Sr0.53-0.590.91-0.11
    Ti0.86-0.490.98-0.17
    Zr0.57-0.400.44-0.77
    Al2O30.99-0.220.98-0.03
    Fe2O3-0.770.64-0.980.19
    K2O0.88-0.470.99-0.14
    Na2O-0.770.56-0.980.11
    SiO20.88-0.450.98-0.19
    CaO0.60-0.240.97-0.04
    MgO0.89-0.410.99-0.13
    下载: 导出CSV
  • [1] 胡雪峰,龚子同,夏应菲,等. 安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义[J]. 土壤学报,1999,36(3):301-307.

    Hu Xuefeng, Gong Zitong, Xia Yingfei, et al. Comparative study of yellow-brown earth and Quaternary red clay in Xuanzhou, Anhui province and its palaeo-climate significance[J]. Acta Pedologica Sinica, 1999, 36(3): 301-307.
    [2] 尹秋珍,郭正堂. 中国南方的网纹红土与东亚季风的异常强盛期[J]. 科学通报,2006,51(2):186-193.

    Yin Qiuzhen, Guo Zhengtang. Mid-Pleistocene vermiculated red soils in southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin, 2006, 51(2): 186-193.
    [3] Yaro D T, Kparmwang T, Raji B A, et al. Extractable micronutrients status of soils in a plinthitic landscape at Zaria, Nigeria[J]. Communications in Soil Science and Plant Analysis, 2008, 39(15/16): 2484-2499.
    [4] 张智,凌超豪,贾玉连,等. 多重理化指标揭示的中国南方更新世网纹红土网纹化机制[J]. 地层学杂志,2020,44(1):95-103.

    Zhang Zhi, Ling Chaohao, Jia Yulian, et al. Multi-physico chemical evidences for formation of Pleistocene reticulated soil and its environmental implication in South China[J]. Journal of Stratigraphy, 2020, 44(1): 95-103.
    [5] 来红州,莫多闻,李新坡. 洞庭盆地红土地层中网纹的成因探讨[J]. 北京大学学报(自然科学版),2005,41(2):240-248.

    Lai Hongzhou, Mo Duowen, Li Xinpo. Genesis of reticulate clay in the laterite of the Dongting Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2005, 41(2): 240-248.
    [6] 徐传奇,廖富强,贾玉连,等. 中国南方网纹红土元素地球化学特征及其对网纹化过程的指示意义[J]. 古地理学报,2016,18(5):865-878.

    Xu Chuanqi, Liao Fuqiang, Jia Yulian, et al. Element geochemical characteristics of the reticulate red clay in southern China and its significance for the formation proccess of reticulated mottles[J]. Journal of Palaeogeography, 2016, 18(5): 865-878.
    [7] 袁双. 网纹红土铁形态特征与网纹红土形成环境[D]. 金华:浙江师范大学,2010:24-62.

    Yuan Shuang. Iron features and formation environment of vermicular red earth[D]. Jinhua: Zhejiang Normal University, 2010: 24-62.
    [8] 李凤全,叶玮,王天阳,等. 网纹红土红色基质与白色条纹铁迁移模型[J]. 第四纪研究,2018,38(2):306-313.

    Li Fengquan, Ye Wei, Wang Tianyang, et al. The model for iron migration between white reticulated mottles and red matrix[J]. Quaternary Sciences, 2018, 38(2): 306-313.
    [9] 张晓,朱丽东,黄颖,等. 加积型网纹红土网纹化机制及形成环境[J]. 第四纪研究,2020,40(1):214-228.

    Zhang Xiao, Zhu Lidong, Huang Ying, et al. The reticulated mechanism and its climatic implication of aggradation red earth[J]. Quaternary Sciences, 2020, 40(1): 214-228.
    [10] 李驭亚. 华南第四纪网状红土虫状白斑的成因探讨[J]. 地质论评,1965,23(2):144-145.

    Li Yuya. On the origin of the white vermicular spots of the Quaternary reticulated red clay in South China[J]. Geological Review, 1965, 23(2): 144-145.
    [11] 朱景郊. 网纹红土的成因及其研究意义[J]. 地理研究,1988,7(4):12-20.

    Zhu Jingjiao. Genesis and research significance of the plinthitic horizon[J]. Geographical Research, 1988, 7(4): 12-20.
    [12] 熊尚发,丁仲礼,刘东生. 南方红土网纹:古森林植物根系的土壤学证据[J]. 科学通报,2000,45(12):1317-1321.

    Xiong Shangfa, Ding Zhongli, Liu Dongsheng. The worm-shaped veins in the red earth of South China:Pedological evidence for root traces of past forest[J]. Chinese Science Bulletin, 2000, 45(12): 1317-1321.
    [13] Hu X F, Zhao J L, Zhang P F, et al. Fe isotopic composition of the Quaternary Red Clay in subtropical Southeast China: Redoxic Fe mobility and its paleoenvironmental implications[J]. Chemical Geology, 2019, 524: 356-367.
    [14] 王琳怡,朱丽东,于红梅,等. 加积型红土剖面成壤特征及网纹化成因的土壤微形态证据[J]. 土壤学报,2022,59(5):1306-1320.

    Wang Linyi, Zhu Lidong, Yu Hongmei, et al. Micromorphological evidence on the pedogenic characteristics and reticulated mechanism of aggradation red earth[J]. Acta Pedologica Sinica, 2022, 59(5): 1306-1320.
    [15] 王松,高钰涯,王军,等. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报,2021,42(5):641-655.

    Wang Song, Gao Yuya, Wang Jun, et al. Recent progress of reference materials for in-situ elemental and isotopic microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 641-655.
    [16] 张启燕,刘晓,杨玠,等. 微区X射线荧光成像技术在岩心分析中的应用[J]. 光谱学与光谱分析,2022,42(7):2200-2206.

    Zhang Qiyan, Liu Xiao, Yang Jie, et al. Application of micro X-Ray fluorescence imaging technology in core analysis[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2200-2206.
    [17] 朱碧,朱志勇,吕苗,等. Iolite软件处理LA-ICP-MS线扫描数据适用性研究[J]. 岩矿测试,2017,36(1):14-21.

    Zhu Bi, Zhu Zhiyong Lü Miao, et al. Application of iolite in data reduction of laser ablation-inductively coupled plasma-mass spectrometry line-scan analysis[J]. Rock and Mineral Analysis, 2017, 36(1): 14-21.
    [18] Rosolen V, Lamotte M, Boulet R, et al. Genesis of a mottled horizon by Fe-depletion within a laterite cover in the Amazon Basin[J]. Comptes Rendus Geoscience, 2002, 334(3): 187-195.
    [19] 张伟,周夏青,孙聪聪,等. 矿物微区原位分析与同位素地球化学分析技术在地学中的应用[J]. 山东国土资源,2019,35(10):38-44.

    Zhang Wei, Zhou Xiaqing, Sun Congcong, et al. Application of in-situ mineral microanalysis technology and isotope geochemical analysis technology in geology[J]. Shangdong Land and Resources, 2019, 35(10): 38-44.
    [20] 梁述廷,刘玉纯,刘瑱,等. X射线荧光光谱微区分析在铜矿物类质同象鉴定中的应用[J]. 岩矿测试,2015,34(2):201-206.

    Liang Shuting, Liu Yuchun, Liu Zhen, et al. Application of in-situ micro-XRF spectrometry in the identification of copper minerals[J]. Rock and Mineral Analysis, 2015, 34(2): 201-206.
    [21] 梁述廷,刘玉纯,刘瑱,等. X射线荧光光谱微区分析在铅锌矿石鉴定上的应用[J]. 岩矿测试,2013,32(6):897-902.

    Liang Shuting, Liu Yuchun, Liu Zhen, et al. Application of in-situ Micro-X-ray fluorescence spectrometry in the identification of lead-zinc ore[J]. Rock and Mineral Analysis, 2013, 32(6): 897-902.
    [22] 安乐. R型因子分析在地球化学数据统计中的应用[J]. 甘肃科技,2017,33(16):46-48.

    An Le. Application of R-factor analysis in geochemical data statistics[J]. Gansu Science and Technology, 2017, 33(16): 46-48.
    [23] 王学仁. 地质数据的多变量统计分析[M]. 北京:科学出版社,1982:249-296.

    Wang Xueren. Multivariable statistical analysis of geological data[M]. Beijing: Science Press, 1982: 249-296.
    [24] 何其芬,尹维民,张秀文,等. R型因子分析和聚类分析在内蒙古伊山林场土壤地球化学测量中的应用[J]. 山东国土资源,2015,31(8):61-64.

    He Qifen, Yin Weimin, Zhang Xiuwen, et al. Application of R type factor analysis and cluster analysis in soil geochemical survey at inner Mongolia of Yishan forest farm[J]. Shandong Land and Resources, 2015, 31(8): 61-64.
    [25] 朱照宇,吴翼,邱世藩,等. 华南沿海第四纪类网纹红土的赋存层位及其年代问题[J]. 地球科学进展,2010,25(4):391-399.

    Zhu Zhaoyu, Wu Yi, Qiu Shifan, et al. The problems of stratigraphy and chronology of like-vermicular red earth formed in the Quaternary along the coast of South China[J]. Advances in Earth Science, 2010, 25(4): 391-399.
    [26] Hong H L, Churchman G J, Yin K, et al. Randomly interstratified illite–vermiculite from weathering of illite in red earth sediments in Xuancheng, southeastern China[J]. Geoderma, 2014, 214-215: 42-49.
    [27] 汪玲玲,李凤全,吴开钦,等. 九江加积型红土网纹形态特征及其环境意义[J]. 沉积学报,2024,42(1):534-544.

    Wang Lingling, Li Fengquan, Wu Kaiqin, et al. Reticulate morphologies and environmental significance of red earth aggradation in Jiujiang[J]. Acta Sedimentologica Sinica, 2024, 42(1): 534-544.
    [28] 吴开钦,李凤全,王天阳,等. 浙江金华红土网纹成因的磁学证据[J]. 沉积学报,2023,41(3)706-719.

    Wu Kaiqin, Li Fengquan, Wang Tianyang, et al. Magnetic characteristics evident in the formation of the reticulate structure of red paleosol in Jinhua, Zhejiang[J]. Acta Sedimentologica Sinica,2023,41(3)706-719.
    [29] 毛龙江,莫多闻,杨兢红,等. 环洞庭湖地区网纹红土中稀土元素的地球化学特征[J]. 环境化学,2008,27(2):222-225.

    Mao Longjiang, Mo Duowen, Yang Jinghong, et al. Rare earth element geochemistry of reticulate red clay around Dongting lake[J]. Environmental Chemistry, 2008, 27(2): 222-225.
    [30] 叶玮,朱丽东,李凤全,等. 中国中亚热带网纹红土的地球化学特征与沉积环境[J]. 土壤学报,2008,45(3):385-391.

    Ye Wei, Zhu Lidong, Li Fengquan, et al. Sedimentary environment of vermicular red earth in Mid-subtropical China[J]. Acta Pedologica Sinica, 2008, 45(3): 385-391.
    [31] 朱丽东,周尚哲,叶玮,等. 网纹红土稀土元素地球化学特征的初步研究[J]. 中国沙漠,2007,27(2):194-200.

    Zhu Lidong, Zhou Shangzhe, Ye Wei, et al. Preliminary study on geochemical behavior of rare earth element of plinthitic red earth in South China[J]. Journal of Desert Research, 2007, 27(2): 194-200.
    [32] 朱丽东,周尚哲,李凤全,等. 金衢盆地TX红土剖面元素迁移特征[J]. 海洋地质与第四纪地质,2007,27(1):117-123.

    Zhu Lidong, Zhou Shangzhe, Li Fengquan, et al. The elemental transport features of red earth from TX-section and its paleo-climatic implications[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 117-123.
    [33] Hong H L, Gu Y S, Li R B, et al. Clay mineralogy and geochemistry and their palaeoclimatic interpretation of the Pleistocene deposits in the Xuancheng section, southern China[J]. Journal of Quaternary Science, 2010, 25(5): 662-674.
    [34] 章明奎. 杭州市之江组网纹红土的矿物学特性[J]. 浙江大学学报(农业与生命科学版),2000,26(1):22-24.

    Zhang Mingkui. Mineralogy of Zhijiang plinthitic red clay in Hangzhou city[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2000, 26(1): 22-24.
    [35] 陈骏,季峻峰,仇纲,等. 陕西洛川黄土化学风化程度的地球化学研究[J]. 中国科学:地球科学,1997,27(6):531-536.

    Chen Jun, Ji Junfeng, Qiu Gang, et al. Geochemical studies on the intensity of chemical weathering in Luochuan loess-paleosol sequence, China[J]. Science China Earth Sciences, 1997, 27(6): 531-536.
    [36] 赵晓蕊,吴华勇,张甘霖. 典型网纹红土结构土壤细菌群落及其生态网络特征[J]. 土壤,2022,54(5):986-992.

    Zhao Xiaorui, Wu Huayong, Zhang Ganlin. Characteristics of bacterial communities and their co-occurrence networks in a typical plinthic horizon[J]. Soils, 2022, 54(5): 986-992.
    [37] Lottermoser B G, Ashley P M, Lawie D C. Environmental geochemistry of the Gulf Creek copper mine area, northeastern New South Wales, Australia[J]. Environmental Geology, 1999, 39(1): 61-74.
    [38] Pokrovsky O S, Schott J, Dupré B. Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3239-3260.
    [39] Marsh J S. REE fractionation and Ce anomalies in weathered Karoo dolerite[J]. Chemical Geology, 1991, 90(3/4): 189-194.
    [40] Middelburg J J, Van Der Weijden C H, Woittiez J R W. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks[J]. Chemical Geology, 1988, 68(3/4): 253-273.
    [41] Ma J L, Wei G J, Xu Y G, et al. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China[J]. Geochimica et Cosmochimica Acta, 2007, 71(13): 3223-3237.
    [42] Chen C M, Barcellos D, Richter D D, et al. Redoximorphic Bt horizons of the Calhoun CZO soils exhibit depth-dependent iron-oxide crystallinity[J]. Journal of Soils and Sediments, 2019, 19(2): 785-797.
  • [1] 王吉, 朱丽东, 禹蕊斐, 杜广琴.  南方加积型红土化学风化的非纬向地带性特征及其成因分析 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.097
    [2] 时志强, 彭深远, 王美玲, 乔丹.  假泥裂:上扬子地区下三叠统飞仙关组灰岩薄层中的网纹沉积构造 . 沉积学报, 2024, 42(4): 1200-1211. doi: 10.14027/j.issn.1000-0550.2023.032
    [3] 赵婉婷, 王艳茹, 谢远云, 迟云平, 康春国, 汪烨辉, 吴鹏, 孙磊, 魏振宇, 刘海金.  东北沙地化学风化强度的空间分布特征及其影响因素 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.003
    [4] 汪玲玲, 李凤全, 吴开钦, 王天阳, 叶玮, 朱丽东, 蒋旭霞.  九江加积型红土网纹形态特征及其环境意义 . 沉积学报, 2024, 42(2): 534-544. doi: 10.14027/j.issn.1000-0550.2022.097
    [5] 郭忠雪, 王天阳, 李凤全, 蒋旭霞, 朱丽东, 叶玮.  砂岩网纹化元素地球化学微区分析及指示意义 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.008
    [6] 吴开钦, 李凤全, 王天阳, 叶玮, 贾佳, 朱丽东, 汪玲玲.  浙江金华红土网纹成因的磁学证据 . 沉积学报, 2023, 41(3): 706-719. doi: 10.14027/j.issn.1000-0550.2021.120
    [7] 胡京九, 张虎才, 常凤琴, 李婷, 蔡萌, 段立曾, 张龙吴, 张扬.  程海表层沉积物粒度空间分布特征及其影响因素 . 沉积学报, 2020, 38(2): 340-348. doi: 10.14027/j.issn.1000-0550.2019.032
    [8] 杨倩, 鲁新川, 殷建国, 尹常亮, 吴靖宇, 郭晖, 张昱.  甘肃嘉峪关市表层土壤重金属空间分布与评价 . 沉积学报, 2019, 37(5): 1006-1015. doi: 10.14027/j.issn.1000-0550.2019.048
    [9] 刘耘, 谭秀成, 刘显岩, 何为, 熊鹰, 刘灵, 刘明洁, 杨清宇.  鄂尔多斯盆地中部马五7亚段颗粒滩沉积特征及空间分布 . 沉积学报, 2018, 36(4): 796-806. doi: 10.14027/j.issn.1000-0550.2018.044
    [10] 廖纪佳, 马思豪, 廖明光, 肖雪薇, 林丹, 贺文亮, 廖继昊.  奥陶系宝塔灰岩网纹构造成因研究进展及新发现 . 沉积学报, 2017, 35(2): 241-252. doi: 10.14027/j.cnki.cjxb.2017.02.004
    [11] 吴汉, 常凤琴, 张虎才, 李华勇, 蒙红卫, 段立曾, 刘东升, 李楠, 朱梦姝.  泸沽湖表层沉积物粒度空间分布特征及其影响因素 . 沉积学报, 2016, 34(4): 679-687. doi: 10.14027/j.cnki.cjxb.2016.04.008
    [12] 李小妹, 严平, 吴伟, 钱瑶.  中国北方三流域河流—沙漠过渡带地表沉积物化学元素空间差异分析 . 沉积学报, 2016, 34(4): 615-625. doi: 10.14027/j.cnki.cjxb.2016.04.001
    [13] 刘立娜, 王维, 马玉贞, 李岩岩, 姜雅娟, 何江.  呼伦湖表层沉积物花粉空间分布特征及影响因素探讨 . 沉积学报, 2015, 33(4): 744-753. doi: 10.14027/j.cnki.cjxb.2015.04.013
    [14] 汪敬忠 吴敬禄 曾海鳌 白瑞东.  河套平原表层土壤元素含量与空间分布特征 . 沉积学报, 2014, 32(4): 677-683.
    [15] 长江口盐沼土壤有机质分布与矿化的空间差异 . 沉积学报, 2012, 30(1): 128-136.
    [16] 李凤全.  第四纪网纹红土的类型与网纹化作用 . 沉积学报, 2010, 28(2): 346-355.
    [17] 王先彦.  青藏高原东北部湟水流域新近纪风尘堆积源区分析 . 沉积学报, 2006, 24(3): 365-369.
    [18] 赖生华, 孙来喜, 赵霞飞.  楚雄盆地北部上三叠统储集体构型及空间分布 . 沉积学报, 2005, 23(2): 232-239.
    [19] 傅碧宏.  塔里木盆地西北缘中奥陶统、下志留统的空间分布特征及其相变的遥感分析 . 沉积学报, 1995, 13(4): 153-160.
    [20] 廖士范, 梁同荣, 张月恒.  论我国铝土矿床类型及其红土化风化壳形成机制问题 . 沉积学报, 1989, 7(1): 1-10.
  • 加载中
图(3) / 表 (3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-26
  • 修回日期:  2023-06-07
  • 录用日期:  2023-07-20
  • 网络出版日期:  2023-07-20
  • 刊出日期:  2025-06-10

目录

    网纹红土微区内元素的分布特征及网纹化过程

    doi: 10.14027/j.issn.1000-0550.2023.050
      基金项目:

      国家自然科学基金项目 41971111

      作者简介:

      蒋旭霞,女,1998年出生,硕士研究生,自然地理学,E-mail: jxxzjnu@qq.com

      通讯作者: 王天阳,女,副教授,E-mail: lyg159@zjnu.cn

    摘要: 目的 中国南方网纹红土对重建南方第四纪气候环境具有重要的意义,但对网纹化过程的微观认认识尚显薄弱。 方法 将微区分析技术、地统计分析和因子分析等方法相结合,对安徽郎溪网纹红土剖面的白色条纹微区和红白条纹过渡微区进行了元素地球化学分析。 结果 (1)从元素的含量来看,白色条纹中Fe2O3(3.43%~16.97%)、Mn(0.01×10-6~0.37×10-6)和Co(21×10-6~230×10-6)等铁族元素的含量呈现出条纹中心为低值区,外围为高值区且从条纹中心到外围逐渐增加的趋势,而K2O(0.78%~1.48%)、MgO(0.18%~0.45%)等其他常量元素以及Ti(4 054×10-6~7 190×10-6)、Zr(310×10-6~330×10-6)等稳定性元素含量的分布趋势则与之相异。(2)白色条纹微区与红白条纹过渡微区皆以因子1为主,其主要体现了铁和铁族元素等在白色条纹中的淋溶迁移,以及K、Ca、Mg等易溶常量元素和Ti、Zr等稳定性元素的相对富集过程;因子2则主要与铁及铁族元素的淀积过程,以及铁氧化物对Cu、Zn的吸附过程等有关。 结论 通过微区技术方法和因子分析等方法对网纹红土进行分析,发现白色条纹内部并非是均质的,而是存在由白色条纹中心到外围的渐变特征。白色条纹到红色条纹微区变化规律与白色条纹微区相似,网纹化是一个持续发育的过程。网纹化过程中铁和铁族元素的淋溶迁移占主导,铁和铁族元素淀积过程与淋溶迁移同时存在,网纹化过程相对复杂。

    English Abstract

    蒋旭霞, 王天阳, 李凤全, 朱丽东, 叶玮, 郭忠雪. 网纹红土微区内元素的分布特征及网纹化过程[J]. 沉积学报, 2025, 43(3): 1049-1058. doi: 10.14027/j.issn.1000-0550.2023.050
    引用本文: 蒋旭霞, 王天阳, 李凤全, 朱丽东, 叶玮, 郭忠雪. 网纹红土微区内元素的分布特征及网纹化过程[J]. 沉积学报, 2025, 43(3): 1049-1058. doi: 10.14027/j.issn.1000-0550.2023.050
    JIANG XuXia, WANG TianYang, LI FengQuan, ZHU LiDong, YE Wei, GUO ZhongXue. Distribution Characteristics of Reticular Red Clay Micro-areas and the Formation Process of the Reticulated Mechanism[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1049-1058. doi: 10.14027/j.issn.1000-0550.2023.050
    Citation: JIANG XuXia, WANG TianYang, LI FengQuan, ZHU LiDong, YE Wei, GUO ZhongXue. Distribution Characteristics of Reticular Red Clay Micro-areas and the Formation Process of the Reticulated Mechanism[J]. Acta Sedimentologica Sinica, 2025, 43(3): 1049-1058. doi: 10.14027/j.issn.1000-0550.2023.050
      • 中国南方网纹红土是亚热带地区第四纪环境变化研究的良好地质载体,解译网纹红土的形成环境是中国南方红土区古环境研究的重要内容[12]。网纹红土经历了中等以上强度的化学风化,通常被认为是较湿热气候环境下的风化产物[35]。在网纹红土中普遍存在网纹化现象,其醒目地质特征是在暖色调的红紫色黏土中镶嵌大量呈斑点、蠕虫、条管等形态的不规则浅色斑纹[5]。伴随着网纹化过程,白色条纹与红色条纹之间出现了一定的物质差异[59]。已有的研究表明,湿热的气候、土体孔隙、地下水的季节性变化、新构造运动乃至植物根系等可能是网纹发育的重要条件[2,5,913],网纹化现象可视为物理过程(裂隙及扩张)、生物过程(根系腐烂)、化学过程(如铁质分异)等综合作用的产物[14]。网纹红土很好地记录了中国南方第四纪以来风化特征及其变化趋势,但与网纹红土网纹化现象有关的微观机制仍然有待进一步探究[4,9,13]。目前有关网纹的研究,多将红色条纹与白色条纹视为两个不同的物质单元,对二者进行分离后,再分别测试与分析红色条纹和白色条纹的理化属性以及分异特征。上述研究可从整体上对网纹及网纹化进行认知,但却难以从白色条纹内部变异,以及白色条纹到红色条纹之间过渡变化等微观尺度上认识网纹和网纹化过程。微区分析是对固体样品的一个微小区域直接进行成分分析的技术,具有原位、量微、无损和准确等优点[1516],其为获取元素在土体内部、矿物中的配分和迁移规律提供有力的技术支撑[1718]。微区分析包括电子探针、激光探针(包括激光光谱仪),以及扫描电子显微镜等[19],微区XRF具有良好的穿透性、稳定性及分辨率高等特点,可提供不同尺度、不同层次需求的原位微区分析[16,20]。为此,本文利用微区XRF分析方法对安徽郎溪剖面的网纹红土开展二维微区分析,旨在从微观尺度上进一步认识网纹体内的化学元素含量的空间分布特征,阐述网纹内部可能的化学过程,并为明确网纹的形成机理提供新视角。

      • 郎溪剖面(30°58′24″ N,119°7′43″ E)位于安徽省郎溪县十字镇318国道旁,其海拔约40 m,属亚热带季风气候区,年降水量介于1 143~1 503 mm。该网纹红土剖面的质地均一,不含砾且无流水作用痕迹,属于长江中下游地区颇具代表性的加积型红土剖面之一。该剖面自下而上可分为网纹红土、黄棕色土等沉积地层,上覆黄棕色土层的土质疏松,网纹层质地紧实且由上到下白色条纹从密集细小到稀疏宽大,剖面未见底。在该剖面网纹红土层的底部,白色条纹发育情况较为良好,为开展微区分析提供了基础。本文在该剖面的中部和底部用瓶盖(直径约33 mm)采集了两个微区样品(图1)。其中,一个为白色条纹微区样品,另一个则为红色条纹与白色条纹兼具的微区样品(下文简称为红白过渡微区样品)。前者主要用于揭示白色条纹体中元素的空间变异情况,后者用于反映从白色条纹到红色条纹元素含量的空间变化情况。

        图  1  观测点位置示意图

        Figure 1.  Schematic diagram of the observation sites

      • 本文采用原位微区XRF分析技术,将采样后的微区样品进行平面处理(粗磨和精磨),使待测样品表面光滑没有空隙,随后将打磨好的样品放入60 ℃的烘箱进行干燥,最后将样品放入微区X射线荧光光谱仪内选择合适位置进行元素分析。为获取微区内地球化学元素含量分布状况,在白色条纹微区样品(19 mm×17 mm)和红白过渡微区样品(12 mm×10 mm)各设置了121个样点(图1),主要测试了SiO2、Al2O3、Fe2O3、K2O、CaO、MgO、Na2O等常量元素,以及Mn、Co、Cu等微量元素。微区地球化学元素测试完成于安徽师范大学资源环境与地理信息工程安徽省工程技术研究中心。元素测试仪器为日本理学公司生产的Rigaku ZSX PrimusⅡ型长色散X射线荧光光谱仪,测试精度为10-6级别,测试含量范围为10-6~100%。测试过程使用中国国家标准土壤样品GSS-3和GSS-6进行监控,并对所得数据运用微型计算机进行程序控制、谱图识别、干扰矫正及数据处理等分析步骤。通过与仪器内国家标准物质信息比对,最终实现对所测样品元素的精确分析,该方法测定结果与电子探针测定结果一致[21],常量元素分析误差优于2%。

        对微区网格点测试结果,利用 ArcGIS的地统计方法分析元素地球化学含量的空间分布特征,利用R语言对两个微区样品进行R型因子分析。其中,R型因子分析是研究变量间相互关系的因子分析法,常用于研究元素共生组合,其中每个因子所包含的主要元素,不仅表示元素间的组合关系,而且反映元素间内在的成因联系[22]。本文采用R型因子分析方法的主要目的是对原始数据进行特征提取、信息降维,发掘隐藏在数据下的一组较少的或难以直接观测的变量,并推测其可观测变量变化的主要原因与机制。

      • 微区测试结果表明(表12),无论是白色条纹微区样品,还是白色条纹与红色条纹过渡微区样品的地球化学元素含量均以SiO2、Al2O3和Fe2O3等为主,K2O、CaO、MgO、Na2O、Ti和Mn等元素的含量次之,其总体特征与中国南方网纹红土地区的元素分布特点基本一致,为此本文不再对此进行赘述。为了揭示地球化学元素含量在白色条纹内部变异情况,以及从白色条纹到红色条纹的过渡变化特征,利用统计学方法开展分析(图23)。从图23可知,在白色条纹体的内部,铁和铁族元素含量的空间分布特征较为相似,皆呈现出从白色条纹中心向外围逐渐增加的趋势,Cu、Zn等元素含量的空间分布特征与之相似,而SiO2、Al2O3、K2O、CaO、MgO、Ti、Rb、Sr等元素含量的空间分布特征则与基本之相反,主要表现为从白色条纹中心向外围呈现逐渐降低的趋势。红白过渡微区样品的铁、铁族元素和Cu、Zn等元素含量的空间分布特征则呈现出从白色条纹向红色条纹逐渐增加的趋势,而SiO2、Al2O3、K2O、CaO、MgO、Ti、Rb、Sr等元素含量的空间分布特征则基本与之相反,表现为逐渐降低的趋势。

        表 1  网纹红土常量元素组成(%)

        Table 1.  Reticular red clay chemical composition (%) of constant elements

        样品(数量)SiO2Al2O3Fe2O3MgOCaONa2OK2O
        红白过渡微区样品(n=121)
        平均值53.9411.007.610.340.370.231.41
        最小值45.789.785.770.230.370.211.11
        最大值56.4711.4813.020.370.380.261.51
        白色网纹微区样品(n=121)
        平均值51.9413.317.60.360.480.241.26
        最小值39.8210.193.430.180.440.210.78
        最大值58.3614.5216.970.450.510.311.48

        表 2  网纹红土部分微量元素组成(×10-6

        Table 2.  Composition of trace element of reticular red clay (×10-6)

        样品(数量)CuCoZnCrMnNiRbSrTiZr
        红白过渡微区样品(n=121)
        平均值74.8841.9851.207 088.04771.08860.218.6614.366 164.67360.62
        最小值2474980253294104 950354
        最大值2371405427 6172 2773 33912176 544371
        白色网纹微区样品(n=121)
        平均值138.6192.0971.5416 591.060.131 815.17113.6419.066 093.00317.51
        最小值3321667580.0110297114 054310
        最大值3862307748 1870.375 371121247 190330

        图  2  白色条纹与红色条纹过渡微区元素变化

        Figure 2.  Elemental changes in the transition micro⁃area of the white and red veins

        图  3  白色条纹微区元素变化

        Figure 3.  Elemental changes in the micro⁃area of the white vein

      • 因子分析方法通过分析众多可观测变量之间的内部依赖关系,揭示原始观测数据中的基本结构,并用少数几个抽象的“潜在”变量(即因子)表示其基本的数据结构[23]。在开展R型因子分析前,首先采用KMO(Kaiser-Meyer-Olkin)和Bartlett法对上述网纹红土微区观测数据进行检验。一般而言,KMO的值越接近于1,说明变量间的相关性越强,越适合因子分析[24]。此次研究的白色条纹微区样品、红白过渡微区样品的KMO分别为0.94和0.95,表明适合进行因子分析。另外,如果变量彼此独立,则无法从中提取公因子,也就无法应用因子分析法。两个微区样品观测数据的Bartlett球形检验的概率皆低于显著性水平0.05,原始观测变量之间的相关性较强,适合进行因子分析。在此基础上,利用R语言展开因子分析,分析结果见表3

        表 3  微区样品数据的因子分析结果

        Table 3.  Factor analysis results of the sample data in the micro⁃area

        元素因子1(白红过渡)因子2(白红过渡)因子1(白色条纹)因子2(白色条纹)
        Cu-0.830.56-0.990.11
        Co-0.820.57-0.980.15
        Zn-0.140.540.080.80
        Cr-0.820.57-0.990.16
        Mn-0.820.57-0.990.16
        Ni-0.830.56-0.990.15
        Rb0.64-0.610.82-0.08
        Sr0.53-0.590.91-0.11
        Ti0.86-0.490.98-0.17
        Zr0.57-0.400.44-0.77
        Al2O30.99-0.220.98-0.03
        Fe2O3-0.770.64-0.980.19
        K2O0.88-0.470.99-0.14
        Na2O-0.770.56-0.980.11
        SiO20.88-0.450.98-0.19
        CaO0.60-0.240.97-0.04
        MgO0.89-0.410.99-0.13

        根据累积方差贡献率,对红白过渡微区样品和白色条纹微区样品分别提取了两个主因子。其中,红白过渡微区样品两个主因子的方差贡献率分别为59%和26%,累积方差贡献率达85%,白色条纹微区的两个主因子方差贡献率分别为84%和9%,累积方差贡献率达到93%。累积方差贡献率均达到了80%以上,尤其是白色条纹微区样品因子1的方差贡献率就达到了84%,说明采取两个因子可以很好地体现微区样品地球化学元素含量的空间分异情况。

        因子载荷表征了原始观测变量和因子之间的相关程度,可解释和命名因子。根据表3,红白过渡微区因子1的载荷为正且数值较高的地球化学元素主要为Al2O3、K2O、SiO2、MgO等常量元素,以及Ti、Zr等相对稳定元素,而Fe2O3、Mn和Co等铁和铁族元素载荷的数值为负;红白过渡微区观测数据中因子2的各元素因子载荷的正负号基本与因子1相反,表现为Fe2O3、Mn和Co等铁和铁族元素的因子载荷数值为正。白色条纹微区因子1和因子2的各地球化学元素的因子载荷特征与红白过渡微区因子载荷的特征基本一致,但白色条纹微区的因子1的载荷一般明显高于红白过渡微区因子1的载荷,而其因子2的载荷则远低于红白过渡微区的因子2的载荷。

      • 网纹红土的母质沉积期和网纹形成期是先后两个不同时期[6,2526]。加积型网纹红土地层的母质在网纹出现之前是均质的[4],在网纹化过程中,白色条纹和红色条纹发生了物质分异[59,2728]。其中,铁含量的分异被认为是网纹化的过程的基础,白色条纹中的铁存在明显淋失,导致了红色条纹的全铁含量、游离铁量、无定形铁量,晶质铁量以及络合铁量等一般远高于白色条纹[9]。微区分析结果表明,白色条纹微区样品的全铁含量具有从白色条纹中心向外围逐渐增加的特征,红白过渡微区样品的全铁含量同样呈现出由白色条纹到红色条纹逐渐增加的趋势。以往将白色条纹与红色条纹作为两个物质单位可以看作是对上述特征的简化。因此,开展微区分析有助于补充将红色条纹和白色条纹视为不同物质单元的研究结果,在微观尺度上进一步丰富对网纹化过程的认识。一方面,本文从微区尺度上进一步证实了白色条纹和红色条纹之间确实存在铁的分异;另一方面,研究揭示了白色条纹内部的全铁含量并非是均质的,白色条纹和红色条纹之间全铁含量的差异并非是突变的,而是渐变的。Mn、Co、Ni以及Cu、Cr元素含量的微区分布特征与铁元素微区分布特征较为相似,推测这些元素的分异可能与铁元素具有相似的成因或者与铁元素有关;而K2O、CaO、MgO等常量元素的微区分布特征一般呈现出与铁族元素大体相反的分布趋势,Zr、Ti等相对稳定元素含量的微区分布特征也呈现出由白色条纹到红色条纹逐渐降低的趋势,相异的空间分布趋势可能意味着上述元素含量的空间分异原因与铁以及铁族元素等不同。由于网纹红土的母质是均质的,上述化学元素含量在白色条纹内部,以及由白色条纹到红色条纹的所呈现出的渐变特征较难用脱硅富铝铁化进行解释,网纹化过程是导致微区内元素含量分布的主要原因,这说明在适宜的环境条件下,白色条纹的形成是一个逐渐发育的过程。

        通过因子分析可进一步推测可观测变量变化的主要原因与机制。本文两个微区数据的R型因子分析结果的共性特征在于铁以及铁族元素等在因子2具有正载荷,而在因子1的载荷为负,其他元素的载荷则基本与之相反,这说明两个微区样品数据所体现的成因机制较为一致。

        一般认为,网纹红土整体形成于温暖湿润的环境,其先后经历了红化以及网纹化等过程,网纹化时期冬夏季气候反差增强且干湿变化加剧[9],干湿交替的季节气候特点有利于中国南方第四纪网纹红土的发育[4]。在上述适宜网纹发育的气候背景下,白色条纹与红色条纹的元素含量的差异主要与二者所处的微观环境差异有关[46,9,12,14]。前人研究认为,白色条纹主要形成于还原环境,而红色条纹则主要偏氧化环境,微观环境的差异则导致了白色条纹化学风化淋溶程度往往要高于红色条纹[2931]。在表生地球化学条件下,铁元素一般主要以难溶的三价铁矿物形式残留在风化物中,在还原环境中较为稳定的三价铁矿物可被还原为二价铁从白色条纹中迁出[9],流出土体进入地下水或者在土层内部迁移[8,13,32],红色条纹则可能为白色条纹淋溶出的二价铁的淀积区[89,13,32]。在适宜的气候背景下,上述铁的淋溶和淀积过程又形成了正反馈机制[4],极大地促进了网纹产生并逐渐发育,这是白色条纹内部、红白过渡微区铁元素出现空间分异的主要原因。另外,铁族元素如Mn、Co等与铁具有相近的存在形式,以及迁移、沉淀的物理化学条件,因此可推测其与铁元素分异形成机制相似。

        加积型网纹红土地层的母质在网纹出现之前是相对均质的[4]。自然界中Zr、Ti、Al等是化学性质相对稳定的元素[3334],这些元素在白色条纹中的含量相对较高,而在红色条纹中的含量相对略低,表明其主要与 Fe、Mn 等元素淋溶和淀积有关,即随着铁和铁族元素等在白色条纹中淋溶迁移,以及在红色条纹中的沉淀积累,Ti、Zr等元素在白色条纹中滞留并相对富集,而在红色条纹中则被稀释而表现出相对亏损[4,6,89]。对于在因子1上具有较高正载荷的K、Ca、Mg等易溶的常量元素而言,一方面因其赋存矿物抗风化性质的差异,使得淋溶迁移程度存在差异,如K常赋存于抗风化强度强的正长石,Ca和Mg主要赋存于碳酸盐矿物及斜长石中,斜长石是最易遭受化学风化的矿物之一[14,35];另一方面白色条纹中的铁元素淋溶迁移导致了易溶元素的相对富集,红色条纹中则因铁和铁族元素的富集而相对亏损,其与相对稳定元素含量的空间分异成因基本相似。

        上述是微区内元素含量空间分异的主要原因,但白色条纹与红色条纹元素地球化学特征的差异不仅是铁的淋溶富集及其导致的其他元素含量的相对增减,微环境的改变也会引起元素自身行为的变化[6]。因子分析结果表明,Na与其他易溶元素的因子载荷符号以及含量的分布特征相异。Na赋存于长石(主要是斜长石)、云母等矿物中,受风化作用易发生迁移淋溶,由于白色条纹的淋溶程度高于红色条纹且两者为同源物质[2931],该元素的含量可能既受该组分自身的变化,又受铁和铁族元素淋溶或沉淀等导致的相对富集和亏损共同影响,这两个因素的耦合导致了该组分含量的变化与其他易溶组分含量变化存在一定差异。相关研究也发现红色条纹中钠含量高于白色条纹[36],与本研究结果相似,但具体过程有待进一步探究;至于白色条纹中的铜、锌元素,受氧化还原条件影响相对较弱,其淋滤迁移可能主要与铁锰氧化物对其吸附和解吸作用有关[3738],受铁族元素的影响但与铁和铁族等元素分异原因可能不同;Cr元素在氧化还原条件变化时,其化学行为异于铁、锰等元素,可能另有其他机制如络合迁移[3941]

        综合以上分析,红白过渡微区的因子1主要体现了白色条纹中铁和铁族元素等的淋溶迁移,K、Ca、Mg等易溶常量元素以及Ti、Zr等稳定元素的相对富集过程;红白过渡微区的因子2则主要体现为红色条纹中铁和铁族元素的淀积过程。白色条纹微区与红白过渡微区因子分析结果相似,但由于白色条纹微区因子1的方差贡献率达84%,说明在白色条纹内部主要存在铁和铁族元素淋溶迁移,以及K、Ca、Mg等易溶常量元素和Ti、Zr等稳定元素的相对富集过程;对于因子2所表征的铁的淀积过程,有研究指出在白色条纹发育区铁也并非是单向淋出的,也存在铁沉淀[42],但由于因子2的差贡献率仅为9%,远低于因子1且因子2中各元素的因子载荷也相对较小,说明在白色条纹区铁沉淀即使存在也相对较弱。

      • (1) 白色条纹内部并非是均质的,其元素含量的空间分布具有从条纹中心到外围的渐变特征。其中,铁和铁族元素的含量主要呈现出从白色条纹中心到外围增加的趋势,而其他常量元素以及Ti、Zr等稳定性元素含量的空间分布趋势则与之相异;红白过渡微区样品结果表明,由白色条纹到红色条纹元素含量的空间变化也呈现渐变特征。鉴于红色条纹与白色条纹物源一致,元素含量的空间分布特征说明网纹化是一个持续发育的过程。

        (2) 因子分析揭示了网纹形成的元素分异的主要过程。无论是白色条纹微区还是红白过渡微区,其共性特征皆以因子1为主,主要指示了铁在白色条纹中的淋溶迁移,以及易溶常量元素和稳定元素的相对富集过程;而因子2中铁族元素及Cu、Zn等具有较高正载荷,反映了铁和铁族元素等的淀积过程,以及铁锰氧化物对Cu、Zn等的吸附过程等。

    参考文献 (42)

    目录

      /

      返回文章
      返回