-
水槽装置如图2所示,水槽长8 m、宽2.6 m,容纳最大水深75 cm。根据研究区恩平组海陆过渡相三角洲的底型特征、三角洲的规模以及物源供给情况,水槽设置自动加沙器(控制加砂的速率);导流槽(物源和水流的输入途径);滤水筛(加快沉积体水流排出);蓄水池;蓄水泵和循环泵(提供水流,控制水位变化);造浪器(模拟波浪的影响),以及FARO Focuss 70 3D激光扫描仪(对砂体沉积面貌进行激光扫描,记录沉积体精确的坐标和沉积厚度数据)。水槽实验区上方2 m处,设置4K录像机,全程记录三角洲的形成与演化的过程以及陆源有机质在三角洲表面的分布,三角洲每一沉积期进行两次3D激光扫描,分别在实验中期和结束时,记录三角洲沉积厚度。
-
陆源有机质模拟材料需要满足三个基本条件:(1)颜色比较明显,在平面与剖面上易于辨识;(2)具有一定有机质丰度;(3)具有足够大的密度,能够在水中自然沉降。通过检测褐煤、煤矸石、碳质泥岩、泥炭土、腐殖土、螺旋藻粉六种材料的TOC和溶解性,其中煤矸石硬度过大,难以粉碎;碳质泥岩价格较贵,不易获取;藻粉颜色不易与砂体区分,且其溶于水,难以沉降;泥炭土、腐殖土漂浮严重;而煤粉具有一定有机质丰度、颜色较明显且水体中的沉积效果较好;因此褐煤煤粉是陆源有机质的最优模拟材料。
对白云凹陷恩平组已有岩样资料分析,恩平组上段发育大套砂岩加炭质泥岩、粉砂质泥岩[33],每个沉积期岩性略有区别,结合实验水流的搬运能力以及沉积物的颗粒特征,设计物源主要由中粗砂、细砂、粉砂、泥组成,成分变化如表1。
表 1 水槽模拟实验加砂组成设计表
来水特征 加砂组成/% Run1 Run2 Run3 中粗砂 细砂 粉砂 泥 中粗砂 细砂 粉砂 泥 中粗砂 细砂 粉砂 泥 洪水期 25 40 27 8 25 40 27 8 33 37 23 7 中水期 20 42 28 10 20 42 28 10 30 35 30 5 枯水期 10 46 32 12 10 46 32 12 25 34 30 11 实验以恩平组海陆过渡相三角洲为原型,主要模拟恩平组沉积时期的三角洲演化过程,并以此为基础研究陆源有机质的沉积特征和影响因素。工区沉积体系以西北部物源为主[32],因此物源设置一个。整个沉积模拟水槽,X方向范围0~6 m,Y方向使用范围0~8 m,水槽高75 cm。为方便研究坡度对陆源有机质分布的影响,水槽中间用0.4 m厚的水泥墙隔开,分隔成两个平行水槽(单个水槽x有效使用范围0~2.6 m)进行实时对比。左右平行水槽分别设置坡度为6°和3°的河口区(Y=0~0.5 m,其中0~0.35 m为固定河道),根据实际前积角度[32],设计1°~3°的三角洲沉积区(Y=0.5~3 m)、1°~2°的陆架区(Y=3~6 m)、7 m处设置12°的大陆坡,水流和物源在平行水槽X=1.3 m输入(图3)。研究此底型下海陆过渡相三角洲的形成演化,并探讨陆源有机质沉积汇聚的影响因素。
基于恩平组层序地层划分结果,模拟实验设计三个沉积期,分别对应三个三级层序,陡缓坡实验的水位变化与白云凹陷恩平组三级层序保持一致。第一沉积期(Run1)模拟水退条件下海陆过渡相三角洲沉积过程;第二沉积期(Run2)模拟完整旋回下陆源有机质在海陆过渡相三角洲体系的沉积过程;第三沉积期(Run3)模拟在波浪条件下陆源有机质在海陆过渡相三角洲体系内的沉积过程。
实验基本参数见表2。设定实验有机质添加速率第一期3.6 L/h、第二期和第三期为3.6~4.5 L/h。为了在平面和剖面上清楚识别有机质沉积特征,煤粉先与水混合搅拌均匀后定量加入。为了明确坡度对于有机质沉积富集的影响,左右平行水槽分别设置坡度为6°的陡坡和3°的缓坡,其他实验条件均一致。
表 2 水槽模拟实验参数设计表
实验期次 实验坡/(°) 来水过程 历时/min 流量/(L/s) 有机质添加速率/(L/h) 水位Z/cm 第一期 3° 枯水 1 800 0.15 3.6 40.0~35.5 第二期 — 中水—洪水—中水—枯水 2 600 0.25~0.35~0.25~0.15 3.6~4.5 35.5~44.5~41.0 第三期 — 中水—洪水—中水—枯水 2 600 0.25~0.60~0.25~0.15 3.6~4.5 41.0~51.5~46.5 第一期 6° 枯水中水—洪水—中水—枯水中水—洪水—中水—枯水 1 800 0.15 3.6 37.0~34.5 第二期 — 2 600 0.25~0.35~0.25~0.15 3.6~4.5 34.5~43~40.5 第三期 — 2 600 0.25~0.60~0.25~0.15 3.6~4.5 40.5~49.0~45.5 三期实验全程使用4K录像机记录,实验过程中,对三角洲的形态和有机质的搬运过程进行观察,每期使用3D激光扫描仪记录三角洲沉积地貌数据。每一期结束,铺设彩砂作为沉积期次分界面。三期实验结束后对最终沉积体采用0.65 m×0.5 m网格切片,并拍照记录横、纵剖面情况,取样分析总有机碳含量(TOC),由Leco-CS-230碳硫分析仪测定。
Experimental Simulation of Terrigenous Organic Matter Sedimentary Characteristics and Its Influencing Factors in Transitional Facies Delta Depositional System
-
摘要: 目的 海陆过渡相三角洲沉积体系由于油气成藏条件优越,广泛发育陆源海相烃源岩,陆源有机质是其主要的母质来源。为了探究海陆过渡相三角洲沉积体系中陆源有机质的沉积特征及其影响因素,开展了陆源有机质沉积模拟实验。 方法 通过碳硫分析仪检测总有机碳含量,结合3D激光扫描技术,实现了实验条件下陆源有机质搬运沉积过程的动态定量表征。 结果 (1)在三角洲平原,陆源有机质主要在河道漫溢处、废弃河道、砂坝背流面等部位局部富集,剖面上主要以透镜型、断续型、互层型分布;在三角洲前缘和前三角洲,有机质平面上呈席状展布,剖面上以厚度较大的条带型分布;(2)陆源有机质在缓坡三角洲体系搬运距离较远,随着三角洲沉积厚度逐渐增大,三角洲初始坡度对陆源有机质搬运距离的影响减小;(3)水动力强度和波浪是影响有机质搬运距离的重要因素,水动力越弱越有利于有机质的沉积,在三角洲平原低能环境中存在有机质局部富集区。波浪会阻止有机质向前搬运并在三角洲前缘形成多个砂坝,有机质沉积于坝间凹槽呈环带状;(4)在海陆过渡相三角洲沉积体系内,从三角洲平原到三角洲前缘—前三角洲区域的有机碳含量逐步升高,进入陆架区,随着搬运距离的继续增大,有机碳含量减少。 结论 通过深入研究陆源有机质的富集部位和影响因素,建立了水槽实验模式下陆源有机质沉积模式,这对海陆过渡相三角洲沉积体系的油气探勘开发提供了重要的依据。Abstract: Objective Owing to favorable hydrocarbon accumulation conditions,terrigenous marine source rocks are widely developed in the transitional facies delta sedimentary system,and terrigenous organic matter is the main source material. To investigate the sedimentary characteristics and influencing factors of terrigenous organic matter in the transitional deltaic sedimentary system,a simulation experiment of terrigenous organic matter deposition was conducted. Methods The dynamic quantitative characterization of terrigenous organic matter transport and deposition process under experimental conditions was realized using a carbon and sulfur analyzer to detect total organic carbon content with three-dimensional (3D) laser scanning technology. Results (1) In the delta plain,terrigenous organic matter mainly accumulates locally in the overflow areas of river channels,abandoned river channels,and the flow surface behind sandbar. In the profile,the distribution of terrigenous organic matter is mainly lens,discontinuous,and interbedded type. In the delta front and fore delta,the organic matter is distributed in a sheet on the plane,and it is distributed in strips with large thickness in the profile. (2) The transport distance of terrigenous organic matter in the gentle slope delta system is relatively long. With the gradual increase of the sediment thickness of the delta,the influence of the initial slope of the delta on the transport distance of terrigenous organic matter has decreased. (3) Hydrodynamic strength and waves are important factors affecting the transport distance of organic matter. The weaker the hydrodynamic force,the more favorable the deposition of organic matter is. Waves prevent organic matter from moving forward and form multiple sand bars in the delta front. Organic matter is deposited in annular bands in the grooves between the bars. (4) In the transitional facies delta depositional system,the organic carbon content gradually increases from the delta plain to the delta front-pre-delta area and then decreases as the transport distance continues to increase. Conclusion The enrichment sites and influencing factors of terrigenous organic matter has been deeply established,and the sedimentary model of terrigenous organic matter in the flume experiment model provides an important reference for oil and gas exploration and development in the transitional facies delta depositional system.
-
图 16 海陆过渡相三角洲体系陆源有机质沉积模式图(据李燕等[40]修改)
表 1 水槽模拟实验加砂组成设计表
来水特征 加砂组成/% Run1 Run2 Run3 中粗砂 细砂 粉砂 泥 中粗砂 细砂 粉砂 泥 中粗砂 细砂 粉砂 泥 洪水期 25 40 27 8 25 40 27 8 33 37 23 7 中水期 20 42 28 10 20 42 28 10 30 35 30 5 枯水期 10 46 32 12 10 46 32 12 25 34 30 11 表 2 水槽模拟实验参数设计表
实验期次 实验坡/(°) 来水过程 历时/min 流量/(L/s) 有机质添加速率/(L/h) 水位Z/cm 第一期 3° 枯水 1 800 0.15 3.6 40.0~35.5 第二期 — 中水—洪水—中水—枯水 2 600 0.25~0.35~0.25~0.15 3.6~4.5 35.5~44.5~41.0 第三期 — 中水—洪水—中水—枯水 2 600 0.25~0.60~0.25~0.15 3.6~4.5 41.0~51.5~46.5 第一期 6° 枯水中水—洪水—中水—枯水中水—洪水—中水—枯水 1 800 0.15 3.6 37.0~34.5 第二期 — 2 600 0.25~0.35~0.25~0.15 3.6~4.5 34.5~43~40.5 第三期 — 2 600 0.25~0.60~0.25~0.15 3.6~4.5 40.5~49.0~45.5 -
[1] 张功成,李增学,兰蕾,等. 南海大气田天然气是煤型气[J]. 天然气工业,2021,41(11):12-23. Zhang Gongcheng, Li Zengxue, Lan Lei, et al. Natural gas in large gas fields in the South China Sea is mainly coal-type gas[J]. Natural Gas Industry, 2021, 41(11): 12-23. [2] 黄合庭,黄保家,黄义文,等. 南海西部深水区大气田凝析油成因与油气成藏机制:以琼东南盆地陵水17-2气田为例[J]. 石油勘探与开发,2017,44(3):380-388. Huang Heting, Huang Baojia, Huang Yiwen, et al. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea: A case study of Lingshui 17-2 gas field in Qiongdongnan Basin, South China Sea[J]. Petroleum Exploration and Development, 2017, 44(3): 380-388. [3] 马瑞罡,刘传联. 海相烃源岩发育的古海洋模式及对南海北部的指示意义[J]. 海洋地质前沿,2020,36(8):11-18. Ma Ruigang, Liu Chuanlian. Paleoceanographic patterns of marine hydrocarbon source rocks and its indicating significance to the northern South China Sea[J]. Marine Geology Frontiers, 2020, 36(8): 11-18. [4] 李友川,邓运华,张功成,等. 南海北部第三系海相烃源岩[J]. 石油学报,2011,32(2):219-225. Li Youchuan, Deng Yunhua, Zhang Gongcheng, et al. Tertiary marine source rocks in the northern South China Sea[J]. Acta Petrolei Sinica, 2011, 32(2): 219-225. [5] 张迎朝,甘军,徐新德,等. 琼东南盆地海相烃源岩的发现与勘探意义[J]. 煤炭技术,2020,39(2):43-45. Zhang Yingzhao, Gan Jun, Xu Xinde, et al. Marine source rock discovery and exploration significance in Qiongdongnan Basin[J]. Coal Technology, 2020, 39(2): 43-45. [6] 李丹,杨香华,常吟善,等. 澳大利亚北卡那封盆地中上三叠统Mungaroo三角洲陆源有机质分布特征[J]. 古地理学报,2014,16(2):193-204. Li Dan, Yang Xianghua, Chang Yinshan, et al. Distribution of the Upper Triassic terrigenous organic matter in Mungaroo delta of North Carnarvon Basin, Australia[J]. Journal of Palaeogeography, 2014, 16(2): 193-204. [7] 邓运华,兰蕾,李友川,等. 论三角洲对南海海相油气田分布的控制作用[J]. 石油学报,2019,40(增刊2):1-12. Deng Yunhua, Lan Lei, Li Youchuan, et al. On the control effect of deltas on the distribution of marine oil and gas fields in the South China Sea[J]. Acta Petrolei Sinica, 2019, 40(Suppl.2): 1-12. [8] 邓运华,许晓明,兰蕾. 亚太地区海相三角洲体系对天然气田分布的控制作用[J]. 长江大学学报(自然科学版),2021,18(4):1-12. Deng Yunhua, Xu Xiaoming, Lan Lei. The controlling effect of marine delta system on the distribution of gas fields in Asia-Pacific region[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(4): 1-12. [9] 屈童,高岗,徐新德,等. 三角洲—浅海沉积体系陆源有机质分布控制因素[J]. 沉积学报,2020,38(3):648-660. Qu Tong, Gao Gang, Xu Xinde, et al. Control factors of terrestrial organic matter distribution in delta-shallow sea sedimentary system[J]. Acta Sedimentologica Sinica, 2020, 38(3): 648-660. [10] 朱纯,潘建明,卢冰,等. 长江口及邻近海域现代沉积物中正构烷烃分子组合特征及其对有机碳运移分布的指示[J]. 海洋学报,2005,27(4):59-67. Zhu Chun, Pan Jianming, Lu Bing, et al. Compositional feature of n-alkanes in modern sediment from the Changjiang Estuary and adjacent area and its implication to transport and distribution of organic carbon[J]. Acta Oceanologica Sinica, 2005, 27(4): 59-67. [11] 屈童,高岗,徐新德,等. 三角洲—浅海沉积体系陆源有机质沉积模拟实验研究:以琼东南盆地崖南凹陷崖城组为例[J]. 沉积学报,2023,41(2):584-600. Qu Tong, Gao Gang, Xu Xinde, et al. Sedimentary simulation experiment study on the distribution of terrestrial organic matter in the delta-shallow sea sedimentary system: A case study of the Yacheng Formation in the Yanan Sag, Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 584-600. [12] 吕艳美,葛晨东,高抒,等. 长江口水下三角洲表层沉积物有机质分布特征[J]. 第四纪研究,2012,32(6):1132-1139. Yanmei Lü, Ge Chendong, Gao Shu, et al. Distribution patterns of organic matter in the surficial sediment over the Changjiang subaqueous delta[J]. Quaternary Sciences, 2012, 32(6): 1132-1139. [13] 张明明. 基于生物地球化学的博格达山北麓二叠系芦草沟组含油页岩系中有机质聚集模型的建立[D]. 长春:吉林大学,2016. [14] 鲍红艳,吴莹,张经. 红树林间隙水溶解态陆源有机质的光降解和生物降解行为分析[J]. 海洋学报,2013,35(3):147-154. Bao Hongyan, Wu Ying, Zhang Jing. Photo-and Bio-degradation of dissolved organic matter in mangrove pore-water[J]. Acta Oceanologica Sinica, 2013, 35(3): 147-154. [15] 李中乔,吴莹,李珍,等. 越南红河水下三角洲表层沉积物中有机物分布及来源分析[J]. 海洋与湖沼,2013,44(3):577-583. Li Zhongqiao, Wu Ying, Li Zhen, et al. Distribution and source of organic matter in the surface sediments from the Red River subaquatic delta, vietnam[J]. Oceanologia et Limnologia Sinica, 2013, 44(3): 577-583. [16] Ramaswamy V, Gaye B, Shirodkar P V, et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea[J]. Marine Chemistry, 2008, 111(3/4): 137-150. [17] Hu L M, Shi X F, Bai Y Z, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China[J]. Journal of Marine Systems, 2016, 155: 50-58. [18] 赵美训,张玉琢,邢磊,等. 南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义[J]. 中国海洋大学学报,2011,41(4):90-96. Zhao Meixun, Zhang Yuzhuo, Xing Lei, et al. The composition and distribution of n-alkanes in surface sediments from the South Yellow Sea and their potential as organic matter source indicators[J]. Periodical of Ocean University of China, 2011, 41(4): 90-96. [19] 李中乔. 不同典型体系中陆源有机质的分布及影响因素[D]. 上海:华东师范大学,2015. [20] 屈童. 琼东南盆地崖南凹陷崖城组三角洲沉积体系陆源有机质分布模拟[D]. 北京:中国石油大学(北京),2020:1-20. [21] 王鑫锐,孙雨,刘如昊,等. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报,2023,41(2):349-377. Wang Xinrui, Sun Yu, Liu Ruhao, et al. Research progress into fine-grained sedimentary rock characteristics and formation in a continental lake basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 349-377. [22] 梁超. 含油气细粒沉积岩沉积作用与储层形成机理[D]. 北京:中国地质大学(北京),2015. [23] 张凌. 珠江口及近海沉积有机质的分布、来源及其早期成岩作用研究[D]. 广州:中国科学院研究生院(广州地球化学研究所),2006. [24] 周川闽,张志杰,邱振,等. 细粒沉积物理模拟研究进展与展望[J]. 沉积学报,2021,39(1):253-267. Zhou Chuanmin, Zhang Zhijie, Qiu Zhen, et al. Laboratory experiments on sedimentation of fine-grained sediment: A prospect review[J]. Acta Sedimentologica Sinica, 2021, 39(1): 253-267. [25] 孙杰,詹文欢,丘学林. 珠江口盆地白云凹陷构造演化与油气系统的关系[J]. 海洋地质与第四纪地质,2011,31(1):101-107. Sun Jie, Zhan Wenhuan, Qiu Xuelin. Relationship between tectonic evolution and pertroleum systems in Baiyun Sag, Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology, 2011, 31(1): 101-107. [26] 张功成,杨海长,陈莹,等. 白云凹陷:珠江口盆地深水区一个巨大的富生气凹陷[J]. 天然气工业,2014,34(11):11-25. Zhang Gongcheng, Yang Haizhang, Chen Ying, et al. The Baiyun Sag: A giant rich gas⁃generation sag in the deepwater area of the Pearl River Mouth Basin[J]. Natural Gas Industry, 2014, 34(11): 11-25. [27] 米立军,何敏,翟普强,等. 珠江口盆地深水区白云凹陷高热流背景油气类型与成藏时期综合分析[J]. 中国海上油气,2019,31(1):1-12. Mi Lijun, He Min, Zhai Puqiang, et al. Integrated study on hydrocarbon types and accumulation periods of Baiyun Sag, deep water area of Pearl River Mouth Basin under the high heat flow background[J]. China Offshore Oil and Gas, 2019, 31(1): 1-12. [28] 米立军,张忠涛,庞雄,等. 南海北部陆缘白云凹陷油气富集规律及主控因素[J]. 石油勘探与开发,2018,45(5):902-913. Mi Lijun, Zhang Zhongtao, Pang Xiong, et al. Main controlling factors of hydrocarbon accumulation in Baiyun Sag at northern continental margin of South China Sea[J]. Petroleum Exploration and Development, 2018, 45(5): 902-913. [29] 杜金虎,易士威,卢学军,等. 试论富油凹陷油气分布的"互补性"特征[J]. 中国石油勘探,2004,9(1):16-23. Du Jinhu, Yi Shiwei, Lu Xuejun, et al. Oil and gas distribution of oil-enriched depression characterized with "reciprocity"[J]. China Petroleum Exploration, 2004, 9(1): 16-23. [30] 林鹤鸣,施和生. 珠江口盆地白云—荔湾深水区油气成藏条件及勘探方向[J]. 天然气工业,2014,34(5):29-36. Lin Heming, Shi Hesheng. Hydrocarbon accumulation conditions and exploration direction of Baiyun-Liwan deep water in the Pearl River Mouth Basin[J]. Natural Gas Industry, 2014, 34(5): 29-36. [31] 朱俊章,施和生,庞雄,等. 白云深水区东部油气成因来源与成藏特征[J]. 中国石油勘探,2012,17(4):20-28. Zhu Junzhang, Shi Hesheng, Pang Xiong, et al. Origins and accumulation characteristics of hydrocarbons in eastern Baiyun deepwater area[J]. China Petroleum Exploration, 2012, 17(4): 20-28. [32] 曾智伟,杨香华,朱红涛,等. 白云凹陷恩平组沉积晚期大型三角洲发育特征及其意义[J]. 地球科学,2017,42(1):78-92. Zeng Zhiwei, Yang Xianghua, Zhu Hongtao, et al. Development characteristics and significance of large delta of upper Enping Formation, Baiyun Sag[J]. Earth Science, 2017, 42(1): 78-92. [33] 曾智伟,朱红涛,杨香华,等. 珠江口盆地白云凹陷恩平组物源转换及沉积充填演化[J]. 地球科学,2017,42(11):1936-1954. Zeng Zhiwei, Zhu Hongtao, Yang Xianghua, et al. Provenance transformation and sedimentary evolution of Enping Formation, Baiyun Sag, Pearl River Mouth Basin[J]. Earth Science, 2017, 42(11): 1936-1954. [34] 张功成,王琪,苗顺德,等. 中国近海海陆过渡相烃源岩二元分布模式:以珠江口盆地白云凹陷为例[J]. 天然气地球科学,2014,25(9):1299-1308. Zhang Gongcheng, Wang Qi, Miao Shunde, et al. The duality distribution pattern of marine-continental transitional hydrocarbon source rocks: A case study from Baiyun Sag in Pearl River Mouth Basin, China offshore[J]. Natural Gas Geoscience, 2014, 25(9): 1299-1308. [35] 施和生,何敏,张丽丽,等. 珠江口盆地(东部)油气地质特征、成藏规律及下一步勘探策略[J]. 中国海上油气,2014,26(3):11-22. Shi Hesheng, He Min, Zhang Lili, et al. Hydrocarbon geology, accumulation pattern and the next exploration strategy in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2014, 26(3): 11-22. [36] 赵玉娟,杨香华,朱红涛,等. 白云凹陷古近系恩平组沉积背景差异及其烃类特征[J]. 地质科技情报,2017,36(3):156-163. Zhao Yujuan, Yang Xianghua, Zhu Hongtao, et al. Distinct sedimentary backgrounds and hydrocarbon characteristics of Paleogene Enping Formation, Baiyun Sag[J]. Geological Science and Technology Information, 2017, 36(3): 156-163. [37] 邵磊,孟晓捷,张功成,等. 白云凹陷断裂特征对构造与沉积的控制作用[J]. 同济大学学报(自然科学版),2013,41(9):1435-1441. Shao Lei, Meng Xiaojie, Zhang Gongcheng, et al. Feature of faults system and its influence on tectonic and sedimentary history of Baiyun Sag[J]. Journal of Tongji University (Natural Science), 2013, 41(9): 1435-1441. [38] 刘汉尧,林畅松,张忠涛,等. 珠江口盆地白云凹陷北坡第四纪层序地层和沉积体系演化及其控制因素[J]. 海洋地质与第四纪地质,2019,39(1):25-37. Liu Hanyao, Lin Changsong, Zhang Zhongtao, et al. Quaternary sequence stratigraphic evolution of the Pearl River Mouth Basin and controlling factors over depositional systems[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 25-37. [39] 徐强,王英民,吕明,等. 陆架边缘三角洲在层序地层格架中的识别及其意义:以南海白云凹陷为例[J]. 石油与天然气地质,2011,32(5):733-742. Xu Qiang, Wang Yingmin, Ming Lü, et al. Identification of the shelf margin delta in sequence stratigraphic frameworks and its significance: A case study of the Baiyun Sag, South China Sea[J]. Oil & Gas Geology, 2011, 32(5): 733-742. [40] 李燕,邓运华,李友川. 河流—三角洲体系微相控烃及机理研究:以珠江口盆地恩平组煤系烃源岩为例[J]. 现代地质,2021,35(4):1065-1077. Li Yan, Deng Yunhua, Li Youchuang. Characteristics and mechanism of source rock development controlled by sedimentary microfacies in river-delta system: Case study of coal-measure source rock in Enping Formation in Pearl River Estuary Basin[J]. Geoscience, 2021, 35(4): 1065-1077.