-
四川盆地侏罗系湖相介壳灰岩储层为典型特低孔致密储层,发育厚层—块状介壳灰岩、介壳灰岩与泥页岩互层、泥页岩夹薄层介壳灰岩、泥页岩夹粉砂岩等岩石类型及岩相组合。前期主要针对介壳灰岩开展沉积相、储层特征等系统研究,明确了高能介壳滩的演化及分布规律,指出油气分布不受构造圈闭的控制、呈现“大面积含油”的特征,高产与裂缝沟通及天然气驱动关系密切[1⁃2]。随着薄层介壳灰岩上万吨原油的陆续产出,侏罗系勘探思路逐渐向非常规致密页岩油气转变[3⁃5],并就沉积环境、保存条件、天然裂缝及热演化程度对有机质富集、页岩油气成藏、高产及油气藏类型控制机理开展深入研究[6⁃7]。其中,不同沉积相带岩性变化频繁,湖相页岩—介壳灰岩多尺度互层配置复杂,导致微—纳米级孔隙类型及分布差异明显,且后期构造—成岩事件导致共生矿物组合及油气运移机理复杂[8]。因此,针对薄层介壳灰岩开展系统元素地球化学特征、孔缝充填物的岩石—流体作用及成岩序列研究,可为剖析形成环境[9⁃13]、揭示油气形成—运移等关键事件[14⁃17]及约束致密油储层成储—成藏时空耦合[18]等提供重要证据。
四川盆地侏罗系发育自流井组东岳庙段、大安寨段及凉高山组上段三套优质页岩层系,具有“源储一体、就近成藏”的特征,是典型的非常规页岩油气发育层系[19],近年来油气勘探成果显著[20⁃22]。其中,川北地区下侏罗统自流井组东岳庙段暗色泥页岩厚度大、总有机碳(TOC)含量高、油气显示好,但总体勘探程度低[23]。目前针对川北地区东岳庙段陆续开展了沉积环境、页岩油气富集主控因素和规律等研究,明确了该段沉积相类型及泥页岩孔隙及裂缝系统,并针对沉积相、岩相组合、裂缝和隔层与页岩油气富集高产的耦合关系等进行了探讨[24⁃25]。前期勘探成果表明,富有机质页岩与介壳灰岩互层为四川盆地侏罗系致密页岩油气富集的有利岩性组合,然而富有机质页岩中的介壳灰岩夹层岩性多致密,胶结作用、溶解作用及破裂作用等成岩过程—构造事件复杂。本次围绕东岳庙段泥页岩地层中薄层介壳灰岩段开展研究,聚焦多类型方解石的岩石学—矿物学及元素地球化学特征,进而探讨其成岩序列及致密化成因,以期揭示该区页岩油气富集规律、为下步勘探开发提供依据。
-
川北地区北至广元—南江,东至达州,南至三台—蓬安,西至梓潼。米仓山—大巴山一带构造复杂,表现为一系列紧闭的线性褶皱。受燕山运动对四川盆地挤压隆升作用影响,区内构造抬升、水平面下降形成内陆湖泊;后受晚白垩世喜山运动北西—南东向应力影响形成系列北东向构造带;喜山运动晚期受北东—南西向应力影响,早期构造进一步改造,形成一系列北西向分布的断层及褶皱带。
川北地区下侏罗统自流井组自下而上可划分出珍珠冲段、东岳庙段、马鞍山段和大安寨段共四段。其中,东岳庙段由盆地边缘向盆地中心依次发育冲积平原—三角洲平原、三角洲前缘、前三角洲—湖泊相环境(图1a),其沉积厚度大(平均厚度大于70 m),岩性分布稳定,可分为上、下两个亚段。东岳庙段下亚段主要发育深灰色砂岩、深灰色泥页岩夹砂岩;东岳庙段上亚段以暗色泥页岩为主,夹有多个薄层泥灰岩和介壳灰岩透镜体,富含淡水双壳类化石。区内除广元—南江—通江—元坝一带东岳庙段以砂泥岩碎屑沉积为主外,区内重点探井以浅湖—半深湖及介屑滩沉积为主,局部发育滨—浅湖沉积[25](图1b、图2);岩性以灰黑色页岩为主,由下往上具有逐渐增高的TOC值;黑色页岩中见介壳夹层或页岩与介壳灰岩互层分布,局部发育水平层状方解石脉体(图2)。
-
样品主要采自川北地区东岳庙段上亚段,岩性主要为灰黑色页岩,具有全井段中较高的岩心实测孔隙度及测井解释具最高的TOC值,同时发育薄层介壳灰岩夹层。首先,选取黑色页岩中介壳灰岩夹层磨制成普通薄片(图2),并利用铁氰化钾+茜素红-S的混合试剂对薄片进行染色(混合液配方见石油行业标准SY/T 5368—2000),根据染色后方解石呈现的不同颜色区分不同的方解石:无铁方解石(0~0.5% FeO)呈粉红—红色;铁Ⅰ方解石(0.5%~1.5% FeO)—红紫色;铁Ⅱ方解石(1.5%~2.5% FeO)—淡蓝色;铁Ⅲ方解石(2.5%~3.5%)—深蓝色[26]。随后利用电子探针精确测定方解石中的微量元素含量,电子探针成分分析主要在西南石油大学油气地质与勘探实验教学中心完成,实验仪器为JXA-8230电子探针分析仪,利用波谱测试碳酸盐矿物中9种常见元素的含量;波谱分析精度优于1wt.%(主元素含量大于5wt.%)和5wt.%(次要元素含量介于1wt.%~5wt.%),可自动识别0.1wt.%以上的元素,检测极限为0.01wt.%。荧光分析由BK-FL荧光显微镜完成。
-
系统显微观察表明,研究区东岳庙段介壳灰岩夹层中均有不同程度的泥质组分,从夹层中部的纯介壳灰岩逐渐过渡至泥质介壳灰岩、含介壳泥岩。介壳灰岩中的介壳均遭受重结晶、溶蚀、充填及破裂作用。按照形态、染色特征及赋存状态可将方解石分为七种类型:组成介壳灰岩的细—中粒方解石(C1)、沿介壳灰岩边缘呈脉状—透镜状分布的纤维方解石(C2)、沿介壳灰岩边缘分布的微—亮晶方解石(C3)、含介壳泥岩中纤维状方解石(C4)、泥质介壳灰岩中微晶粒状方解石(C5)、含泥介壳灰岩中微晶粒状方解石(C6)及介壳灰岩孔/缝晚期充填的亮晶方解石(C7)。
其中,介壳主要由块状细—中粒方解石构成(C1),经混合液染色后呈浅粉色,或略显黄色(受杂质影响),属早期转化泥晶方解石经新生变形所致[26⁃27]。沿介壳边缘及部分裂缝边缘分布纤维状方解石,其宏观形态为脉状—透镜状,染色后呈亮粉色(C2);该方解石垂直于介壳边缘及裂缝生长、与介壳方解石接触界线截然,无交代或溶蚀作用亦无黏土杂质等存在,应属早期形成的方解石。沿部分介壳及纤维状方解石边缘发育交代—溶蚀状微—亮晶方解石(C3),其染色不均(主要呈紫色),与纤维状方解石、介壳界线模糊(图3c),应属前者溶解—再沉淀成因。此外,在含介壳泥岩中还可见沿介壳边缘分布的纤维状方解石(C4),其以介壳作为核心,构成壳—核结构纤维状方解石[28],该方解石经染色后呈淡蓝色。泥质介壳灰岩、含泥介壳灰岩中的方解石主要呈微晶粒状,与石英/高岭石/黄铁矿/沥青等共同充填在介壳颗粒之间(C5、C6),经染色后呈深蓝色。裂缝及孔隙中还可见亮晶方解石充填,经混合液染色后呈蓝色,应属晚期胶结成因方解石(C7)(图3d~f)。
图 3 川北东岳庙段介壳灰岩及不同类型方解石显微镜下特征
Figure 3. Microscope images of shell limestone and various types of calcite in the Dongyuemiao member of the northern Sichuan Basin
区内石英分布较为复杂,除与高岭石、沥青等共生充填于泥质介壳灰岩颗粒之间外,还可呈半自形—自形微晶粒状产出于介壳灰岩中的介壳与介壳接触部位,或与交代溶蚀状方解石共同充填在介壳破裂缝中(图3a~d)。黄铁矿主要呈草莓状集合体产出,高岭石常与沥青混合形成高岭石矿物沥青,显示复杂的成分特征,颜色呈褐黄色,其间保留一定数量的微孔隙[29](图3d)。
介壳内部微裂隙发育,可明显将其分为F1、F2及F3三类:(1)开启程度低,未明显切穿介壳的裂缝(F1);(2)破裂面为弯曲弧形状、与纤维状方解石伴生的裂缝(F2);(3)将介壳明显错断的裂缝(F3)。其中,沿F1主要为泥质充填;沿F2可发育纤维状方解石(C2,介壳灰岩)、交代溶蚀状方解石(C3,介壳灰岩)以及纤维状方解石(C4,泥质介壳灰岩或含介壳泥岩);沿F3见介壳溶蚀现象及石英颗粒的沉淀,内部多为亮晶方解石充填(C7)。根据裂缝形态学特征及裂缝充填物特征,三种裂缝应分别属于成岩压实缝、由有机质生烃引起的流体超压导致介壳发生破裂形成的层间缝(破裂面呈弯曲状)以及构造破裂缝[30],各类型裂缝与方解石等矿物的形成先后顺序为:C1+黄铁矿→F1→F2→C2/C4→C3→石英+高岭石→F3→C5/C6+沥青→C7。
-
为深入剖析方解石成因及生长过程,利用电子探针对上述页岩中介壳灰岩夹层内不同产出特征方解石的主量元素进行了定量分析。结果表明,研究区东岳庙段黑色页岩中碳酸盐矿物均为方解石,不含白云石,铁含量介于0~3wt.%(图4、表1)。介壳灰岩中染色呈粉色、具介壳外形的重结晶介壳方解石含铁量最低,FeO含量普遍小于0.1wt.%(平均仅0.03wt.%);呈粉色的纤维状方解石、呈紫色的交代溶蚀状方解石主要属微含铁方解石,FeO含量平均为0.04wt.%。含介壳泥岩中介壳边缘的纤维状方解石属铁Ⅰ方解石,泥质介壳灰岩粒间的粒状方解石(C5)、含泥介壳灰岩粒间的粒状方解石(C6)及介壳间的亮晶方解石(C7)分别属于铁Ⅰ方解石、铁Ⅱ方解石及铁Ⅲ方解石。
图 4 介壳灰岩夹层中方解石FeO⁃MnO关系图(a)及SrO⁃MnO关系图(b)
Figure 4. Relationship between the mass fraction of MnO⁃FeO (a) and MnO⁃SrO (b) of various calcites in the shell limestone interlayer
表 1 不同产状类型方解石电子探针分析主量元素质量分数(平均值wt.%)
Table 1. Average mass fraction of trace elements (wt.%) in calcite of difference types
产状 类型 MgO SrO CaO BaO SiO2 Al2O3 FeO MnO CO2 分类 介壳方解石 C1 0.007 0.266 55.755 0.035 0 0.004 0.013 0.013 43.907 无铁 介壳边缘纤维状方解石 C2 0.017 0.259 55.706 0.055 0 0.012 0.046 0 43.905 无铁 介壳边缘交代溶蚀方解石 C3 0.002 0.259 55.710 0.072 0 0.008 0.042 0.012 43.895 无铁 含介壳泥岩中纤维状方解石 C4 0.223 0.048 55.112 0.052 0 0.003 0.561 0.077 43.924 铁Ⅰ 泥质介壳灰岩中粒状方解石 C5 0.162 0.024 54.783 0.077 0 0.006 0.924 0.154 43.870 铁Ⅰ 含泥介壳灰岩中粒状方解石 C6 0.555 0.067 49.969 0.029 1.330 0.799 2.584 0.151 44.516 铁Ⅱ 晚期胶结亮晶方解石 C7 0.740 0.061 52.018 0.037 0 0.017 3.214 0.157 43.756 铁Ⅲ 相关性分析表明,研究区方解石中MnO与FeO含量呈明显的正相关关系、MnO与SrO含量呈明显的负相关关系,相关系数分别高达+0.90、-0.83。方解石C1、C2、C3具较低的FeO含量及较高的SrO含量,指示其形成于较早成岩阶段[31]:鉴于纤维状方解石(C2)与前述流体超压成因的层间缝(F2)之间关系,应属第一期流体超压成因胶结物,与介壳方解石之间关系截然不同,指示CaCO3主要源于上下地层中碳酸钙的减少及转换[16,32⁃34];方解石C3主要源于C1、C2的溶解—再沉淀,属第二期胶结物(图5a,b)。方解石C4主要发育于含介壳泥岩的介壳边缘,其纤维状晶形不完整,边缘有明显溶蚀现象(图3d),应属于第一期流体超压成因方解石经离子交换及重结晶作用后的产物[28]。方解石C5、C6、C7具较高的MnO、FeO含量以及较低的SrO含量,应为成岩中晚期阶段产物,属第四期胶结物。此外,区内FeO含量与岩石中泥质含量成反比(泥质含量越高,FeO含量越低),表明方解石中铁离子主要来自泥质组分中黏土矿物的脱水转化[27](图4)。综上,结合方解石主量元素特征及上述形态、染色、赋存状态特征,最终将七种不同类型方解石进行了归纳总结(表2)。
图 5 背散射图像下不同期次方解石分布及孔隙发育特征
Figure 5. Occurrence and micropores of various calcites observed with a backscattered field emission scanning electron microscope
表 2 川北东岳庙段薄层介壳灰岩中不同类型方解石特征
Table 2. Characteristics of various types of calcite in the Dongyuemiao member in the northern Sichuan Basin
分类 形态 染色 赋存状态 主量元素 方解石类型 期次 形成时间 成因 C1 细—中粒 浅粉—黄色 组成介壳方解石 低Fe-Mn、高Sr 无铁方解石 第一期 早成岩A 沉积+重结晶 C2 纤维状 亮粉色 垂直介壳边缘及部分裂缝边缘分布 低Fe-Mn、高Sr 微含铁方解石 第二期 早成岩B 流体超压 C3 微—亮晶 紫色为主 沿部分介壳及纤维状方解石边缘分布 低Fe-Mn、高Sr 微含铁方解石 第三期 中成岩A C1+C2溶解—再沉淀 C4 纤维状 淡蓝色 含介壳泥岩中,沿生屑边缘分布 高Mn-低Fe、低Sr 铁Ⅰ方解石 第二期 早成岩B C1+C2离子交换及重结晶 C5 微晶粒状 深蓝色 泥质介壳灰岩 高Mn-中Fe、低Sr 铁Ⅰ方解石 第四期 中成岩B 晚期胶结 C6 微晶粒状 深蓝色 含泥介壳灰岩 高Mn-Fe、低Sr 铁Ⅱ方解石 第四期 中成岩B 晚期胶结 C7 亮晶 蓝色 介壳灰岩裂缝及孔隙中 高Mn-Fe、低Sr 铁Ⅲ方解石 第四期 中成岩B 晚期胶结 -
前人针对侏罗系沉积埋藏史和热演化史模拟研究表明[24](图6),川北地区下侏罗统在沉积早期地层沉降速率快,富有机质泥页岩在中侏罗世末期即达到大量生烃门限(Ro>0.5%),其生气时间长,后期地层的抬升热演化程度也一直稳定在2%左右(总体属中成岩B期阶段,图6)。前已述及,川北地区东岳庙段介壳灰岩夹层历经三期明显的破裂作用及四期方解石的胶结作用,同时见两期明显的酸性流体溶蚀作用:成岩压实缝(F1)及方解石(C1)、层间缝(F2)及方解石(C2、C4)应分别形成于早成岩A、B期阶段的第一期重结晶和第二期胶结,C3方解石属中成岩A阶段的第三期胶结,构造破裂缝(F3)及方解石C5~C7应形成于中成岩B期阶段的第四期胶结(图5c,d)。两期溶蚀作用分别形成于层间缝及纤维状方解石(F2+C2)、构造破裂缝(F3)形成之后,前者主要发生于中成岩A期阶段,该期尚未发生明显地层抬升,其溶蚀机理可能是有机酸源内溶蚀(幕式超压充注溶蚀)[35],后者主要发生于中成岩B期地层抬升阶段(图4)。方解石晶内微孔以及方解石、黏土矿物晶间微米孔隙为介壳灰岩主要孔隙空间,其具体成岩及孔/缝形成过程分析如下。
早成岩A期(Ro<0.35%),在强烈的超补偿沉积下,区内东岳庙段介壳灰岩受压实作用强烈,介壳灰岩中的介壳表现出明显的定向排列,同时导致介壳内部微裂缝的形成(F1),钙质介壳发生一定程度的重结晶形成细—中粒方解石(C1);在缺氧环境中,有机质在细菌作用下于介壳间形成草莓状黄铁矿[36](图7a)。至早成岩B期(0.35%<Ro<0.5%),有机质进入半成熟阶段,超压导致介壳灰岩破裂形成层间缝(F2),并形成垂直于缝面生长的纤维状方解石(C2),同时在含介壳泥岩的介壳边缘形成含铁纤维状方解石[37](C4,图7b)。至中成岩A期阶段(0.5%<Ro<1.3%),有机质进一步成熟,在该阶段早期(A1)伴随有机酸的大量生成,压力梯度驱动下的有机酸沿(成岩)层间缝及黏土矿物收缩缝等进入介壳灰岩夹层[35,38],对先期形成的纤维状方解石及部分介壳进行溶蚀(图7c)——形成部分次生孔隙带;至中成岩A阶段晚期(A2),因进入生油高峰期——有机酸浓度降低,且伴随胶结作用的出现——形成第二期溶蚀—再沉淀方解石(C3)。至中成岩B期阶段(1.3%<Ro<2.0%),有机质处于高成熟阶段,在持续的酸性环境下,黏土矿物转化释放出的Si4+、Al3+等离子,在介壳间以及早期裂缝中沉淀出粒状石英,在泥质介壳灰岩中形成高岭石及石英。在较高的埋藏深度及温度下,先期形成的方解石进一步发生离子交换及重结晶作用,形成第三期方解石(图7d)。白垩世中期的构造抬升作用导致介壳发生破裂(F3,图7e),有机酸沿裂缝进入并对其进行溶蚀,在裂缝中进一步沉淀出粒状石英;因成岩环境向碱性转变,粒状及亮晶铁方解石(第四期方解石)与烃类分别在(含)泥质介壳灰岩粒间孔隙(C5,C6)及介壳灰岩裂缝中沉淀(C7)。因此,区内侏罗系东岳庙段薄层介壳灰岩中因矿物组分及含量的不同,最终形成烃类与黄铁矿、石英、高岭石等黏土矿物以及铁方解石共同导致差异充填的复杂性(图7f)。
-
川北地区侏罗系东岳庙段黑色泥页岩中的薄层介壳灰岩沉积期总体属于半深湖—深湖的深水沉积环境,与侏罗系大安寨段厚层—块状介壳灰岩发育的浅湖沉积环境存在较大差异:厚层—块状介壳灰岩沉积期属于水动力相对较强的浅水高能介壳滩沉积环境,沉积早期除强烈亮晶胶结外仍可保留部分粒间孔隙,在后期压实成岩作用下导致储层致密化明显;而薄层介壳灰岩填隙物为泥质组分或泥晶方解石,且双壳类介壳的原始组分为文石或方解石,这两种结构组分均说明原岩形成期即属致密性储层。此外,区内东岳庙段介壳边缘纤维状方解石与烃源岩大面积生烃引起的流体超压关系密切,并且其物质主要源于上下围岩地层。该方解石胶结物的形成始于中侏罗世,即油气大规模运聚时介壳灰岩及周围页岩致密化已经存在(但其沉淀后仍保留有少量的层间缝及方解石晶内微孔)。之后虽经历一定程度的溶蚀作用,但纤维状方解石、介壳方解石的溶蚀—再沉淀作用以及后期铁方解石的沉淀进一步减少了孔隙,多期方解石胶结导致薄层介壳灰岩为致密储层。
由于岩石致密化引起的启动压力梯度的存在,导致石油脱离烃源岩的运移距离变短,油气在纵向上只能在邻近烃源岩的储层中聚集[39],区内东岳庙段主要表现为未被早期方解石胶结的(含)泥质介壳灰岩粒间黏土矿物、铁方解石与烃类的共生(图8)。其中,早期成藏事件表现为早期成熟烃类因排烃不畅而就近运移且沥青化,晚期成藏事件表现为受构造—成岩事件共同改造后油气沿裂隙及薄层介壳灰岩层间缝分布。
-
(1) 川北地区侏罗系东岳庙段页岩介壳灰岩夹层中发育七种类型方解石:介壳重结晶方解石;发育于介壳灰岩中,由超压形成、沿破裂缝及介壳边缘生长的纤维状方解石;溶蚀—再沉淀方解石;发育于含介壳泥岩中、沿介壳边缘生长—后期发生重结晶及离子交换作用的纤维状方解石;与黄铁矿/黏土矿物/石英等共生充填于泥质介壳灰岩、含泥介壳灰岩粒间的粒状方解石以及充填介壳灰岩构造缝及溶蚀孔隙的亮晶方解石,七类方解石分别对应于四期成岩改造作用。
(2) 多期方解石胶结是导致东岳庙段灰岩储层致密化的主要原因,成岩早期超压形成的纤维状方解石为后期的溶蚀作用奠定了一定基础,但方解石的溶蚀—再沉淀以及成岩中期铁方解石的胶结进一步降低了孔隙度。东岳庙段薄层介壳灰岩总体具“致密—调整—再致密—成藏”的复杂演化过程,进而约束了油气运聚路径及富集。
Model of Calcite Precipitation in a Shell Limestone Interlayer and Densification of the Dongyuemiao Reservoir (Lower Jurassic) in the Northern Sichuan Basin
-
摘要: 目的 川北地区侏罗系自流井组东岳庙段为典型湖相致密页岩油储层,富有机质页岩中发育多套薄层介壳灰岩夹层,其间发育多期裂缝、方解石胶结以及溶蚀作用,储层致密化过程及富集规律不清。亟需进一步揭示介壳灰岩夹层历经的埋藏—成岩序列,探讨方解石形成与页岩油气关系。 方法 结合详细岩心观察、铸体薄片、电子探针成分分析及埋藏史—热演化史等,针对方解石矿物产状、主/微量元素及共生矿物特征开展深入分析。 结果 川北地区东岳庙段介壳灰岩夹层中发育细—中粒介壳重结晶方解石、脉状—透镜状纤维方解石、交代—溶蚀状微—亮晶方解石、含介壳泥岩中纤维状方解石、泥质介壳灰岩及含泥介壳灰岩中微晶粒状方解石、介壳灰岩孔缝中充填亮晶方解石等六种类型方解石,并对应于(1)早成岩A期沉积物重结晶成因、(2)早成岩B期与富有机质页岩生排烃有关的纤维状方解石、(3)中成岩A期溶蚀—再沉淀方解石及(4)中成岩B期方解石共四期胶结作用,方解石中Fe、Mn、Sr等元素含量与其形成时间及期次关系密切。 结论 多期方解石胶结是导致东岳庙段介壳灰岩储层致密化的主要原因,流体超压形成的纤维状方解石既引起储层致密化亦为后期溶蚀作用奠定一定基础,成岩中期的方解石沉淀则进一步降低孔隙度。方解石沉淀导致的储层致密化约束了页岩油时空分布。Abstract: Objective Thin-layered shale and shell limestone are beneficial for determining the properties of the shale-oil reservoir of the Dongyuemiao member of the Ziliujing Formation (Lower Jurassic) in the northern Sichuan Basin. It is found that the shale and shell limestone have developed various types of fractures, calcite veins, and dissolution. Our aim is to decipher the burial and diagenetic sequence of the shell limestone interlayers, and discuss the relationship between hydrocarbon accumulation and the formation of calcite and reservoir densification. Methods In our study we use detailed core observations, microscopic section observations, and the electron probe composition, trace elements, and paragenetic minerals are determined. Results The results show that seven types of calcite occur in the organic-rich shale of the Dongyuemiao member according to their morphology, staining, and occurrence condition, such as: (1) recrystallized fine-medium crystalline calcite (C1) in the shell limestone; (2) noddle-lenticular fibrous calcite along the edge of the shell limestone (C2); (3) micro-sparry calcite, which occurs along the edge of shell limestone (C3); (4) fibrous calcite in the shell mudstone (C4); (5) microcrystalline granular calcite in the argillaceous shell limestone (C5); (6) microcrystalline granular calcite in the muddy shell limestone (C6); and sparry calcite in pores and/ or fractures (C7). Besides, the microfractures in the shell-limestone are deve-loped, which can be obviously divided into F1 (with low opening degree and reluctantly cut through the shell), F2 (with curved fracture surface and occurred associated with fibrous calcite), and F3 (obviously break the shell). The formation sequence of minerals such as fractures and calcite is: C1+pyrite → F1 → F2→ C2/C4 → C3→ quartz+ kaolinite → F3→ C5/C6+ asphalt → C7. The major elements in the calcite and the division of phases indicate that C1 to C3 calcite, which has a low content of FeO and a high content of SrO, may have formed during an early diagenetic stage. The contact relationship between C2 and interlayer fracture (F2) caused by fluid overpressure indicates that calcite C2 belongs to the first phase of fluid overpressure cement. Calcite C3 is mainly derived from the dissolution and reprecipitation of C1 and C2, and is formed during second phase cementation. Calcite C4 has mainly developed at the edge of the shell mudstone, and the incomplete fibrous crystal morphology and obvious dissolution at the edges imply that C4 should be the product of ion exchange and recrystallization of calcite from the first phase of fluid overpressure. Furthermore, Calcite C5, C6, and C7 have high contents of MnO and FeO and a low content of SrO, which we infer to be the products of middle and late stage diagenesis and belong to fourth stage cementation. Precipitation models of various types of calcite are elucidated by the integration of the regional burial history, diagenetic evolution sequence, and tectonic-thermal evolution history, and four models are pointed out: (1) recrystallization of shell sediments; (2) fibrous calcite formed during stage B of early diagenesis by hydrocarbon generation and expulsion from organic rich shale; (3) calcite formed during stage A of middle diagenesis by dissolution and reprecipitation; and (4) block-sparry calcite formed during stage B of middle diagenesis. The element contents of Fe, Mn, and Sr in the calcite are closely related to the formation time and stage. Conclusions Multi-cementation of calcite is crucial to the densification of limestone reservoirs. Fibrous calcite veins triggered by fluid overpressure led to densification as well as providing a foundation for late dissolution. However, the precipitation of calcite during middle diagenesis eventually decreased the amount of pores. Overall, the precipitation of various types of calcite constrained the distribution of shale-oil in the densified reservoir.
-
Key words:
- northern Sichuan Basin /
- Jurassic /
- Dongyuemiao member /
- shale-oil /
- calcite precipitation
-
表 1 不同产状类型方解石电子探针分析主量元素质量分数(平均值wt.%)
Table 1. Average mass fraction of trace elements (wt.%) in calcite of difference types
产状 类型 MgO SrO CaO BaO SiO2 Al2O3 FeO MnO CO2 分类 介壳方解石 C1 0.007 0.266 55.755 0.035 0 0.004 0.013 0.013 43.907 无铁 介壳边缘纤维状方解石 C2 0.017 0.259 55.706 0.055 0 0.012 0.046 0 43.905 无铁 介壳边缘交代溶蚀方解石 C3 0.002 0.259 55.710 0.072 0 0.008 0.042 0.012 43.895 无铁 含介壳泥岩中纤维状方解石 C4 0.223 0.048 55.112 0.052 0 0.003 0.561 0.077 43.924 铁Ⅰ 泥质介壳灰岩中粒状方解石 C5 0.162 0.024 54.783 0.077 0 0.006 0.924 0.154 43.870 铁Ⅰ 含泥介壳灰岩中粒状方解石 C6 0.555 0.067 49.969 0.029 1.330 0.799 2.584 0.151 44.516 铁Ⅱ 晚期胶结亮晶方解石 C7 0.740 0.061 52.018 0.037 0 0.017 3.214 0.157 43.756 铁Ⅲ 表 2 川北东岳庙段薄层介壳灰岩中不同类型方解石特征
Table 2. Characteristics of various types of calcite in the Dongyuemiao member in the northern Sichuan Basin
分类 形态 染色 赋存状态 主量元素 方解石类型 期次 形成时间 成因 C1 细—中粒 浅粉—黄色 组成介壳方解石 低Fe-Mn、高Sr 无铁方解石 第一期 早成岩A 沉积+重结晶 C2 纤维状 亮粉色 垂直介壳边缘及部分裂缝边缘分布 低Fe-Mn、高Sr 微含铁方解石 第二期 早成岩B 流体超压 C3 微—亮晶 紫色为主 沿部分介壳及纤维状方解石边缘分布 低Fe-Mn、高Sr 微含铁方解石 第三期 中成岩A C1+C2溶解—再沉淀 C4 纤维状 淡蓝色 含介壳泥岩中,沿生屑边缘分布 高Mn-低Fe、低Sr 铁Ⅰ方解石 第二期 早成岩B C1+C2离子交换及重结晶 C5 微晶粒状 深蓝色 泥质介壳灰岩 高Mn-中Fe、低Sr 铁Ⅰ方解石 第四期 中成岩B 晚期胶结 C6 微晶粒状 深蓝色 含泥介壳灰岩 高Mn-Fe、低Sr 铁Ⅱ方解石 第四期 中成岩B 晚期胶结 C7 亮晶 蓝色 介壳灰岩裂缝及孔隙中 高Mn-Fe、低Sr 铁Ⅲ方解石 第四期 中成岩B 晚期胶结 -
[1] 郑荣才. 四川盆地下侏罗统大安寨段高分辨率层序地层学[J]. 沉积学报,1998,16(2):42-49. Zheng Rongcai. High resolution sequence stratigraphy of Da’anzhai Formation, Lower Jurassic in Sichuan Basin[J]. Acta Sedimentologica Sinica, 1998, 16(2): 42-49. [2] 梁狄刚,冉隆辉,戴弹申,等. 四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J]. 石油学报,2011,32(1):8-17. Liang Digang, Ran Longhui, Dai Danshen, et al. A re-recognition of the prospecting potential of Jurassic large-area and non-conventional oils in the central-northern Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(1): 8-17. [3] 贾承造,邹才能,李建忠,等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报,2012,33(3):343-350. Jia Chengzao, Zou Caineng, Li Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350. [4] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26. Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. [5] 杨光,黄东,黄平辉,等. 四川盆地中部侏罗系大安寨段致密油高产稳产主控因素[J]. 石油勘探与开发,2017,44(5):817-826. Yang Guang, Huang Dong, Huang Pinghui, et al. Control factors of high and stable production of Jurassic Da’anzhai member tight oil in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 817-826. [6] 印森林,谢建勇,程乐利,等. 陆相页岩油研究进展及开发地质面临的问题[J]. 沉积学报,2022,40(4):979-995. Yin Senlin, Xie Jianyong, Cheng Leli, et al. Advances in continental shale oil research and problems of reservoir geology[J]. Acta Sedimentologica Sinica, 2022, 40(4): 979-995. [7] 魏志红,刘若冰,魏祥峰,等. 四川盆地复兴地区陆相页岩油气勘探评价与认识[J]. 中国石油勘探,2022,27(1):111-119. Wei Zhihong, Liu Ruobing, Wei Xiangfeng, et al. Exploration evaluation and recognition of continental shale oil and gas in Fuxing area, Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1): 111-119. [8] 厚刚福,宋兵,倪超,等. 致密油源储配置特征及油气勘探意义:以四川盆地川中地区侏罗系大安寨段为例[J]. 沉积学报,2021,39(5):1078-1085. Hou Gangfu, Song Bing, Ni Chao, et al. Tight oil source-reservoir matching characteristics and its significance for oil and gas exploration: A case study of the Jurassic Da’anzhai member in the central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1078-1085. [9] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [10] Scott C, Lyons T W, Bekker A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean[J]. Nature, 2008, 452(7186): 456-459. [11] Gregory D D, Large R R, Halpin J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1389-1410. [12] 刘田,冯明友,王兴志,等. 渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J]. 天然气地球科学,2019,30(5):740-750. Liu Tian, Feng Mingyou, Wang Xingzhi, et al. Elemental geochemical characteristics and limit on sedimentary environment in the Late Ordovician Wufengian period in the Wuxi area, NE Chongqing[J]. Natural Gas Geoscience, 2019, 30(5): 740-750. [13] Xu L B, Wang X Z, Feng M Y, et al. Deciphering the Upper Ordovician Wufeng siliceous shale depositional environments (Wuxi, NE Chongqing) based on multi-proxy record[J]. Petroleum, 2021, 7(1): 10-20. [14] Jochum J, Friedrich G, Leythaeuser D, et al. Hydrocarbon-bearing fluid inclusions in calcite-filled horizontal fractures from mature Posidonia Shale (Hils Syncline, NW Germany)[J]. Ore Geology Reviews, 1995, 9(5): 363-370. [15] Nuriel P, Weinberger R, Rosenbaum G, et al. Timing and mechanism of Late-Pleistocene calcite vein formation across the Dead Sea Fault Zone, northern Israel[J]. Journal of Structural Geology, 2012, 36: 43-54. [16] Wang M, Chen Y, Bain W M, et al. Direct evidence for fluid overpressure during hydrocarbon generation and expulsion from organic-rich shales[J]. Geology, 2020, 48(4): 374-378. [17] 黄伟林,冯明友,刘小洪,等. 渝东石柱地区龙马溪组页岩纤维状脉体成因[J]. 地质科技通报,2020,39(3):160-169. Huang Weilin, Feng Mingyou, Liu Xiaohong, et al. Genesis of fibrous veins in the shales of Longmaxi Formation in Shizhu area, eastern Chongqing[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 160-169. [18] Lyons T W, Anbar A D, Severmann S, et al. Tracking euxinia in the ancient ocean: A multiproxy perspective and Proterozoic case study[J]. Annual Review of Earth and Planetary Sciences, 2009, 37: 507-534. [19] 杨跃明,黄东. 四川盆地侏罗系湖相页岩油气地质特征及勘探开发新认识[J]. 天然气工业,2019,39(6):22-33. Yang Yueming, Huang Dong. Geological characteristics and new understandings of exploration and development of Jurassic lacustrine shale oil and gas in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 22-33. [20] 刘皓天,李雄,万云强,等. 陆相页岩气形成条件及勘探开发潜力:以川东涪陵北地区侏罗系东岳庙段为例[J]. 海相油气地质,2020,25(2):148-154. Liu Haotian, Li Xiong, Wan Yun-qiang, et al. Formation conditions and exploration and development potential of continental shale gas: A case of Dongyuemiao member of the Jurassic in north Fuling area, eastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(2): 148-154. [21] 李世临,张文济,李延钧,等. 川东地区下侏罗统自流井组东岳庙段烃源岩评价[J]. 天然气勘探与开发,2021,44(2):11-18. Li Shilin, Zhang Wenji, Li Yanjun, et al. Evaluation on source rocks of Dongyuemiao member in the Lower Jurassic Zi-liujing Formation, eastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(2): 11-18. [22] Shu Y, Bao H Y, Zheng Y H, et al. Lithofacies types, assemblage characteristics, and sedimentary evolution model of lacustrine shale in Dongyuemiao Formation of Fuxing area[J]. Frontiers in Earth Science, 2021, 9: 772581. [23] 何文渊,白雪峰,蒙启安,等. 四川盆地陆相页岩油成藏地质特征与重大发现[J]. 石油学报,2022,43(7):885-898. He Wenyuan, Bai Xuefeng, Meng Qi’an, et al. Accumulation geological characteristics and major discoveries of lacustrine shale oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(7): 885-898. [24] 黄棋棽. 川北地区下侏罗统东岳庙段页岩气富集规律研究[D]. 成都:成都理工大学,2015. Huang Qichen. The study of shale gas enrichment pattern in the Dongyuemiao member of Ziliujing Formation of Lower Jurassic in northern Sichuan Basin, China[D]. Chengdu: Chengdu University of Technology, 2015. [25] 高健,林良彪,任天龙,等. 川北地区下侏罗统东岳庙段页岩气富集主控因素研究[J]. 岩性油气藏,2016,28(5):67-75. Gao Jian, Lin Liangbiao, Ren Tianlong, et al. Controlling factors for shale gas enrichment of the Lower Jurassic Dongyuemiao member in the northern Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(5): 67-75. [26] 强子同,杨植江,王建民,等. 大安寨石灰岩的成岩作用与成岩圈闭[J]. 地球化学杂志,1981(3) :232-241. Qiang Zitong, Yang Zhijiang, Wang Jianmin, et al. Diagenesis and diagenetic trap of Da’anzhai limestone[J]. Geochimica, 1981(3): 232-241. [27] 王昕尧,金振奎,郭芪恒,等. 川东北下侏罗统大安寨段陆相页岩方解石成因[J]. 沉积学报,2021,39(3):704-712. Wang Xinyao, Jin Zhenkui, Guo Qiheng, et al. Genesis of calcite in nonmarine shale of the Lower Jurassic Da’anzhai member, northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 704-712. [28] Milliken K L, Day-Stirrat R J. Cementation in mudrocks: Brief review with examples from cratonic basin mudrocks[J]. AAPG Memoir, 2013(103): 133-150. [29] 刘忠宝,胡宗全,刘光祥,等. 四川盆地东北部下侏罗统自流井组陆相页岩储层孔隙特征及形成控制因素[J]. 石油与天然气地质,2021,42(1):136-145. Liu Zhongbao, Hu Zongquan, Liu Guangxiang, et al. Pore characteristics and controlling factors of continental shale reservoirs in the Lower Jurassic Ziliujing Formation, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(1): 136-145. [30] 马存飞,董春梅,王倩,等. X射线衍射残余应力测试技术在纤维状方解石脉体现今应力状态分析中的应用[J]. 中国石油大学学报(自然科学版),2021,45(1):23-30. Ma Cunfei, Dong Chunmei, Wang Qian, et al. Application of X-ray diffraction residual stress testing technology in the analysis of present stress state of fibrous calcite vein[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021, 45(1): 23-30. [31] 刘文均. 湘南泥盆系碳酸盐岩中锶的分布特点及其环境意义[J]. 沉积学报,1989,7(2):15-20. Liu Wenjun. The distributive characters and environmental signeficance of strontium in carbonate rocks of Devonian in southern Gunan[J]. Acta Sedimentologica Sinica, 1989, 7(2): 15-20. [32] Cobbold P R, Zanella A, Rodrigues N, et al. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 2013, 43: 1-20. [33] Hilgers C, Sindern S. Textural and isotopic evidence on the fluid source and transport mechanism of antitaxial fibrous microstructures from the Alps and the Appalachians[J]. Geofluids, 2005, 5(4): 239-250. [34] Hilgers C, Koehn D, Bons P D, et al. Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins[J]. Journal of Structural Geology, 2001, 23(6/7): 873-885. [35] 胡延旭,韩春元,康积伦,等. 页岩油甜点储层成因新模式:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 天然气地球科学,2022,33(1):125-137. Hu Yanxu, Han Chunyuan, Kang Jilun, et al. New genesis model of the shale oil sweet-spot reservoir: Case study of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2022, 33(1): 125-137. [36] 王东升,张金川,李振,等. 草莓状黄铁矿的形成机制探讨及其对古氧化—还原环境的反演[J]. 中国地质,2022,49(1):36-50. Wang Dongsheng, Zhang Jinchuan, Li Zhen, et al. Formation mechanism of framboidal pyrite and its theory inversion of paleo-redox conditions[J]. Geology in China, 2022, 49(1): 36-50. [37] Meng Q F, Hooker J, Cartwright J. Displacive widening of calcite veins in shale: Insights into the force of crystallization[J]. Journal of Sedimentary Research, 2018, 88(3): 327-343. [38] 王鹏威,张亚雄,刘忠宝,等. 四川盆地东部涪陵地区自流井组陆相页岩储层微裂缝发育特征及其对页岩气富集的意义[J]. 天然气地球科学,2021,32(11):1724-1734. Wang Pengwei, Zhang Yaxiong, Liu Zhongbao, et al. Microfracture development at Ziliujing lacustrine shale reservoir and its significance for shale-gas enrichment at Fuling area in eastern Sichuan Basin[J]. Natural Gas Geoscience, 2021, 32(11): 1724-1734. [39] 庞正炼,陶士振,张琴,等. 四川盆地侏罗系储层致密化及其对致密油分布规律的影响[C]//中国地球物理2013:第四专题论文集. 昆明:中国地球物理学会,2013:21. Pang Zhenglian, Tao Shizhen, Zhang Qin, et al. Jurassic reservoir densification in Sichuan Basin and its influence on tight oil distribution[C]//China geophysics 2013-the fourth monograph collection. Kunming: China Geophysical Society, 2013: 21. -