-
根据砂岩碎屑组分特征将研究区须二段致密砂岩储层划分为富石英类砂岩(Q>70%)、 富长石类砂岩(F>10%)和富岩屑类砂岩(R>25%)3种类型;须四段划分为含长石类砂岩(F>3%)、贫长石类砂岩(F<3%)和富岩屑类砂岩(R>25%)3种类型[16,40]。
物源控制了储层岩石类型的发育范围,导致各地区矿物组分及含量亦有所不同[15]。结合物源特征,据砂岩三角投点图[41],对须二段(N=2 024)、须四段(N=1 000)进行分析可知,须二段广泛发育岩屑砂岩为主的富岩屑类砂岩,较发育长石岩屑砂岩为主的富长石类砂岩(图2a、图3a),受西部龙门山及(东)北部米仓山—大巴山物源影响,须二段岩屑类型以变质岩岩屑为主(图4a、图6c),说明总的物源区为米仓山—大巴山,总的物源方向为自东北向西南。龙门山物源控制下的须二段(N=552)富岩屑类砂岩发育,贫长石、富沉积岩岩屑(图6a)。米仓山—大巴山物源控制下的须二段(N=1 472)发育富岩屑类砂岩,较龙门山物源发育富长石类砂岩,富长石、富变质岩岩屑及火山岩岩屑(图6a)。
图 6 新场地区须二段、须四段不同物源控制的砂岩类型及岩屑类型三角投点图
Figure 6. Triangular projections of sandstone and lithic types controlled by different provenances in the Second and Fourth members of the Xujiahe Formation in the Xinchang area
须四段广泛发育岩屑砂岩为主的富岩屑类砂岩(图2b、图3b),受西部龙门山物源影响,须四段岩屑类型以沉积岩岩屑为主(图4b、图6c),说明总的物源区为西部龙门山,总的物源方向为自(西)北向东。龙门山物源控制下的须四段(N=610)主要发育岩屑砂岩,次为岩屑石英砂岩等贫长石类砂岩,贫长石、富岩屑(图6b)。米仓山—大巴山物源控制下的须四段(N=390)发育岩屑砂岩等富岩屑类砂岩,次为长石岩屑砂岩等含长石类砂岩,富长石、贫火山岩岩屑(图6b)。
须二段填隙物以方解石、白云石为主,但值得注意的是绿泥石较为发育;砂岩粒度以中粒为主,分选好,磨圆主要表现为次棱角状。须二段龙门山物源较米仓山—大巴山物源控制下的储层填隙物略微富集白云石、绿泥石,贫硅质,中细粒砂岩较发育,分选、磨圆一般(表1、图7)。须四段填隙物以方解石为主,砂岩粒度以中粒为主,分选好,磨圆主要表现为次棱角状。须四段龙门山物源较米仓山—大巴山物源控制下的储层填隙物略微富方解石,贫泥质,分选、磨圆好(表1、图7)。
表 1 新场地区须二段、须四段不同物源控制下的砂岩填隙物及结构特征
层位 物源 填隙物/% 结构 样品数 方解石 白云石 硅质 泥质 粒度 分选 磨圆 须二段 龙门山 0~25/1.32 0~35/1.99 0~8/0.84 0~10/0.12 细粒(22.83%)中粒(72.83%) 好(83.51%) 次棱角状(78.08%) 552 米仓山—大巴山 0~36/1.63 0~30/1.40 0~7/1.49 0~15/0.16 细粒(17.26%)中粒(68.82%) 好(86.48%) 次棱角状(93.82%) 1 472 须四段 龙门山 0~45/5.23 0~10/0.62 0~4/0.23 0~23/0.55 细粒(30.82%)中粒(63.93%) 好(84.92%) 次棱角状(92.62%) 610 米仓山—大巴山 0~34/5.03 0~30/0.63 0~6/0.59 0~10/2.58 细粒(21.54%)中粒(75.38%) 好(67.18%) 次棱角状(95.38%) 390 注: 填隙物数据为最小值~最大值/平均值。图 7 新场地区须二段、须四段不同物源控制的砂岩填隙物特征
Figure 7. Characteristics of sandstone interstitials controlled by different provenances in the Second and Fourth members of the Xujiahe Formation in the Xinchang area
综合而言,填隙物须四段较须二段更为单一,方解石胶结物须四段较须二段更为发育,白云石胶结物则相反,硅质及绿泥石须二段较须四段略为发育;须二段及须四段粒度分布相差不多,须四段较须二段更为发育中、细粒砂岩,磨圆须四段略优于须二段。
-
多物源致使研究区形成不同类型的储层,进而使得各储层中的矿物组分及其含量不同,并最终导致储层孔隙类型及其发育规模不同[15]。物性分析结果表明,研究区须二段孔隙介于0.92%~11.42%,平均值为3.80%,峰值区间为2%~4%(图8g);渗透率介于(0.002~79.09)×10⁃³ μm²,平均值为0.61×10⁃³ μm²,峰值区间为(0~0.04)×10⁃³ μm²(图8h)。观察铸体薄片发现,研究区须二段储集空间以次生孔隙岩屑粒内溶孔、裂缝为主,原生孔隙次之(图9~11)[42]。龙门山物源与米仓山—大巴山物源控制的须二段储层孔渗特征相似,孔隙度分布峰值区间均为2%~4%(图8a),渗透率分布峰值区间均为(0~0.04)×10⁃³ μm²(图8b);龙门山物源控制的须二段储层特低孔隙度、渗透率占比普遍高于米仓山—大巴山物源,米仓山—大巴山物源控制的须二段储层物性略优于龙门山物源(图8c)[29]。
图 8 新场地区须二段、须四段不同物源控制的储层物性特征
Figure 8. Reservoir physical properties controlled by different provenances in the Second and Fourth members of the Xujiahe Formation in the Xinchang area
图 9 新场地区须二段、须四段不同物源控制的储层储集空间特征
Figure 9. Characteristics of reservoir space controlled by different provenances in the Second and Fourth members of the Xujiahe Formation in the Xinchang area
图 10 扫描电镜(SEM)及阴极发光(CL)下新场地区须二段、须四段成岩作用类型
Figure 10. Types of diagenesis in the Second and Fourth members of the Xujiahe Formation in the Xinchang area under scanning electron microscope (SEM) and cathodoluminescence (CL)
图 11 铸体薄片下新场地区须二段、须四段成岩作用类型
Figure 11. Diagenesis types of the Second and Fourth members of the Xujiahe Formation in the Xinchang area, casting thin section
研究区须四段孔隙度介于0.58%~12.71%,平均值为5.83%,峰值区间为4%~6%(图8g);渗透率介于(0.001 8~1 070.03)×10⁃³ μm²,平均值为2.56×10⁃³ μm²,峰值区间为(0.10~0.20)×10⁃³ μm²(图8h)。铸体薄片结果显示,研究区须四段储集空间以次生孔隙岩屑、长石粒内溶孔为主,原生孔隙次之(图9~11)。龙门山物源与米仓山—大巴山物源控制的须四段储层孔渗特征相似,孔隙度分布峰值区间均为4%~8%(图8d),渗透率分布峰值区间均为(0.10~0.40)×10⁃³ μm²(图8e);与须二段相类似,米仓山—大巴山物源控制下的须四段储层物性优于龙门山物源(图8f)。
新场地区须二段孔隙度平均值小于须四段,孔隙度分布须二段较须四段相对集中,须二段孔隙度超半数分布在2%~4%,须四段孔隙度大多分布在4%~8%;渗透率平均值须二段与须四段相差不大,须二段渗透率大多小于0.06×10⁃³ μm²,且多数分布于(0.10~0.40)×10⁃³ μm²;孔渗相关系数须四段大于须二段(图8i)。研究区须二段、须四段均以发育次生孔隙为主,须四段相较于须二段长石溶孔更为发育,须二段相较于须四段原生孔隙更为发育(图9)。
-
成岩作用对深层致密砂岩储层的改造直接影响了现今的储层微观孔隙结构格局,是储层致密、低孔特低渗的一个重要原因[19]。研究区须二段、须四段均经历了压实压溶作用、胶结作用、溶蚀作用及破裂作用。
研究区压实作用较为明显,须二段埋深大,压实程度高(图10e),压实压溶作用强于须四段。结合砂岩三角投点图解,米仓山—大巴山物源较龙门山物源控制下的须二段石英、长石等刚性颗粒富集,压实压溶作用强;龙门山物源较米仓山—大巴山物源控制下的须四段富集碳酸盐岩屑,极大地提高了储层抗压实能力。
研究区胶结作用主要有碳酸盐胶结、石英次生加大以及黏土矿物高岭石、绿泥石、伊利石(图10b、图11g)的胶结。绿泥石(图10a)和白云石胶结作用(图11a)须二段强于须四段;高岭石(图11i)和方解石胶结作用(图10c,f、图11f,h)须四段较须二段强。结合岩屑三角投点图解,米仓山—大巴山物源较龙门山物源控制下的须二段富变质岩岩屑、火山岩岩屑极大地影响了绿泥石的发育,绿泥石胶结作用强(图10a)。
溶蚀作用(图11d,e,h)在研究区广泛可见,多见长石、岩屑的溶蚀(图10d,e),增加了储层的孔渗性。长石溶蚀后的长石粒内溶孔中也多充填胶结物等(图11h)。溶蚀作用所产生的硅质常成为石英次生加大或自生石英的物质来源。须二段、须四段孔隙类型均以次生孔隙为主,但须四段长石溶孔较须二段更为发育。结合砂岩三角投点图,米仓山—大巴山物源较龙门山物源控制下的须二段及须四段长石发育较好,这是由于有机酸性流体注入较少,长石溶蚀有限,长石得以保存较好。溶蚀作用是须二段优质储层形成的关键因素[19,42]。
研究区破裂作用所产生的微裂缝(图11b~d)主要为沉积成因裂缝,构造成因裂缝少见,且须二段微裂缝相对须四段较发育,有效地提高了储层的渗透率。
总体而言,须二段埋深大,颗粒紧密接触,呈线接触或凹凸接触,压实作用强于须四段。须二段白云石和绿泥石的胶结作用较强,绿泥石多形成孔隙衬边保护原生孔隙,须四段方解石和高岭石的胶结作用较强,局部可见高岭石与残余长石溶蚀后形成的丝状伊利石胶结物(图11g)。须四段长石溶蚀作用明显强于须二段,溶蚀所形成的溶蚀孔缝明显。此外,须二段破裂作用较强,须二段破裂缝发育程度大于须四段。
Comparative Study on the Provenance and Reservoir Characteristics of the Second and Fourth Members of the Upper Triassic Xujiahe Formation in the Xinchang Area, Western Sichuan, China
-
摘要: 随着勘探由常规油气向非常规油气的深入,致密砂岩气逐渐成为勘探热点。川西坳陷新场地区须二段、四段致密砂岩储层是须家河组主要的产气层。受沉积环境、埋深、成岩环境的影响,不同物源下储层砂岩矿物组成、成岩演化以及储集物性等方面存在显著差异。首先,结合前人研究成果,通过砂岩类型和岩屑类型特征分析研究区须二段、须四段的物源方向。其次,通过储层岩石学特征、物性特征、储集空间特征及储集层成岩作用类型探究物源对储层特征的影响。最后,分别讨论不同物源下研究区须二段、须四段储层特征的差异性,揭示物源对储层的控制作用。取得认识如下:(1)须二段主物源区是米仓山—大巴山,须四段主物源区是龙门山;(2)须二段,米仓山—大巴山物源较龙门山物源控制的储层压实作用及硅质胶结作用略强,绿泥石薄膜发育,碳酸盐胶结作用弱。须四段,龙门山物源较米仓山—大巴山物源控制的储层碳酸盐岩屑极大地提高了储层的抗压实能力,长石溶蚀作用显著,方解石胶结作用略弱;(3)龙门山物源体系下,须二段绿泥石胶结和长石溶蚀作用主要改变储层物性,碳酸盐胶结和硅质胶结作用是储层致密化的关键因素;须四段溶蚀作用和相对较弱的压实作用是储层孔隙发育的主要因素,碳酸盐胶结作用是储层致密化的关键因素。米仓山—大巴山物源体系下,须二段绿泥石胶结和长石溶蚀作用是改善储层物性的主要因素,硅质胶结作用是储层致密化的关键因素;须四段碳酸盐岩屑的抗压实能力使原生孔隙保存较好,溶蚀作用使次生孔隙发育,二者是孔隙发育的主控因素,碳酸盐胶结作用是储层致密化的关键因素。同一层位不同物源控制的储层成岩作用特征有所差异,且同一物源控制不同层位的储层成岩作用特征存在明显差异。Abstract: With the deepening of exploration from conventional to unconventional oil and gas, tight sandstone gas has gradually become a hot spot of exploration. The tight sandstone reservoirs of the Second and Fourth members of the Xujiahe Formation in the Xinchang area of the Western Sichuan Depression are the main gas producing layers of the Xujiahe Formation. Influenced by sedimentary environment, burial depth, and diagenetic environment, there are significant differences in mineral composition, diagenetic evolution, and reservoir physical properties for the sandstones of different provenance in this area. First, through the characteristics of sandstone and debris type, combined with previous research results, the provenance directions of the Second and Fourth members of the Xujiahe Formation in the study area are analyzed. Second, the influence of provenance on reservoir characteristics is explored through reservoir petrological characteristics, physical properties, reservoir space characteristics, and reservoir diagenesis types. Finally, the differences in reservoir characteristics of the Second and Fourth members of the Xujiahe Formation in the study area under different provenances are discussed, revealing the control effect of provenance on reservoir. Get the following understanding : (1) The main provenance area of the Second member of the Xujiahe Formation is Micangshan-Dabashan, and the main provenance area of the Fourth member of the Xujiahe Formation is Longmenshan; (2) In the Second member of the Xujiahe Formation, the reservoir compaction and siliceous cementation controlled by Micangshan-Dabashan provenance were stronger than those controlled by Longmenshan provenance, a chlorite film developed, and carbonate cementation was weak. In the Fourth member of the Xujiahe Formation, the carbonate debris of the reservoir controlled by the Longmenshan provenance greatly improved the compaction resistance of the reservoir compared with the Micangshan-Dabashan provenance. The feldspar dissolution was significant, and the calcite cementation was slightly weak; (3) Under the provenance of Longmenshan, the chlorite cementation and feldspar dissolution of the Second member of the Xujiahe Formation mainly changed the reservoir physical properties. Carbonate and siliceous cementation were the key factors for reservoir densification. The dissolution and relatively weak compaction of the Fourth member of the Xujiahe Formation were the main factors of reservoir pore development, and carbonate cementation was the key factor of reservoir densification. Under the provenance of Micangshan-Dabashan, chlorite cementation and feldspar dissolution were the main factors improving reservoir physical properties, and siliceous cementation was the key factor to reservoir densification. The dissolution of the Fourth member of the Xujiahe Formation and the anti-compaction ability of carbonate debris were the main factors improving the physical properties of the reservoir, and carbonate cementation was the key factor of reservoir density. The diagenetic characteristics of reservoirs controlled by different provenances in the same layer are distinct and the diagenetic characteristics of different layers of reservoirs under the control of the same provenance display obvious differences.
-
图 6 新场地区须二段、须四段不同物源控制的砂岩类型及岩屑类型三角投点图
(a)须二段龙门山物源、米仓山—大巴山物源下砂岩类型及岩屑类型三角投点对比图;(b)须四段龙门山物源、米仓山—大巴山物源下砂岩类型及岩屑类型三角投点对比图;(c)须二段、须四段砂岩类型及岩屑类型三角投点对比图
Figure 6. Triangular projections of sandstone and lithic types controlled by different provenances in the Second and Fourth members of the Xujiahe Formation in the Xinchang area
(a) comparative maps of triangle projection points for sandstone and lithic types under Longmenshan and Micangshan⁃Dabashan provenances in the Second member of the Xujiahe Formation; (b) comparative maps of triangle projection points for sandstone and lithic types under Longmenshan and Micangshan⁃Dabashan provenances in the Fourth member of the Xujiahe Formation; (c) comparative maps of triangle projection points for sandstone and lithic types in the Second and Fourth members of the Xujiahe Formation
图 8 新场地区须二段、须四段不同物源控制的储层物性特征
(a)须二段龙门山及米仓山—大巴山物源下砂岩孔隙度分布对比图;(b)须二段龙门山及米仓山—大巴山物源下砂岩渗透率分布对比图;(c)须二段龙门山及米仓山—大巴山物源下砂岩孔隙度—渗透率投点对比图;(d)须四段龙门山及米仓山—大巴山物源下砂岩孔隙度分布对比图;(e)须四段龙门山及米仓山—大巴山物源下砂岩渗透率分布对比图;(f)须四段龙门山及米仓山—大巴山物源下砂岩孔隙度—渗透率投点对比图;(g)须二段、须四段砂岩孔隙度分布对比图;(h)须二段、须四段砂岩渗透率分布对比图;(i)须二段、须四段砂岩孔隙度—渗透率投点对比图
Figure 8. Reservoir physical properties controlled by different provenances in the Second and Fourth members of the Xujiahe Formation in the Xinchang area
(a) comparative maps of porosity distribution for sandstones under Longmenshan and Micangshan⁃Dabashan provenances in the Second member of the Xujiahe Formation; (b) comparative maps of permeability distribution for sandstones under Longmenshan and Micangshan⁃Dabashan provenances in the Second member of the Xujiahe Formation; (c) comparative maps of porosity⁃permeability projection points for sandstones under Longmenshan and Micangshan⁃Dabashan provenances in the Second member of the Xujiahe Formation; (d) comparative maps of porosity distribution for sandstones under Longmenshan and Micangshan⁃Dabashan provenances in the Fourth member of the Xujiahe Formation; (e) comparative maps of permeability distribution for sandstones under Longmenshan and Micangshan⁃Dabashan provenances in the Fourth member of the Xujiahe Formation; (f) comparative maps of porosity⁃permeability projection points for sandstones under Longmenshan and Micangshan⁃Dabashan provenances in the Fourth member of the Xujiahe Formation; (g) comparative maps of porosity distribution for sandstones in the Second and Fourth members of the Xujiahe Formation; (h) comparative maps of permeability distribution for sandstones in the Second and Fourth members of the Xujiahe Formation; (i) comparative maps of porosity⁃permeability projection points for sandstone in the Second and Fourth members of the Xujiahe Formation
图 9 新场地区须二段、须四段不同物源控制的储层储集空间特征
(a)原生孔隙,CH127井,4 568.52 m,20×,单偏光,须二段;(b)微裂缝,X856井,4 722.45 m,2×,单偏光,须二段;(c)长石溶孔,GM3井,4 078.65 m,20×,单偏光,须四段
Figure 9. Characteristics of reservoir space controlled by different provenances in the Second and Fourth members of the Xujiahe Formation in the Xinchang area
(a) primary porosity,well CH127, 4 568.52 m, 20×, monopolar, the Second member of the Xujiahe Formation; (b) microfractures, well X856, 4 722.45 m, 2×, monopolar, the Second member of the Xujiahe Formation; (c) feldspar dissolved pore, well GM3, 4 078.65 m, 20×, monopolar, the Fourth member of the Xujiahe Formation
图 10 扫描电镜(SEM)及阴极发光(CL)下新场地区须二段、须四段成岩作用类型
(a)孔隙衬垫绿泥石,颗粒接触处基本不发育,多呈全自形叶片状垂直颗粒表面生长,DY1井,5 532.47 m,SEM,须二段;(b)可见呈丝状的伊利石,X10井,4 886.65 m,SEM,须二段;(c)铁方解石,CH139井,3 778.50 m,SEM,须四段;(d)钾长石溶蚀矿物主要为发蓝色光,含少量的发暗红色光斜长石(钠长石),XC7井,5 191.69 m,CL,须二段;(e)颗粒紧密接触,局部可见石英次生加大,呈橙黄色的方解石胶结物,蓝色的长石溶蚀,CF563井,4 485.40 m,CL,须二段;(f)可见典型的呈橙黄色方解石胶结物,X11井,3 576.95 m,CL,须四段
Figure 10. Types of diagenesis in the Second and Fourth members of the Xujiahe Formation in the Xinchang area under scanning electron microscope (SEM) and cathodoluminescence (CL)
(a) pore lining chlorite, particle contact is fairly undeveloped, mostly full⁃automorphic leaf⁃like vertical particle surface growth, well DY1, 5 532.47 m, SEM, the Second member of the Xujiahe Formation; (b) filamentous illite, well X10, 4 886.65 m, SEM, the Second member of the Xujiahe Formation; (c) iron calcite, well CH139, 3 778.50 m, SEM, the Fourth member of the Xujiahe Formation; (d) potassium feldspar dissolution minerals are mainly light blue, containing a small amount of dark red plagioclase (albite), well XC7, 5 191.69 m, CL, the Second member of the Xujiahe Formation; (e) locally visible quartz secondary enlargement, orange calcite cement, blue feldspar dissolution, well CF563, 4 485.40 m, CL, the Second member of the Xujiahe Formation; (f) typical orange calcite cement can be seen, well X11, 3 576.95 m, CL, the Fourth member of the Xujiahe Formation
图 11 铸体薄片下新场地区须二段、须四段成岩作用类型
(a)白云石胶结作用,CX565井,4 898.71 m,20×,单偏光,须二段;(b)岩石中孔隙不发育,发育破裂缝,X856井,4 722.45 m,2×,单偏光,须二段;(c)同时可见方解石胶结和白云石胶结,局部可见微裂缝,X5井,4×,单偏光,须二段;(d)可见长石粒内溶孔,白云石解理缝和晶间缝,X101井,5 040.69 m,10×,单偏光,须二段;(e)可见长石粒内溶孔以及溶蚀缝,GM3井,4 078.65 m,40×,单偏光,须四段;(f)压实作用较强,颗粒呈凹凸或线接触,红色为茜素红侵染的方解石胶结物,XC5井,3 596.19 m,4×,单偏光,须四段;(g)溶蚀孔隙中可见丝状伊利石,XC22井,3 434.34 m,40×,单偏光,须四段;(h)早期长石溶蚀形成溶蚀孔隙,后期方解石胶结物充填部分孔隙,CF563井,3 889.70 m,20×,单偏光,须四段;(i)长石溶蚀后形成自生矿物高岭石,X856井,3 366.90 m,20×,单偏光,须四段
Figure 11. Diagenesis types of the Second and Fourth members of the Xujiahe Formation in the Xinchang area, casting thin section
(a) dolomite cementation, well CX565, 4 898.71 m, 20×, monopolar, the Second member of the Xujiahe Formation; (b) pores in rocks are not developed, and fractures are developed, well X856, 4 722.45 m, 2×, monopolar, the Second member of the Xujiahe Formation; (c) calcite and dolomite cementation can be seen at the same time, microcracks can be seen locally, well X5, 4×, monopolar, the Second member of the Xujiahe Formation; (d) feldspar intragranular dissolved pores, dolomite cleavage fractures and intergranular fractures, well X101, 5 040.69 m, 10×, monopolar, the Second member of the Xujiahe Formation; (e) feldspar intragranular dissolved pores and dissolved fractures, well GM3, 4 078.65 m, 40×, monopolar, the Fourth member of the Xujiahe Formation; (f) strong compaction effect, the particles are concave and convex or line contact, red is the calcite cement infected by alizarin, well XC5, 3 596.19 m, 4×, monopolar, the Fourth member of the Xujiahe Formation; (g) filamentous illite in dissolved pores, well XC 22, 3 434.34 m, 40×, monopolar, the Fourth member of the Xujiahe Formation; (h) early feldspar dissolution formed dissolution pores, later calcite cement filled part of the pores, well CF563, 3 889.70 m, 20×, monopolar, the Fourth member of the Xujiahe Formation; (i) formation of authigenic mineral kaolinite after feldspar dissolution, well X856, 3 366.90 m, 20×, monopolar, the Fourth member of the Xujiahe Formation
表 1 新场地区须二段、须四段不同物源控制下的砂岩填隙物及结构特征
层位 物源 填隙物/% 结构 样品数 方解石 白云石 硅质 泥质 粒度 分选 磨圆 须二段 龙门山 0~25/1.32 0~35/1.99 0~8/0.84 0~10/0.12 细粒(22.83%)中粒(72.83%) 好(83.51%) 次棱角状(78.08%) 552 米仓山—大巴山 0~36/1.63 0~30/1.40 0~7/1.49 0~15/0.16 细粒(17.26%)中粒(68.82%) 好(86.48%) 次棱角状(93.82%) 1 472 须四段 龙门山 0~45/5.23 0~10/0.62 0~4/0.23 0~23/0.55 细粒(30.82%)中粒(63.93%) 好(84.92%) 次棱角状(92.62%) 610 米仓山—大巴山 0~34/5.03 0~30/0.63 0~6/0.59 0~10/2.58 细粒(21.54%)中粒(75.38%) 好(67.18%) 次棱角状(95.38%) 390 注: 填隙物数据为最小值~最大值/平均值。 -
[1] 张抗,张立勤,刘冬梅. 近年中国油气勘探开发形势及发展建议[J]. 石油学报,2022,43(1):15-28,111. Zhang Kang, Zhang Liqin, Liu Dongmei. Situation of China's oil and gas exploration and development in recent years and relevant suggestions[J]. Acta Petrolei Sinica, 2022, 43(1): 15-28, 111. [2] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. [3] 施振生,朱筱敏,张亚雄,等. 四川盆地上三叠统沉积储层研究进展与热点分析[J]. 石油与天然气地质,2021,42(4):784-800. Shi Zhensheng, Zhu Xiaomin, Zhang Yaxiong, et al. Advances and trending topics in sedimentary reservoir research of the Upper Triassic Xujiahe Formation, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 784-800. [4] 谢继容,李国辉,唐大海. 四川盆地上三叠统须家河组物源供给体系分析[J]. 天然气勘探与开发,2006,29(4):1-3,13. Xie Jirong, Li Guohui, Tang Dahai. Analysis on provenance-supply system of Upper Triassic Xujiahe Formation, Sichuan Basin[J]. Natural Gas Exploration and Development, 2006, 29(4): 1-3, 13. [5] 刘锐娥,黄月明,卫孝锋,等. 鄂尔多斯盆地北部晚古生代物源区分析及其地质意义[J]. 矿物岩石,2003,23(3):82-86. Liu Rui'e, Huang Yueming, Wei Xiaofeng, et al. Analysis of provenance of Late Paleozoic in the northern Ordos Basin and its geological significance[J]. Journal of Mineralogy and Petrology, 2003, 23(3): 82-86. [6] 李晔寒. 川西新场构造带须家河组四段物源分析与储层特征研究[D]. 成都:成都理工大学,2019. Li Yehan. Study on provenance and reservoir characteristics of the Fourth member of the Xujiahe Formation in the Xinchang tectonic belt, western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2019. [7] Zhang Y, Jia D, Shen L, et al. Provenance of detrital zircons in the Late Triassic Sichuan foreland basin: Constraints on the evolution of the Qinling οrogen and Longmen Shan thrust-fold belt in central China[J]. International Geology Review, 2015, 57(14): 1806-1824. [8] Yu Y, Lin L B, Nan H L. Trace and rare-earth element characteristics of fine-grained sediments in the Upper Triassic Xujiahe Formation in the western Sichuan Basin, SW China: Implications for the provenance and depositional environment[J]. Carbonates and Evaporites, 2021, 36(1): 8. [9] 覃小丽. 鄂尔多斯盆地东部上古生界储层特征分析及敏感性评价[D]. 西安:长安大学,2017. Qin Xiaoli. Research on characteristics and sensitivity of Upper Paleozoic sandstone reservoirs in eastern Ordos Basin[D]. Xi'an: Chang'an University, 2017. [10] Morad S, Al-Ramadan K, Ketzer J M, et al. The impact of diagenesis on the heterogeneity of sandstone reservoirs: A review of the role of depositional facies and sequence stratigraphy[J]. AAPG Bulletin, 2010, 94(8): 1267-1309. [11] 李伟,王雪柯,赵容容,等. 川西前陆盆地上三叠统须家河组致密砂岩气藏超压体系形成演化与天然气聚集关系[J]. 天然气工业,2022,42(1):25-39. Li Wei, Wang Xueke, Zhao Rongrong, et al. Formation and evolution of overpressure system in tight sandstone gas reservoir of Xujiahe Formation of Upper Triassic in the western Sichuan foreland basin and its relationship with natural gas accumulation[J]. Natural Gas Industry, 2022, 42(1): 25-39. [12] 陈洪德,刘磊,林良彪,等. 川西坳陷西部龙门山隆升时期上三叠统须家河组沉积响应[J]. 石油与天然气地质,2021,42(4):801-815. Chen Hongde, Liu Lei, Lin Liangbiao, et al. Depositional responses of Xujiahe Formation to the uplifting of Longmenshan during the Late Triassic, western Sichuan Depression[J]. Oil & Gas Geology, 2021, 42(4): 801-815. [13] 陈洪德,徐胜林,林良彪,等. 龙门山造山带晚三叠世构造隆升的分段性及层序充填响应[J]. 沉积学报,2011,29(4):622-630. Chen Hongde, Xu Shenglin, Lin Liangbiao, et al. Segmental uplift of Longmenshan Orogen and sequence filling characteristic of western Sichuan foreland-like basin, Later Triassic[J]. Acta Sedimentologica Sinica, 2011, 29(4): 622-630. [14] 郑荣才,叶泰然,翟文亮,等. 川西坳陷上三叠统须家河组砂体分布预测[J]. 石油与天然气地质,2008,29(3):405-411,417. Zheng Rongcai, Ye Tairan, Zhai Wenliang, et al. Prediction of sandbody distribution in the Upper Triassic Xujiahe Formation, the West Sichuan Depression[J]. Oil & Gas Geology, 2008, 29(3): 405-411, 417. [15] 姚文礼. 四川盆地须家河组致密砂岩物源体系的控储作用[J]. 地质科技通报,2021,40(5):223-230. Yao Wenli. Reservoir control of tight sandstone provenance system in Xujiahe Formation, Sichuan Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(5): 223-230. [16] 林良彪,余瑜,南红丽,等. 四川盆地川西坳陷上三叠统须家河组四段储层致密化过程及其与油气成藏的耦合关系[J]. 石油与天然气地质,2021,42(4):816-828. Lin Liangbiao, Yu Yu, Hongli Nan, et al. Reservoir tightening process and its coupling relationship with hydrocarbon accumulation in the Fourth member of Upper Triassic Xujiahe Formation in the western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 816-828. [17] 田军,张世华,叶素娟,等. 川西拗陷新场构造带须二段气藏类型划分及成藏主控因素[J]. 成都理工大学学报(自然科学版),2017,44(6):659-667. Tian Jun, Zhang Shihua, Ye Sujuan, et al. Classification of gas accumulation types and main controlling factors of gas accumulation of the Xu-2 member in Xinchang structural zone, Western Sichuan Depression, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(6): 659-667. [18] 罗龙,孟万斌,冯明石,等. 致密砂岩中硅质胶结物的硅质来源及其对储层的影响:以川西坳陷新场构造带须家河组二段为例[J]. 天然气地球科学,2015,26(3):435-443. Luo Long, Meng Wanbin, Feng Mingshi, et al. Selica sources of quartz cements and its effects on the reservoir in tight sandstones: A case study on the 2th member of the Xujiahe Formation in Xinchang structural belt, Western Sichuan Depression[J]. Natural Gas Geoscience, 2015, 26(3): 435-443. [19] 孟万斌,吕正祥,刘家铎,等. 川西坳陷孝泉—新场地区须家河组四段储层控制因素及预测地质模型[J]. 石油与天然气地质,2013,34(4):483-490. Meng Wanbin, Zhengxiang Lü, Liu Jiaduo, et al. Reservoir controlling factors and geological prediction models of the 4th member of the Xujiahe Formation in Xiaoquan-Xinchang area, the western Sichuan Basin[J]. Oil & Gas Geology, 2013, 34(4): 483-490. [20] 徐樟有,吴胜和,张小青,等. 川西坳陷新场气田上三叠统须家河组须四段和须二段储集层成岩-储集相及其成岩演化序列[J]. 古地理学报,2008,10(5):447-458. Xu Zhangyou, Wu Shenghe, Zhang Xiaoqing, et al. Diagenetic-reservoir facies and their evolutionary sequences of the members 4 and 2 of Upper Triassic Xujiahe Formation in Xinchang gas field, Western Sichuan Depression[J]. Journal of Palaeogeography, 2008, 10(5): 447-458. [21] 戴朝成,郑荣才,任军平,等. 四川前陆盆地上三叠统须家河组物源区分析及其地质意义[J]. 吉林大学学报(地球科学版),2014,44(4):1085-1096. Dai Chaocheng, Zheng Rongcai, Ren Junping, et al. Provenance analysis of Xujiahe Formation of Upper Triassic in Sichuan foreland basin and its geology implications[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1085-1096. [22] 刘忠群,徐士林,刘君龙,等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业,2020,40(2):31-40. Liu Zhongqun, Xu Shilin, Liu Junlong, et al. Enrichment laws of deep tight sandstone gas reservoirs in the western Sichuan Depression, Sichuan Basin[J]. Natural Gas Industry, 2020, 40(2): 31-40. [23] 叶素娟,李嵘,杨克明,等. 川西坳陷叠覆型致密砂岩气区储层特征及定量预测评价[J]. 石油学报,2015,36(12):1484-1494. Ye Sujuan, Li Rong, Yang Keming, et al. Characteristics and quantitative prediction of tight sand gas reservoirs in superimposed tight sandstone gas-bearing area, western Sichuan Depression[J]. Acta Petrolei Sinica, 2015, 36(12): 1484-1494. [24] 关文均,郭新江,智慧文. 四川盆地新场气田须家河组二段储层评价[J]. 矿物岩石,2007,27(4):98-103. Guan Wenjun, Guo Xinjiang, Zhi Huiwen. Reservoir evaluation of the Second member of Xujiahe Formation in Xinchang gas field, Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2007, 27(4): 98-103. [25] 叶素娟,杨映涛,张玲. 四川盆地川西坳陷上三叠统须家河组三段和五段“甜点”储层特征及分布[J]. 石油与天然气地质,2021,42(4):829-840,862. Ye Sujuan, Yang Yingtao, Zhang Ling. Characteristics and distribution of 'sweet spot' in the Third and Fifth members of Upper Triassic Xujiahe Formation, Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 829-840, 862. [26] 孟昊,钟大康,李卓沛,等. 川西坳陷中段上三叠统须家河组须五段层序格架与沉积相[J]. 地层学杂志,2016,40(3):278-289. Meng Hao, Zhong Dakang, Li Zhuopei, et al. Sequence stratigraphy and sedimentary facies of the Fifth member of Upper Triassic Xujiahe Formation of the middle part of the West Sichuan Depression, South China[J]. Journal of Stratigraphy, 2016, 40(3): 278-289. [27] 于兴河,李顺利,杨志浩. 致密砂岩气储层的沉积—成岩成因机理探讨与热点问题[J]. 岩性油气藏,2015,27(1):1-13. Yu Xinghe, Li Shunli, Yang Zhihao. Discussion on deposition-diagenesis genetic mechanism and hot issues of tight sandstone gas reservoir[J]. Lithologic Reservoirs, 2015, 27(1): 1-13. [28] 王兴龙,刘磊,林良彪,等. 川西拗陷新场地区须二段沉积微相与砂体展布[J]. 成都理工大学学报(自然科学版),2021,48(1):23-34. Wang Xinglong, Liu Lei, Lin Liangbiao, et al. Sedimentary micro-facies and distribution of sand bodies in the 2nd member of Xujiahe Formation, Xinchang area, Western Sichuan Depression, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(1): 23-34. [29] 王志康,林良彪,余瑜,等. 川西新场地区须二段物源特征及其对储层物性的控制[J]. 断块油气田,2022,29(2):207-213. Wang Zhikang, Lin Liangbiao, Yu Yu, et al. Provenance characteristics and its controlling on reservoir physical properties of the Second member of the Xujiahe Formation in Xinchang area, Western Sichuan Depression[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 207-213. [30] 施振生,王秀芹,吴长江. 四川盆地上三叠统须家河组重矿物特征及物源区意义[J]. 天然气地球科学,2011,22(4):618-627. Shi Zhensheng, Wang Xiuqin, Wu Changjiang. The heavy minerals and provenances of the Upper Triassic Xujiahe Formation in Sichuan Basin[J]. Natural Gas Geoscience, 2011, 22(4): 618-627. [31] 陈杨,刘树根,李智武,等. 川西前陆盆地晚三叠世早期物源与龙门山的有限隆升:碎屑锆石U-Pb年代学研究[J]. 大地构造与成矿学,2011,35(2):315-323. Chen Yang, Liu Shugen, Li Zhiwu, et al. LA-ICP-MS detrital zircon U-Pb geochronology approaches to the sediment provenance of the western Sichuan foreland basin and limited uplift of the Longmen Mountains during the early stage of Late Triassic[J]. Geotectonica et Metallogenia, 2011, 35(2): 315-323. [32] 佘振兵. 中上扬子上元古界—中生界碎屑锆石年代学研究[D]. 武汉:中国地质大学,2007. She Zhenbing. Detrital zircon geochronology of the Upper Proterozoic-Mesozoic clastic rocks in the Mid-Upper Yangtze region[D]. Wuhan: China University of Geosciences, 2007. [33] 赵玉光,肖林萍. 龙门山中生代前陆盆地时间地层格架及其盆地生长的动态模型研究[J]. 四川地质学报,1994,14(3):217-224. Zhao Yuguang, Xiao Linping. Chronstratigraphic framework and basin-growing dynamic model of Mountains Longmen foreland basin in Mesozoic[J]. Acta Geologica Sichuan, 1994, 14(3): 217-224. [34] 杨映涛,付菊,伍玲,等. 川西坳陷中段上三叠统须家河组二、四段物源分析[J]. 石油地质与工程,2013,27(6):26-29. Yang Yingtao, Fu Ju, Wu Ling, et al. Provenance analysis of the Second and Fourth member of Xujiahe Formation in the middle part of Western Sichuan Depression[J]. Petroleum Geology and Engineering, 2013, 27(6): 26-29. [35] 施振生,杨威,谢增业,等. 四川盆地晚三叠世碎屑组分对源区分析及印支运动的指示[J]. 地质学报,2010,84(3):387-397. Shi Zhensheng, Yang Wei, Xie Zengye, et al. Upper Triassic clastic composition in Sichuan Basin, southwest China: Implication for provenance analysis and the indosinian orogeny[J]. Acta Geologica Sinica, 2010, 84(3): 387-397. [36] 淡永. 川东北须家河组物源分析与沉积体系研究[D]. 成都:成都理工大学,2011. Dan Yong. Analyses of the provenance and the depositional systems of Xujiahe Formation in northeast of Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2011. [37] 林良彪,陈洪德,翟常博,等. 四川盆地西部须家河组砂岩组分及其古地理探讨[J]. 石油实验地质,2006,28(6):511-517. Lin Liangbiao, Chen Hongde, Zhai Changbo, et al. Sandstone compositions and paleogeographic evolution of the Upper Triassic Xujiahe Formation in the western Sichuan Basin, China[J]. Petroleum Geology & Experiment, 2006, 28(6): 511-517. [38] 陈斌,李勇,王伟明,等. 晚三叠世龙门山前陆盆地须家河组物源及构造背景分析[J]. 地质学报,2016,90(5):857-872. Chen Bin, Li Yong, Wang Weiming, et al. The provenance and tectonic setting of Late Triassic Xujiahe Formation in the Longmenshan foreland basin, SW China[J]. Acta Geologica Sinica, 2016, 90(5): 857-872. [39] 林良彪. 川西前陆盆地上三叠统须家河组沉积相及岩相古地理演化[D]. 成都:成都理工大学,2005. Lin Liangbiao. Sedimentary facies and paleogeographic evolution of the Upper Triassic Xujiahe Formation in west Sichuan foreland basin[D]. Chengdu: Chengdu University of Technology, 2005. [40] 叶素娟,杨永剑,蔡李梅,等. 叠覆型致密砂岩气区储层致密化过程[J]. 天然气工业,2019,39(增刊1):36-41. Ye Sujuan, Yang Yongjian, Cai Limei, et al. Reservoir densification process in overlapping tight sandstone gas area[J]. Natural Gas Industry, 2019, 39(Suppl.1): 36-41. [41] 曾允孚,夏文杰. 沉积岩石学[M]. 北京:地质出版社,1986: 92-123. Zeng Yunfu, Xia Wenjie. Sedimentary petrology [M]. Beijing : Geological Publishing House, 1986: 92-123. [42] 王志康,林良彪,余瑜,等. 川西新场地区须家河组第二段优质储层主控因素[J]. 成都理工大学学报(自然科学版),2020,47(6):661-672. Wang Zhikang, Lin Liangbiao, Yu Yu, et al. The main controlling factors of high quality reservoir in the Second member of Xujiahe Formation in Xinchang area, western Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(6): 661-672. [43] 刘四兵,沈忠民,吕正祥,等. 川西新场气田上三叠统须二、须四段相对优质储层成因差异性分析[J]. 吉林大学学报(地球科学版),2015,45(4):993-1001. Liu Sibing, Shen Zhongmin, Zhengxiang Lü, et al. Contributing factor divergence analysis of relative high quality reservoir of Upper Triassic in the 2nd and 4th member of Xujiahe Formation of Xinchang gas field in west Sichuan[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(4): 993-1001. [44] 孟万斌,吕正祥,冯明石,等. 致密砂岩自生伊利石的成因及其对相对优质储层发育的影响:以川西地区须四段储层为例[J]. 石油学报,2011,32(5):783-790. Meng Wanbin, Zhengxiang Lü, Feng Mingshi, et al. The origin of authigenic illite in tight sandstones and its effect on the formation of relatively high-quality reservoirs: A case study on sandstones in the 4th member of Xujiahe Formation, western Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(5): 783-790.