-
在系统解析东营凹陷陡坡带沙四段地形坡度、边界断层活动性、沉积环境、物质组成等特征的基础上,通过开展水槽模拟实验探究近岸水下扇沉积亚相类型与特征,并建立基于实验室地质模型的沉积模式。沉积模拟实验在长江大学CNPC油气储层沉积模拟重点实验室完成,实验装置、实验方案、关键参数等设计遵照团队前期报道[19],限于篇幅和报道重点,此文不再赘述。
-
在断层幕式活动和干—湿交替气候条件下,泥石流、阵发性洪水和间洪期正常河流等多种性质的流体在陡坡带有序发育形成近岸水下扇。其中,强水动力泥石流(碎屑流)属于黏滞性极高的塑性流体,搬运沉积机制以块状搬运、整体固结为特征[23];高杂基含量的粗碎屑物质紧靠边界断层堆积形成展布范围小、单层厚度大、分选磨圆差、沉积分异不明显的扇根亚相(图3)。随着地形坡度变缓,流体在推进过程中能量不断下降,颗粒支撑也逐渐向杂基支撑转变,碎屑流整体固结的块状层理砂砾岩演变为以递变层理含砾砂岩、粗砂岩为特征的高密度浊流[14,23];分散的洪水水流在冲蚀扇中早期沉积物时形成延伸距离较远的水下辫状水道,其底部常见冲刷—充填构造,正粒序明显;在远离物源区的扇中前端,由于流体能量不断衰减和碎屑物质迅速卸载,流体性质演变为低密度浊流,以形成具鲍马序列的经典浊积岩为特征,粒序底部侵蚀能力下降而顶部可见牵引流沉积构造[12,14,17];平面上,单期次扇中主体常呈舌状展布,水道间发育弱水动力粉砂岩、泥岩,在辫状水道不断迁移摆动下构成多期叠置扇体(图3)。伴随着沉积物的大量卸载和水动力的持续减弱,扇端位置不再具备形成冲蚀水道的水流强度,而是发育以砂、泥为主的低密度浊积岩,多见鲍马序列的BE、CE组合,并向湖盆方向逐渐过渡为湖相暗色泥岩[12,17]。此外,扇端前缘可发育滑塌浊积扇体,常因重力滑塌或间歇性的断层活动所致[19,24,35],亦有学者认为其可能是低密度的异重流远距离搬运成因[23]。
图 3 基于水槽模拟实验的近岸水下扇沉积微相平面分布图
Figure 3. Sedimentary microfacies plane of nearshore subaqueous fan from flume simulation experiment
水槽沉积模拟实验揭示,在传统的扇根、扇中、扇端亚相基础上,多物源沉积体系形成的近岸水下扇还可能发育扇间亚相,其位于两个扇主体之间,沉积物富泥而贫砂(图3)。在水体变浅、物源充足背景下,部分出露水面的扇主体侧缘具有优势可容空间,从而导致水流携带的碎屑物质“因势就形”形成扇间扇体。扇间亚相包括侧向迁移朵叶体和扇间泥两个微相,前者主要发育正粒序含砾砂岩、细砂岩,砂体向扇根方向尖灭并侧向嵌入扇间泥。
在扇中亚相则证实了坡积朵叶体微相的存在[19],其整体与其他扇体脱离,并沿水流方向呈长舌状分布在洪水期扇体斜坡的中下部,规模大小不一(图3)。实验中,规模较大的朵叶体长1.5~2.0 m,宽0.6~1.0 m,较小者仅长0.5 m,宽0.2 m,据此预测自然界中坡积朵叶体的展布规模在0.5 km2左右。前人指出,在物源供给、边界断层活动性、水动力条件及地形坡度等因素约束下,坡积朵叶体上倾部位砾岩、细砂岩、粉砂岩及泥岩共存,但以砾岩为主,结构混杂、杂乱分布;随着水流推进至下倾部位,岩性逐步转变为颗粒支撑的粉—细砂岩,分选变好;末端为湖相泥页岩,夹杂滑脱入湖的薄层砂质条带[19]。持续增强的水动力条件和物源输入有利于坡积朵叶体的发育,随着后期流体向前逐层推进,沉积体形成前积序列,相序上表现出明显的“下细上粗”反韵律特征(图4a)。在沉积构造上,上部含砾带可见较强水动力背景下形成的平行层理、交错层理(图4b);中部砂岩带以斜层理和平行层理为主,偶见羽状交错层理,揭示出水流改道现象的存在(图4b);底部泥岩带则主要发育水平层理,砂条发育位置可见同生变形构造(图4b),如包卷层理、砂枕构造、滑塌构造等[19]。
-
陡坡带边界断层通常活动较剧烈,断陷湖盆迅速扩张并处于饥饿欠补偿状态,各期扇体以向岸退积为主,基岩之上依次发育扇根、扇中、扇端亚相;而在湖平面控制下,东营凹陷早期退积型扇体之上还发育晚期进积型扇体[18]。垂向完整的近岸水下扇自下而上由泥石流沉积、阵发性洪水沉积、间洪期正常河流和湖相悬浮沉积叠加构成;在扇体不同位置,可能缺失某种沉积序列,但均表现为正旋回特征。断层幕式活动早期,构造活动强烈、陆源碎屑物质供应充足,主要发育泥石流、阵发性洪水沉积;随着构造活动减弱、陆源碎屑物质供应强度降低,断层幕式活动中—后期以发育气候控制下的阵发性洪水和间洪期正常牵引流为主;至末期,构造活动基本停歇,陆源碎屑供应极弱,湖相悬浮沉积占据主导;虽其沉积速率较慢但时间较长,扇体顶部理应普遍披覆湖相泥岩,但扇根和扇中部位多遭受后期强水动力侵蚀而流失,扇端部位则稳定发育,并成为重要的沉积期次界面。
在减少基底沉降量以模拟断层活动减弱时,枯水期扇体在早期洪水期扇中斜坡上形成了坡积朵叶体,垂向粒序可分为底部泥岩层、中部砂岩层和顶部砾岩层,前积反旋回特征显著。纵剖面上,坡积朵叶体多向上超覆在早期扇体斜坡之上,向下可延伸至湖相泥岩;在扇体远端地形转平区域,滑塌浊积体常呈透镜体状包裹在湖相泥岩中(图4a)。横剖面上,坡积朵叶体一般位于洪水期扇体的侧上方或扇间位置,填平补齐特征显著并常具有“底凹上凸”的结构特点,部分主水道可见下蚀现象。在沉积构造相标志方面,顶部砾岩层发育平行层理、交错层理;中部砂岩层以斜层理及平行层理为主,偶见羽状交错层理,响应水流改道现象;底部泥岩层则以水平层理为主,砂条发育区可见冲刷构造(图4b)。
-
综上认为,由多物源体系供应形成的近岸水下扇可划分为扇根、扇中、扇端及扇间4个亚相,并包含9种沉积微相(表1)。扇根亚相可划分为主水道及水道间两种微相,主水道微相以砾石为主,混杂堆积;水道间微相以泥岩为主,含薄层砂条(图5a)。扇中亚相可分为辫状水道、辫状水道间、坡积朵叶体三种沉积微相类型,其中,辫状水道微相以含砾砂岩为主,底冲刷和侵蚀充填现象明显;坡积朵叶体微相同样以含砾砂岩、粗—细砂岩为主,但呈反粒序,外部形态底凹上凸,内部发育多种类型的层理构造;分支辫状水道间微相主要沉积细砂岩,其厚度相对较薄(图5b)。扇间亚相可识别侧向迁移朵叶体和扇间泥微相,前者的发育机理类似于侧向加积:由于河道水流的侧向摆动、改道,沉积物容易沿前期扇体斜坡堆积在扇体之间的凹地处,结构上嵌入扇间泥;砂体向扇根主水道方向尖灭,外部具沉积充填特征,内部则以发育正粒序中—细砂岩为主(图5b);测井曲线上表现为钟形或锯齿状钟形。扇端亚相包括扇缘斜坡和滑塌浊积体两种微相,扇缘斜坡以粉—细砂岩和泥质沉积为主,正粒序,水平层理发育;滑塌浊积体外部形态呈透镜体状,内部主要为粉—细砂岩,含少量砾石,可见鲍马序列(图5c)。
表 1 近岸水下扇沉积微相分类
亚相类型 微相类型 沉积特征 扇根 主水道 砾石为主,混杂堆积 主水道间 泥岩为主,含薄层砂条,沉积构造少见 扇中 辫状水道 含砾砂岩为主,下蚀加厚现象明显 辫状水道间 泥岩、粉砂岩为主,厚度相对较薄 坡积朵叶体 含砾砂岩、粗—细砂岩为主,反粒序,底凹上凸特征 扇端 扇缘斜坡 粉—细砂岩为主,正粒序,水平层理 滑塌浊积体 粉—细砂岩为主,含少量砾石,正粒序,透镜体形态 扇间 侧向迁移朵叶体 细砂岩为主,正粒序,沉积充填特征 扇间泥 泥岩为主,含少量薄层砂条 图 5 近岸水下扇不同沉积微相纵剖面发育特征
Figure 5. Characteristics of sedimentary microfacies in longitudinal section of nearshore subaqueous fan
在济阳坳陷陡坡带,钻井和模拟实验已经证实,坡积朵叶体和侧向迁移朵叶体是近岸水下扇沉积相内普遍存在的微相类型,其在测井、录井、地震等多方面信息中亦有明显响应。总结前人提出的成因机制和影响因素[19],认为两种沉积微相的发育综合受控于边界断层活动性、物源供给强度、水动力条件及沉积坡度等多种因素。
在边界断层活动性减弱后,湖盆内水体相应变浅,早期扇体前方或侧缘较大的水下可容空间将引导沉积物在这些区域迅速卸载,易于形成坡积朵叶体和侧向迁移朵叶体;随着沉积物供给增强,后期扇体越过前期扇体持续进积,且扇体规模不断加大;在较强水动力背景下,粗粒砂体的强冲刷能力导致早期扇体遭受破坏,尤其是沉积坡度较陡位置,在重力和水流搬运作用下发生整体垮塌、滑动,形成与扇主体脱离的滑塌成因坡积朵叶体;若砂体继续演化为浊流并远距离搬运,则可能形成扇缘的滑塌浊积体,由断层沉降引发的地震活动会明显促进滑塌作用的发生。
值得强调的是,扇中亚相坡积朵叶体、扇间亚相侧向迁移朵叶体和扇端亚相滑塌浊积体的发现进一步丰富了近岸水下扇的沉积样式,将原有“扇中有储”的地质认识拓宽至“扇间有储、扇前有储”,为断陷湖盆陡坡带砂砾岩体油气勘探提供了实验模型和理论支撑。
New Sedimentary Understandings of Nearshore Subaqueous Fan and Its Re-practice on Oil-gas Exploration:Take the steep slope zone of Jiyang Sag as a case
-
摘要: 在济阳坳陷砂砾岩体油气勘探中,砂体复杂分布和油水差异聚集等问题引发了对现有近岸水下扇沉积充填样式的思考、探索和补充。为完善断陷湖盆陡坡带砂砾岩体发育模式提供实验素材和地质实例,在系统梳理前人研究硕果的基础上,通过开展水槽沉积模拟实验、解析沉积充填过程,并结合油气勘探实践论证。可将断陷湖盆陡坡带近岸水下扇分为扇根、扇中、扇间和扇端4种沉积亚相,并包括9种沉积微相;较之以往,补充建立了扇中坡积朵叶体微相和扇间侧向迁移朵叶体微相,前者多超覆在早期扇主体斜坡之上,纵向呈独特的前积式反旋回并表现为“底凹上凸”的外部形态,后者则以发育正粒序中—细砂岩为主,沉积充填特征显著;二者均与半深湖—深湖泥岩、扇端和扇间泥岩紧密接触,利于形成岩性圈闭;济阳坳陷陡坡带以坡积朵叶体和侧向迁移朵叶为勘探目标的多口井接连获得高产、稳产工业油气流,在勘探实践中验证了近岸水下扇扇体沉积新认识,拓宽了断陷湖盆砂砾岩体的勘探新空间。科学发展的动力之一来源于理论与实验的矛盾,油气地质学更是着重表现出“问题由实践中来,认识到实践中去”的特点,基于水槽模拟实验的沉积充填模式探讨是促进沉积学繁荣发展的有效手段。Abstract: In the oil⁃gas exploration of glutenite bodies in the Jiyang Depression, the complex sand distribution and differential accumulation of oil and water have led us to ponder, explore and supplement the evident deposition filling pattern of nearshore subaqueous fans, which provides experimental materials and geological examples for perfecting the glutenite development patterns in the steep slope of faulted lacustrine basin. Based on systematically sorting out the previous research results, by conducting the flume simulation experiments, analyzing the sedimentation filling process, and combining with the oil and gas exploration practice, it is considered that nearshore subaqueous fans in the steep slope zone of a fault-depressed lacustrine basin is divided into four sedimentary subfacies: fan-root, fan-middle, fan-inter and fan-terminal, including nine sedimentary microfacies. Compared with previous studies, the microfacies of slope accumulation lobes in fan-middle and lateral migrating lobes in fan-inter are established. The slope accumulation lobes mostly overlie the early fan body with an external form of “concave bottom and convex top” having a longitudinal cycle presenting a unique reverse rhythm. Lateral migrating lobes are characterized by positive-rhythm medium and fine sandstones, with notable sedimentary filling characteristics. Both of these are in close contact with semi- and deep-lake mudstones, fan-terminal mudstones and fan-inter mudstones, which is conducive to the formation of lithological traps. In the steep slope zone of the Jiyang Depression, many exploration wells targeting slope accumulation lobes and lateral migrating lobes have successfully established high, stable industrial oil⁃gas flows. This verifies the new sedimentary understandings of nearshore subaqueous fans in oil⁃gas exploration practice, and suggests a new exploration space for glutenite bodies in fault-depressed lacustrine basins. One of the driving forces of scientific development stems from the contradiction between theory and experiment. Petroleum geology especially shows the discipline characteristics of "problems come from practice, and knowledge goes into practice". The study of sedimentary filling model based on flume simulation experiment is an effective means to promote the development of sedimentology.
-
表 1 近岸水下扇沉积微相分类
亚相类型 微相类型 沉积特征 扇根 主水道 砾石为主,混杂堆积 主水道间 泥岩为主,含薄层砂条,沉积构造少见 扇中 辫状水道 含砾砂岩为主,下蚀加厚现象明显 辫状水道间 泥岩、粉砂岩为主,厚度相对较薄 坡积朵叶体 含砾砂岩、粗—细砂岩为主,反粒序,底凹上凸特征 扇端 扇缘斜坡 粉—细砂岩为主,正粒序,水平层理 滑塌浊积体 粉—细砂岩为主,含少量砾石,正粒序,透镜体形态 扇间 侧向迁移朵叶体 细砂岩为主,正粒序,沉积充填特征 扇间泥 泥岩为主,含少量薄层砂条 -
[1] Walker R G. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps[J]. AAPG Bulletin, 1978, 62(6): 932-966. [2] Richards M, Bowman M. Submarine fans and related depositional systems II: Variability in reservoir architecture and wireline log character[J]. Marine and Petroleum Geology, 1998, 15(8): 821-839. [3] Saito T, Ito M. Deposition of sheet-like turbidite packets and migration of channel-overbank systems on a sandy submarine fan: An example from the Late Miocene-Early Pliocene forearc basin, Boso Peninsula, Japan[J]. Sedimentary Geology, 2002, 149(4): 265-277. [4] 赵澄林,吴崇筠. 油区岩相古地理[M]. 北京:石油工业出版社,1987. Zhao Chenglin, Wu Chongyun. Lithofacies palaeogeography of oil area[M]. Beijing: Petroleum Industry Press, 1987. [5] 孙永传,郑浚茂,王德发,等. 水下冲积扇:一个找油的新领域[J]. 石油实验地质,1980,2(3):32-41. Sun Yongchuan, Zheng Junmao, Wang Defa, et al. Subaqueous alluvial fan: A new field for oil exploration[J]. Petroleum Geology & Experiment, 1980, 2(3): 32-41. [6] 董荣鑫,苏美珍. 近岸水下冲积扇相特征及实例[J]. 石油实验地质,1985,7(4):294-302. Dong Rongxin, Su Meizhen. Characteristic of beachy underwater alluvial fan facies ― with a practical example[J]. Experimental Petroleum Geology, 1985, 7(4): 294-302. [7] 曾洪流,张万选,张厚福. 廊固凹陷沙三段主要沉积体的地震相和沉积相特征[J]. 石油学报,1988,9(2):12-18. Zeng Hongliu, Zhang Wanxuan, Zhang Houfu. Seismic and depositional characteristics of major sedimentary bodies in 3RD section of Shahejie Formation Longgu Depression[J]. Acta Petrolei Sinica, 1988, 9(2): 12-18. [8] 端木合顺,朱莲芳. 酒西盆地下白垩统下沟组重力流水下扇沉积[J]. 沉积学报,1990,8(2):75-85. Duanmu Heshun, Zhu Lianfang. Gravity-flow-submerged-fan deposits of Lower Crataceous Xiagou Formation, Jiuxi Basin, Gansu[J]. Acta Sedimentologica Sinica, 1990, 8(2): 75-85. [9] 吴崇筠. 湖盆砂体类型[J]. 沉积学报,1986,4(4):1-27. Wu Chongyun. Sandbodies in lake basin[J]. Acta Sedimentologica Sinica, 1986, 4(4): 1-27. [10] 徐怀大,王世凤,陈开远. 地震地层学解释基础[M]. 武汉:中国地质大学出版社,1990. Xu Huaida, Wang Shifeng, Chen Kaiyuan. Interpretation fundamentals of seismic stratigraphy[M]. Wuhan: China University of Geosciences Press, 1990. [11] 张金亮,沈凤. 乌尔逊凹陷大磨拐河组近岸水下扇储层特征[J]. 石油学报,1991,12(3):25-35. Zhang Jinliang, Shen Feng. Characteristics of nearshore subaqueous fan reservoir in Damoguaihe Formation, Wuerxun Depression[J]. Acta Petrolei Sinica, 1991, 12(3): 25-35. [12] 朱筱敏,查明,张卫海,等. 陆西凹陷上侏罗统近岸水下扇沉积特征[J]. 石油大学学报(自然科学版),1995,19(1):1-6. Zhu Xiaomin, Zha Ming, Zhang Weihai, et al. Sedimentary features of Upper Jurassic nearshore subaqueous fan in Luxi Depression[J]. Journal of the University of Petroleum, China, 1995, 19(1): 1-6. [13] 刘家铎,田景春,何建军,等. 近岸水下扇沉积微相及储层的控制因素研究:以沾化凹陷罗家鼻状构造沙四段为例[J]. 成都理工大学学报,1999,26(4):365-369. Liu Jiaduo, Tian Jingchun, He Jianjun, et al. A study of sedimentary microfacies and controlling factors of the reservoirs of the nearshore subaqueous fan: Taking the Fourth member of the Shahejie Formation in the Luojia Nose, Zhanhua Depression for an example[J]. Journal of Chengdu University of Technology, 1999, 26(4): 365-369. [14] 张萌,田景春. “近岸水下扇”的命名、特征及其储集性[J]. 岩相古地理,1999,19(4):42-52. Zhang Meng, Tian Jingchun. The nomenclature, sedimentary characteristics and reservoir potential of nearshore subaqueous fans[J]. Sedimentary Facies and Palaeogeography, 1999, 19(4): 42-52. [15] 远光辉,操应长,王艳忠. 东营凹陷民丰地区沙河街组四段—三段中亚段沉积相与沉积演化特征[J]. 石油与天然气地质,2012,33(2):277-286. Yuan Guanghui, Cao Yingchang, Wang Yanzhong. Sedimentary facies and their evolution of the 4th-middle 3rd members of Shahejie Formation in Minfeng area, Dongying Sag[J]. Oil & Gas Geology, 2012, 33(2): 277-286. [16] 曹正林,苟迎春,郑红军,等. 酒西坳陷下白垩统近岸水下扇沉积特征及控制因素分析[J]. 天然气地球科学,2009,20(6):896-901. Cao Zhenglin, Gou Yingchun, Zheng Hongjun, et al. Sedimentary characteristics and controlling factors of Lower Cretaceous nearshore subaqueous fans in Jiuxi Depression[J]. Natural Gas Geoscience, 2009, 20(6): 896-901. [17] 王星星,朱筱敏,张明君,等. 洪浩尔舒特凹陷下白垩统近岸水下扇沉积特征[J]. 沉积学报,2015,33(3):568-577. Wang Xingxing, Zhu Xiaomin, Zhang Mingjun, et al. Sedimentary characteristics of near-shore subaqueous fans of the Lower Cretaceous in the Honghaoershute Depression[J]. Acta Sedimentologica Sinica, 2015, 33(3): 568-577. [18] 邱隆伟,韩晓彤,宋璠,等. 东营凹陷盐22区块沙四上亚段近岸水下扇岩相特征及沉积演化[J]. 大庆石油地质与开发,2021,40(1):26-37. Qiu Longwei, Han Xiaotong, Song Fan, et al. Lithofacies characteristics and sedimentary evolution of the near-shore subaqueous fans in the upper submember of Es4 in block Yan22 of Dongying Sag[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(1): 26-37. [19] 于景强,韩宏伟. 近岸水下扇坡积朵叶体沉积模式与成因机制[J]. 沉积学报,2020,38(2):411-419. Yu Jingqiang, Han Hongwei. Sedimentary model and genetic mechanism for the alluvial lobes of the offshore underwater fan slope[J]. Acta Sedimentologica Sinica, 2020, 38(2): 411-419. [20] 鄢继华,陈世悦,姜在兴. 东营凹陷北部陡坡带近岸水下扇沉积特征[J]. 石油大学学报(自然科学版),2005,29(1):12-16,21. Yan Jihua, Chen Shiyue, Jiang Zaixing. Sedimentary characteristics of nearshore subaqueous fans in steep slope of Dongying Depression[J]. Journal of the University of Petroleum, China, 2005, 29(1): 12-16, 21. [21] 路智勇. 济阳坳陷东营凹陷陡坡带盐18地区重力流沉积特征与沉积模式[J]. 天然气地球科学,2012,23(3):420-429. Lu Zhiyong. Sedimentary characteristics and model of gravity flows in Yan 18 area of the steep slope in Dongying Sag of Jiyang Depression[J]. Natural Gas Geoscience, 2012, 23(3): 420-429. [22] 吴群,杨云飞,王树芳. 南阳凹陷黑龙庙地区近岸水下扇沉积特征研究[J]. 西南石油大学学报(自然科学版),2020,42(1):33-44. Wu Qun, Yang Yunfei, Wang Shufang. Sedimentary characteristics of nearshore subaqueous fans in the Heilongmiao area of the Nanyang Sag[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(1): 33-44. [23] 白立科,邱隆伟,杨勇强,等. 近岸水下扇微相划分研究及意义初探:以滦平盆地下白垩统西瓜园组为例[J]. 地质学报,2020,94(8):2446-2459. Bai Like, Qiu Longwei, Yang Yongqiang, et al. Preliminary microfacies division and significance study of nearshore subaqueous fan: A case study from the Lower Cretaceous Xiguayuan Formation, Luanping Basin[J]. Acta Geologica Sinica, 2020, 94(8): 2446-2459. [24] 赵红兵,严科. 近岸水下扇砂砾岩沉积特征及扇体分布规律[J]. 断块油气田,2011,18(4):438-441. Zhao Hongbing, Yan Ke. Depositional characteristics of glutenite and distribution pattern of fan on nearshore subaqueous fan[J]. Fault-Block Oil & Gas Field, 2011, 18(4): 438-441. [25] 董艳蕾,朱筱敏,耿晓洁,等. 泌阳凹陷东南部核桃园组近岸水下扇与扇三角洲沉积特征比较及控制因素分析[J]. 石油与天然气地质,2015,36(2):271-279. Dong Yanlei, Zhu Xiaomin, Geng Xiaojie, et al. Sedimentary characteristics comparison and controlling factors analyses of nearshore subaqueous fan and fan delta in the Hetaoyuan Formation of southeastern Biyang Sag[J]. Oil & Gas Geology, 2015, 36(2): 271-279. [26] 杨树彬,庄升,李伟. 欢喜岭地区沙三段大凌河油层近岸水下扇沉积特征[J]. 西安石油大学学报(自然科学版),2010,25(4):10-13. Yang Shubin, Zhuang Sheng, Li Wei. Sedimentary characteristics of the nearshore subaqueous fan of Dalinghe reservoir of Es3 in Huanxiling area[J]. Journal of Xian Shiyou University (Natural Science Edition), 2010, 25(4): 10-13. [27] 隋风贵,操应长,刘惠民,等. 东营凹陷北带东部古近系近岸水下扇储集物性演化及其油气成藏模式[J]. 地质学报,2010,84(2):246-256. Sui Fenggui, Cao Yingchang, Liu Huimin, et al. Physical properties evolution and hydrocarbon accumulation of Paleogene nearshore subaqueous fan in the eastern north margin of the Dongying Depression[J]. Acta Geologica Sinica, 2010, 84(2): 246-256. [28] 梁官忠,谭建财,魏莉,等. 内蒙古二连盆地阿北凹陷下白垩统近岸水下扇沉积特征[J]. 古地理学报,2013,15(1):31-42. Liang Guanzhong, Tan Jiancai, Wei Li, et al. Sedimentary characteristics of nearshore subaqueous fans of the Lower Cretaceous in Abei Sag of Erlian Basin, Inner Mongolia[J]. Journal of Palaeogeography, 2013, 15(1): 31-42. [29] 刘鑫金,宋国奇,刘惠民,等. 东营凹陷北部陡坡带砂砾岩油藏类型及序列模式[J]. 油气地质与采收率,2012,19(5):20-23. Liu Xinjin, Song Guoqi, Liu Huimin, et al. Study of conglomerate reservoir types and distribution in north slope zone, Dongying Depression[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(5): 20-23. [30] 陈扬,胡钦红,赵建华,等. 渤海湾盆地东营凹陷湖相富有机质页岩纹层特征和储集性能[J]. 石油与天然气地质,2022,43(2):307-324. Chen Yang, Hu Qinhong, Zhao Jianhua, et al. Lamina characteristics and their influence on reservoir property of lacustrine organic-rich shale in the Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2022, 43(2): 307-324. [31] 彭军,许天宇,于乐丹. 东营凹陷沙河街组四段湖相细粒沉积特征及其控制因素[J]. 岩性油气藏,2020,32(5):1-12. Peng Jun, Xu Tianyu, Yu Ledan. Characteristics and controlling factors of lacustrine fine-grained sediments of the Fourth member of Shahejie Formation in Dongying Depression[J]. Lithologic Reservoirs, 2020, 32(5): 1-12. [32] 王鑫,林承焰,马存飞,等. 东营凹陷北部陡坡带利563区块沙四上亚段砂砾岩扇体沉积特征及沉积模式[J]. 吉林大学学报(地球科学版),2020,50(3):705-720. Wang Xin, Lin Chengyan, Ma Cunfei, et al. Sedimentary characteristics and sedimentary model of glutenite fans in upper Es4 in L563 area, north steep slope of Dongying Depression[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3): 705-720. [33] 王永诗,唐东. 咸化断陷湖盆典型页岩剖面地质特征:以东营凹陷为例[J]. 油气藏评价与开发,2022,12(1):181-191,203. Wang Yongshi, Tang Dong. Geological characteristics of typical shale profile in a saline lacustrine rift basin: A case study of Dongying Sag[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 181-191, 203. [34] 茆书巍,郝雪峰,巩建强,等. 东营凹陷民丰地区沙四段古水体量化恢复及其地质意义[J]. 地质论评,2021,67(增刊1):105-106. Mao Shuwei, Hao Xuefeng, Gong Jianqiang, et al. Quantitative reconstruction and geological significance of paleo-water of Es4 member in Minfeng area, Dongying Sag[J]. Geological Review, 2021, 67(Suppl.1): 105-106. [35] 鲜本忠,王永诗,周廷全,等. 断陷湖盆陡坡带砂砾岩体分布规律及控制因素:以渤海湾盆地济阳坳陷车镇凹陷为例[J]. 石油勘探与开发,2007,34(4):429-436. Xian Benzhong, Wang Yongshi, Zhou Tingquan, et al. Distribution and controlling factors of glutinite bodies in the actic region of a rift basin: An example from Chezhen Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2007, 34(4): 429-436. [36] Kra K L, Qiu L W, Yang Y Q, et al. Sedimentological and diagenetic impacts on sublacustrine fan sandy conglomerates reservoir quality: An example of the Paleogene Shahejie Formation (Es4s member) in the Dongying Depression, Bohai Bay Basin (East China)[J]. Sedimentary Geology, 2022, 427: 106047. [37] 马奔奔,操应长,王艳忠,等. 渤南洼陷北部陡坡带沙四上亚段成岩演化及其对储层物性的影响[J]. 沉积学报,2015,33(1):170-182. Ma Benben, Cao Yingchang, Wang Yanzhong, et al. Diagenetic evolution and its influence on physical properties of Es4 sreservoir in the northern steep zone of the Bonan Sag[J]. Acta Sedimentologica Sinica, 2015, 33(1): 170-182. [38] 朱筱敏,吴冬,张昕,等. 东营凹陷沙河街组近岸水下扇低渗储层成因[J]. 石油与天然气地质,2014,35(5):646-653. Zhu Xiaomin, Wu Dong, Zhang Xin, et al. Genesis of low permeability reservoirs of nearshore subaqueous fan in Shahejie Formation in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2014, 35(5): 646-653. [39] 刘惠民,刘鑫金,贾光华. 东营凹陷北部陡坡带深层砂砾岩扇体成岩圈闭有效性评价[J]. 油气地质与采收率,2015,22(5):7-14. Liu Huimin, Liu Xinjin, Jia Guanghua. Evaluation on trap effectiveness for deep fan diagenetic trap in the northern steep slope zone of Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(5): 7-14. [40] 隋风贵. 断陷湖盆陡坡带砂砾岩扇体成藏动力学特征:以东营凹陷为例[J]. 石油与天然气地质,2003,24(4):335-340. Sui Fenggui. Characteristics of reservoiring dynamic on the sand-conglomerate fanbodies in the steep-slope belt of continental fault basin: A case study on Dongying Depression[J]. Oil & Gas Geology, 2003, 24(4): 335-340. [41] 李伟,王峙博,王光增,等. 东营凹陷穹窿构造断裂体系特征及其封闭性评价[J]. 高校地质学报,2014,20(1):93-104. Li Wei, Wang Zhibo, Wang Guangzeng, et al. The fault system and its fault sealing properties of the dome structure in Dongying Sag, East China[J]. Geological Journal of China Universities, 2014, 20(1): 93-104. [42] 田巍. 珠江口盆地珠一坳陷边界断裂生长联接及其相关褶皱研究[D]. 武汉:中国地质大学(武汉),2015. Tian Wei. Study on the growth, linkage of boundary faults and fault-related folds in Zhu I Depression, Pearl River Mouth Basin[D]. Wuhan: China University of Geosciences (Wuhan), 2015. [43] 张伟忠,张云银,查明,等. 渤海湾盆地东营凹陷扭张断裂成因模式及控藏作用[J]. 石油与天然气地质,2019,40(2):262-270. Zhang Weizhong, Zhang Yunyin, Zha Ming, et al. Genetic model of transtensional faults in Dongying Depression, Bohai Bay Basin, and its controls over hydrocarbon accumulation[J]. Oil & Gas Geology, 2019, 40(2): 262-270. [44] 马立民,李志鹏,林承焰,等. 东营凹陷沙四下盐湖相沉积序列[J]. 中国石油大学学报(自然科学版),2014,38(6):24-31. Ma Limin, Li Zhipeng, Lin Chengyan, et al. Sedimentary sequences of salt-lake facies in lower Es4 of Dongying Depression[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2014, 38(6): 24-31. [45] Soh W, Tanaka T, Taira A. Geomorphology and sedimentary processes of a modern slope-type fan delta (Fujikawa fan delta), Suruga Trough, Japan[J]. Sedimentary Geology, 1995, 98(1/2/3/4): 79-95. [46] 张关龙,陈世悦,鄢继华,等. 三角洲前缘滑塌浊积体形成过程模拟[J]. 沉积学报,2006,24(1):50-55. Zhang Guanlong, Chen Shiyue, Yan Jihua, et al. Simulation of luxoturbidite in front of delta[J]. Acta Sedimentologica Sinica, 2006, 24(1): 50-55.