-
2010年和2017年两次分别独立采样测试,得到库车河剖面有机碳同位素地层曲线(图3),数据见表1。根据有机碳同位素地层曲线的变化特征,从下至上划分为三段(图3)。第一段(塔里奇克组13~33层):约170 m厚,属塔里奇克组中上部。δ13Cwood主要分布范围-24.5‰至-26.5‰,总体上较稳定。第二段(塔里奇克组34~37层):约20 m厚,是塔里奇克组顶部。在此段内δ13Cwood出现了两次强烈的波动。第一次在35层底部,达2.1‰;第二次位于37层近顶部,负偏至-26.2‰后,在1 m的地层厚度内正向偏移至-22.5‰,随后急剧负偏至-26.6‰,本段内达到了4.1‰的波动幅度。第三段(阿合组38~49层):约80 m厚,为阿合组的下部。本段总体呈较轻的δ13Cwood特征,约-25.5‰至-27.4‰。并在43层底部处出现了整个剖面上的碳同位素最低值(-27.4‰);在38层顶部也记录到了一次快速负偏,幅度达1.4‰,在1 m厚范围内由-25.8‰负偏至-27.2‰。
表 1 库车河剖面有机碳同位素数据
样品编号 层号 厚度/m δ13Corg/(‰,PDB) 样品编号 层号 厚度/m δ13Corg/(‰,PDB) KQ10-23 46~49 81.63 -27.0 KQ2(04) 13~14 -172.10 -25.5 KQ10-22 46~49 75.32 -26.7 KQ17-y01 43~45 61.48 -25.4 KQ10-21 46~49 75.02 -26.0 KQ17-y02 43~45 57.21 -25.9 KQ10-20 46~49 71.38 -26.8 KQ17-y03 43~45 55.01 -25.7 KQ10-17 41~42 33.17 -27.4 KQ17-y04 43~45 52.71 -25.3 KQ10-16 41~42 32.17 -26.7 KQ17-y05 43~45 50.89 -26.0 KQ10-15 39~40 22.30 -26.6 KQ17-y06 43~45 43.81 -26.2 KQ10-14 39~40 21.50 -25.7 KQ17-y07 43~45 39.96 -25.4 KQ10-13 39~40 20.70 -26.0 KQ17-y08 43~45 37.14 -27.1 KQ10-12 39~40 15.90 -26.7 KQ17-y09 41~42 32.55 -26.2 KQ10-11 39~40 12.69 -26.3 KQ17-y10 41~42 31.78 -26.4 KQ10-10 39~40 12.54 -27.2 KQ17-34 41~42 29.14 -25.6 KQ10-9 39~40 12.19 -25.8 KQ17-32 39~40 22.10 -26.5 KQ17(04) 38 8.08 -25.6 KQ17-f16 38 3.00 -25.6 KQ10-7 38 6.84 -26.1 KQ17-x42(2) 38 0.30 -25.4 KQ10-6 38 4.73 -25.7 KQ17-x42 38 0.25 -24.4 KQ10-5 38 1.43 -26.1 KQ17-x41 38 0.15 -25.0 KQ10-4 38 1.03 -26.6 KQ17-x40 37 -0.35 -25.2 KQ10-3 38 0.98 -22.5 KQ17-f12 36 -8.29 -24.8 KQ10-2 38 0.78 -26.3 KQ17-f04 34 -19.92 -25.9 KQ10-1 36 -9.55 -25.1 KQ17-x39 34 -20.40 -23.6 KQ10-162 35 -18.55 -25.1 KQ17-x38 34 -22.40 -26.0 KQ10-164 34 -20.75 -24.3 KQ17-x37-1 34 -22.80 -22.5 KQ10-165 34 -22.40 -23.7 KQ17-x31 25~31 -44.54 -24.9 KQ17(04) 34 -23.28 -25.8 KQ17-x32 25~31 -45.33 -24.2 KQ10-168 32~33 -34.95 -25.8 KQ17-x29 25~31 -51.6 -25.6 KQ10-171(31-1) 25~31 -40.52 -26.0 KQ17-x25 22~24 -88.60 -26.4 KQ10-172(30-1) 25~31 -43.11 -24.7 KQ17-x18-2 19~21 -99.72 -24.0 KQ10-173(29-1) 25~31 -46.47 -26.5 KQ17-x17 17~18 -101.46 -25.7 KQ15(04) 25~31 -79.8 -25.4 KQ17-x16 17~18 -102.33 -25.5 KQ14(04) 19~21 -93.34 -25.1 KQ17-x13 17~18 -104.94 -25.8 KQ12(04) 19~21 -97.89 -25.6 KQ17-x11 17~18 -107.03 -25.2 KQ8(04) 15~16 -111.07 -26.5 KQ17-x08 15~16 -114.09 -25.3 KQ7(04) 15~16 -118.93 -25.7 KQ17-c6 13~14 -143.31 -25.7 KQ4(04) 15~16 -142.80 -25.2 2017年采样结果显示(图3),在35层内、39层下部、43层底部发生了较显著的碳同位素偏移。其中,在35层的碳同位素波动幅度达3.5‰,可与第一次采样中35层底部的δ13Cwood波动相对比;在39层下部的δ13Cwood负偏至-26.3‰,波动幅度达2.0‰,与第一次结果有较好的可重复性;43底部的δ13Cwood负偏至-27.2‰,特征同样可以与第一次结果对比,为本剖面的负偏极值。两次独立地采样的数据结果有较好的可重复性。从碳同位素曲线可以看出,以38层底为界线,之上的碳同位素整体呈现显著的负偏,平均幅度为2‰左右;38层底界恰好与地层记录中多种植物孢粉灭绝界面和首现的界面吻合(图3)。
Organic Carbon Isotope Stratigraphy in the Kuqa River Section, Tarim Basin, and the Corresponding Triassic-Jurassic Boundary
-
摘要: 三叠纪—侏罗纪之交发生了地史上五次最大规模之一的生物灭绝事件、中大西洋大火成岩省喷发、泛大陆进一步裂解导致的中大西洋开启以及大气CO2浓度急剧升高等。然而该时期中国各板块主要发育陆相沉积,其三叠系—侏罗系界线(TJB)很难与定义于海相地层的全球层型剖面和点(GSSP)进行精细对比。应用基于C3植物的碳同位素地层学,进行了两次独立地、系统地以高等植物木质部为研究对象的采样和测试,获得了可以指示同期大气CO2的δ13C演化和进行全球等时对比的碳同位素地层曲线。并在植物大化石和孢粉的生物地层约束基础上,首次完成了库车河剖面与海相三叠纪末期生物大灭绝事件(ETE)底界和TJB的精细对比;推测与全球其他剖面ETE等时的地层界线位于38层底部附近,与TJB的GSSP等时地层界线位于41层底部附近。海相与陆相的ETE和TJB层位附近均出现了δ13C负偏,指示全球性的碳同位素的波动,推论该时期发生了全球规模的、地表圈层的碳储库扰动。Abstract: The boundary between the Triassic and Jurassic periods is a key moment in Earth history, which is distinguished by one of the five biggest mass extinctions, Pangea progressively breaking apart with the opening of the central Atlantic Ocean, eruption of Central Atlantic Magma Province, and a dramatic increase in the CO2 concentration. However, the major occurrence of terrestrial sediments in China has been difficult to bio-stratigraphically correlate with the Global Stratotype Section and Point (GSSP) defined in marine strata from the Triassic-Jurassic boundary (TJB). Two new δ13C wood stratigraphic curves in the Kuqa River section were generated from two independent samplings, focusing on the materials within the charcoal and coalified fossil wood and representing the synchronous evolution of δ13C in atmospheric CO2. The consistency of the two results proves the repeatability of this study, verifying the method of carbon-isotope stratigraphic sampling. The terrestrial Kuqa River section in the Tarim Basin is well correlated with the TJB of GSSP in Austria and other typical global sections, as constrained by the biostratigraphy of sporo-pollen assemblages and mega-plant fossils. The end-Triassic mass extinction (ETE) beginning horizon and synchronous TJB of GSSP are located near the bottom of Beds 38 and 41, respectively. The obvious negative carbon isotope excursion took place at the of the ETE beginning horizon and TJB. The significant fluctuations of carbon-isotope records in both marine and terrestrial strata across the ETE and TJB have been discovered globally, suggesting a global perturbation of carbon reservoirs within Earth surface cycles during this period.
-
表 1 库车河剖面有机碳同位素数据
样品编号 层号 厚度/m δ13Corg/(‰,PDB) 样品编号 层号 厚度/m δ13Corg/(‰,PDB) KQ10-23 46~49 81.63 -27.0 KQ2(04) 13~14 -172.10 -25.5 KQ10-22 46~49 75.32 -26.7 KQ17-y01 43~45 61.48 -25.4 KQ10-21 46~49 75.02 -26.0 KQ17-y02 43~45 57.21 -25.9 KQ10-20 46~49 71.38 -26.8 KQ17-y03 43~45 55.01 -25.7 KQ10-17 41~42 33.17 -27.4 KQ17-y04 43~45 52.71 -25.3 KQ10-16 41~42 32.17 -26.7 KQ17-y05 43~45 50.89 -26.0 KQ10-15 39~40 22.30 -26.6 KQ17-y06 43~45 43.81 -26.2 KQ10-14 39~40 21.50 -25.7 KQ17-y07 43~45 39.96 -25.4 KQ10-13 39~40 20.70 -26.0 KQ17-y08 43~45 37.14 -27.1 KQ10-12 39~40 15.90 -26.7 KQ17-y09 41~42 32.55 -26.2 KQ10-11 39~40 12.69 -26.3 KQ17-y10 41~42 31.78 -26.4 KQ10-10 39~40 12.54 -27.2 KQ17-34 41~42 29.14 -25.6 KQ10-9 39~40 12.19 -25.8 KQ17-32 39~40 22.10 -26.5 KQ17(04) 38 8.08 -25.6 KQ17-f16 38 3.00 -25.6 KQ10-7 38 6.84 -26.1 KQ17-x42(2) 38 0.30 -25.4 KQ10-6 38 4.73 -25.7 KQ17-x42 38 0.25 -24.4 KQ10-5 38 1.43 -26.1 KQ17-x41 38 0.15 -25.0 KQ10-4 38 1.03 -26.6 KQ17-x40 37 -0.35 -25.2 KQ10-3 38 0.98 -22.5 KQ17-f12 36 -8.29 -24.8 KQ10-2 38 0.78 -26.3 KQ17-f04 34 -19.92 -25.9 KQ10-1 36 -9.55 -25.1 KQ17-x39 34 -20.40 -23.6 KQ10-162 35 -18.55 -25.1 KQ17-x38 34 -22.40 -26.0 KQ10-164 34 -20.75 -24.3 KQ17-x37-1 34 -22.80 -22.5 KQ10-165 34 -22.40 -23.7 KQ17-x31 25~31 -44.54 -24.9 KQ17(04) 34 -23.28 -25.8 KQ17-x32 25~31 -45.33 -24.2 KQ10-168 32~33 -34.95 -25.8 KQ17-x29 25~31 -51.6 -25.6 KQ10-171(31-1) 25~31 -40.52 -26.0 KQ17-x25 22~24 -88.60 -26.4 KQ10-172(30-1) 25~31 -43.11 -24.7 KQ17-x18-2 19~21 -99.72 -24.0 KQ10-173(29-1) 25~31 -46.47 -26.5 KQ17-x17 17~18 -101.46 -25.7 KQ15(04) 25~31 -79.8 -25.4 KQ17-x16 17~18 -102.33 -25.5 KQ14(04) 19~21 -93.34 -25.1 KQ17-x13 17~18 -104.94 -25.8 KQ12(04) 19~21 -97.89 -25.6 KQ17-x11 17~18 -107.03 -25.2 KQ8(04) 15~16 -111.07 -26.5 KQ17-x08 15~16 -114.09 -25.3 KQ7(04) 15~16 -118.93 -25.7 KQ17-c6 13~14 -143.31 -25.7 KQ4(04) 15~16 -142.80 -25.2 -
[1] Sepkoski J J. Patterns of Phanerozoic extinction: A perspective from global data bases[M]//Walliser O H. Global events and event stratigraphy in the Phanerozoic. Berlin, Heidelberg: Springer, 1996: 53-80. [2] McGhee G R, Clapham M E, Sheehan P M, et al. A new ecological-severity ranking of major Phanerozoic biodiversity crises[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 370: 260-270. [3] Pálfy J, Smith P L. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism[J]. Geology, 2000, 28(8): 747-750. [4] Hesselbo S P, Robinson S A, Surlyk F, et al. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism?[J]. Geology, 2002, 30(3): 251-254. [5] Lucas S G, Tanner L H. Tetrapod biostratigraphy and biochronology of the Triassic-Jurassic transition on the southern Colorado Plateau, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 242-256. [6] Akikuni K, Hori R S, Vajda V, et al. Stratigraphy of Triassic-Jurassic boundary sequences from the Kawhia coast and Awakino gorge, Murihiku Terrane, New Zealand[J]. Stratigraphy, 2010, 7(1): 7-24. [7] de Lamotte D F, Fourdan B, Leleu S, et al. Style of rifting and the stages of Pangea breakup[J]. Tectonics, 2015, 34(5): 1009-1029. [8] McElwain J C, Beerling D J, Woodward F I. Fossil plants and global warming at the Triassic-Jurassic boundary[J]. Science, 1999, 285(5432): 1386-1390. [9] Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles[J]. Nature, 2001, 411(6835): 287-290. [10] Beerling D J, Berner R A. Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event[J]. Global Biogeochemical Cycles, 2002, 16(3): 1036. [11] Steinthorsdottir M, Jeram A J, McElwain J C. Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3/4): 418-432. [12] Hallam A. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 167(1/2): 23-37. [13] Lindström S, Erlström M. The Late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic-Jurassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(3/4): 339-372. [14] Hallam A, Wignall P B. Mass extinctions and sea-level changes[J]. Earth-Science Reviews, 1999, 48(4): 217-250. [15] Pálfy J, Demény A, Hass J, et al. Carbon isotope anomaly and other geochemical changes at the Triassic-Jurassic boundary from a marine section in Hungary[J]. Geology, 2001, 29(11): 1047-1050. [16] Greene S E, Martindale R C, Ritterbush K A, et al. Recognising ocean acidification in deep time: An evaluation of the evidence for acidification across the Triassic-Jurassic boundary[J]. Earth-Science Reviews, 2012, 113(1/2): 72-93. [17] Jaraula C M B, Grice K, Twitchett R J, et al. Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels[J]. Geology, 2013, 41(9): 955-958. [18] Hesselbo S P, Robinson S A, Surlyk F. Sea-level change and facies development across potential Triassic-Jurassic boundary horizons, SW Britain[J]. Journal of the Geological Society, 2004, 161(3): 365-379. [19] Kiessling W, Aberhan M, Brenneis B, et al. Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 201-222. [20] van de Schootbrugge B, Tremolada F, Rosenthal Y, et al. End-Triassic calcification crisis and blooms of organic-walled ‘disaster species’[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 126-141. [21] van de Schootbrugge B, Quan T M, Lindström S, et al. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism[J]. Nature Geoscience, 2009, 2(8): 589-594. [22] Bonis N R, Ruhl M, Kürschner W M. Climate change driven black shale deposition during the end-Triassic in the western Tethys[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 151-159. [23] Ruhl M, Deenen M H L, Abels H A, et al. Astronomical constraints on the duration of the Early Jurassic Hettangian stage and recovery rates following the end-Triassic mass extinction (St Audrie’s Bay/East Quantoxhead, UK)[J]. Earth and Planetary Science Letters, 2010, 295(1/2): 262-276. [24] Belcher C M, Mander L, Rein G, et al. Increased fire activity at the Triassic/Jurassic boundary in greenland due to climate-driven floral change[J]. Nature Geoscience, 2010, 3(6): 426-429. [25] Ruhl M, Kürschner W M, Krystyn L. Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria)[J]. Earth and Planetary Science Letters, 2009, 281(3/4): 169-187. [26] Ruhl M, Bonis N R, Reichart G J, et al. Atmospheric carbon injection linked to end-Triassic mass extinction[J]. Science, 2011, 333(6041): 430-434. [27] Whiteside J H, Olsen P E, Eglinton T, et al. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6721-6725. [28] Bachan A, van de Schootbrugge B, Fiebig J, et al. Carbon cycle dynamics following the end-Triassic mass extinction: Constraints from paired δ 13Ccarb and δ 13Corg records[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(9): Q09008. [29] van de Schootbrugge B, Wignall P B. A tale of two extinctions: Converging end-Permian and end-Triassic scenarios[J]. Geological Magazine, 2016, 153(2): 332-354. [30] Guex J, Bartolini A, Atudorei V, et al. High-resolution ammonite and carbon isotope stratigraphy across the Triassic-Jurassic boundary at New York Canyon (Nevada)[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 29-41. [31] Ward P D, Garrison G H, Haggart J W, et al. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 589-600. [32] van de Schootbrugge B, Payne J L, Tomasovych A, et al. Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04028. [33] Tanner L H. Cyclostratigraphic record of the Triassic: A critical examination[J]. Geological Society, London, Special Publications, 2010, 334: 119-137. [34] Whiteside J H, Grogan D S, Olsen P E, et al. Climatically driven biogeographic provinces of Late Triassic tropical pangea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): 8972-8977. [35] Hillebrandt A V, Krystyn L, Kürschner W M, et al. The global stratotype sections and point (GSSP) for the base of the Jurassic system at Kuhjoch (Karwendel Mountains, northern Calcareous Alps, Tyrol, Austria)[J]. Episodes, 2013, 36(3): 162-198. [36] Tanner L H. The Late Triassic world: Earth in a time of transition[M]. Cham: Springer, 2018: 91-125. [37] Williford K H, Ward P D, Garrison G H, et al. An extended organic carbon-isotope record across the Triassic-Jurassic boundary in the Queen Charlotte Islands, British Columbia, Canada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 290-296. [38] Marzoli A, Bertrand H, Knight K B, et al. Synchrony of the central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis[J]. Geology, 2004, 32(11): 973-976. [39] Hesselbo S P, Jenkyns H C, Duarte L V, et al. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal)[J]. Earth and Planetary Science Letters, 2007, 253(3/4): 455-470. [40] Deenen M H L, Ruhl M, Bonis N R, et al. A new chronology for the end-Triassic mass extinction[J]. Earth and Planetary Science Letters, 2010, 291(1/2/3/4): 113-125. [41] Dal Corso J, Mietto P, Newton R J, et al. Discovery of a major negative δ 13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts[J]. Geology, 2012, 40(1): 79-82. [42] Davies J H F L, Marzoli A, Bertrand H, et al. End- Triassic mass extinction started by intrusive CAMP activity[J]. Nature Communications, 2017, 8: 15596. [43] Zaffani M, Jadoul F, Rigo M. A new Rhaetian δ 13Corg record: Carbon cycle disturbances, volcanism, End-Triassic mass Extinction (ETE)[J]. Earth-Science Reviews, 2018, 178: 92-104. [44] Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of Plant Physiology, 1982, 9(2): 121-137. [45] Farquhar G D, Hubrick K T, Condon A G, et al. Carbon isotope fractionation and plant water-use efficiency[M]//Rundel P W, Ehleringer J R, Nagy K A. Stable isotopes in ecological research. New York: Springer-Verlag, 1989: 21-40. [46] Jahren A H, Arens N C, Harbeson S A. Prediction of atmospheric δ 13CO2 using fossil plant tissues[J]. Reviews of Geophysics, 2008, 46(1): RG1002. [47] Lomax B H, Knight C A, Lake J A. An experimental evaluation of the use of C3 δ 13C plant tissue as a proxy for the paleoatmospheric δ 13CO2 signature of air[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(9): Q0AI03. [48] Benner R, Fogel M L, Sprague E K, et al. Depletion of 13C in lignin and its implications for stable carbon isotope studies[J]. Nature, 1987, 329(6141): 708-710. [49] Spiker E C, Hatcher P G. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1385-1391. [50] Mazeas L, Budzinski H, Raymond N. Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation[J]. Organic Geochemistry, 2002, 33(11): 1259-1272. [51] Morasch B, Richnow H H, Vieth A, et al. Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds[J]. Applied and Environmental Microbiology, 2004, 70(5): 2935-2940. [52] Hasegawa T. Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130(1/2/3/4): 251-273. [53] Hasegawa T, Pratt L M, Maeda H, et al. Upper Cretaceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: A proxy for the isotopic composition of paleoatmospheric CO2 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 189(1/2): 97-115. [54] Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406(6794): 392-395. [55] Arens N C, Jahren A H, Amundson R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?[J]. Paleobiology, 2000, 26(1): 137-164. [56] Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40-50 day Period[J]. Journal of the Atmospheric Sciences, 1972, 29(6): 1109-1123. [57] 沙金庚. 中国侏罗纪年代地层学研究的现状[J]. 地层学杂志,2005,29(2):124-129. Sha Jingeng. Current situation of the Jurassic chronostratigraphic studies in China[J]. Journal of Stratigraphy, 2005, 29(2): 124-129. [58] Scotese C R. Paleogeographic map archive[J]. Paleomap Project, 2001. [59] 王招明,钟瑞,赵培荣,等. 库车前陆盆地露头区油气地质[M]. 北京:石油工业出版社,2004. Wang Zhaoming, Zhong Rui, Zhao Peirong, et al. Petroleum geology of outcrops areas in Kuche foreland basin[M]. Beijing: Petroleum Industry Press, 2004. [60] 贾承造. 塔里木盆地构造特征与油气聚集规律[J]. 新疆石油地质,1999,20(3):177-183. Jia Chengzao. Structural characteristics and oil/gas accumulative regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3): 177-183. [61] 何登发,贾承造,李德生,等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质,2005,26(1):64-77. He Dengfa, Jia Chengzao, Li Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 64-77. [62] 李永安,孙东江,郑洁. 新疆及周边古地磁研究与构造演化[J]. 新疆地质,1999,17(3):193-235. Li Yong’an, Sun Dongjiang, Zheng Jie. Paleomagnetic study and tectonic evolution of Xinjiang and its neighboring regions[J]. Xinjiang Geology, 1999, 17(3): 193-235. [63] 方大钧,沈忠悦,王朋岩. 塔里木地块古地磁数据表[J]. 浙江大学学报(理学版), 2001,28(1):92-99. Fang Dajun, Shen Zhongyue, Wang Pengyan. Paleomagnetic data of Tarim block[J]. Journal of Zhejiang University (Science Edition), 2001, 28(1): 92-99. [64] 邓胜徽,姚益民,叶得泉,等. 中国北方侏罗系(I)地层总述[M]. 北京:石油工业出版社,2003. Deng Shenghui, Yao Yimin, Ye Dequan, et al. Jurassic system in the north of China (I)[M]. Beijing: Petroleum Industry Press, 2003. [65] 刘兆生. 塔里木盆地北缘三叠纪孢粉组合[J]. 古生物学报,1999,38(4):474-504. Liu Zhaosheng. Triassic palynological assemblages from the northern margin in Tarim Basin of Xinjiang, NW China[J]. Acta Palaeontologica Sinica, 1999, 38(4): 474-504. [66] 刘兆生. 塔里木盆地北缘晚三叠世孢粉组合及三叠系—侏罗系界线[J]. 地层学杂志,1999,23(2):96-106. Liu Zhaosheng. Palynological assemblage of the Late Triassic Tariqike Fm. and Triassic-Jurassic boundary on the northern margin of the Tarim Basin, Xinjiang[J]. Journal of Stratigraphy, 1999, 23(2): 96-106. [67] Yang H P, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. [68] Harmon M E, Krankina O N, Sexton J. Decomposition vectors: A new approach to estimating woody detritus decomposition dynamics[J]. Canadian Journal of Forest Research, 2000, 30(1): 76-84. [69] Fang Y N, Fang L H, Deng S H, et al. Carbon isotope stratigraphy across the Triassic-Jurassic boundary in the high-latitude terrestrial Junggar Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 577: 110559. [70] 张新智,方琳浩,吴涛,等. 准噶尔盆地郝家沟剖面三叠纪—侏罗纪之交孢粉组合与古气候[J]. 地质科学,2022,57(4):1-16. Zhang Xinzhi, Fang Linhao, Wu Tao, et al. Palynological assemblages and palaeoclimate across the Triassic-Jurassic boundary in the Haojiagou section, southern Junggar Basin[J]. Chinese Journal of Geology, 2022, 57(4): 1-16. [71] Zhang X Y, Lv P Z, Fang L H, et al. Biomarker evidence for deforestation across the Triassic-Jurassic boundary in the high palaeolatitude Junggar Basin, northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 600: 111074. [72] Hüsing S K, Beniest A, van der Boon A, et al. Astronomically-calibrated magnetostratigraphy of the Lower Jurassic marine successions at St. Audrie's Bay and East Quantoxhead (Hettangian-Sinemurian; Somerset, UK)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403: 43-56. [73] Fowell S J, Cornet B, Olsen P E. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup[M]//Klein G O. Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Geological Society of America, 1994: 197-206. [74] Olsen P E, Kent D V, Sues H D, et al. Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary[J]. Science, 2002, 296(5571): 1305-1307. [75] Schaltegger U, Guex J, Bartolini A, et al. Precise U-Pb Age Constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery[J]. Earth and Planetary Science Letters, 2008, 267(1/2): 266-275. [76] Schoene B, Guex J, Bartolini A, et al. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level[J]. Geology, 2010, 38(5): 387-390. [77] Bonis N R, Kürschner W M. Vegetation history, diversity patterns, and climate change across the Triassic/Jurassic boundary[J]. Paleobiology, 2012, 38(2): 240-264. [78] Ward P D, Garrison G H, Williford K H, et al. The organic carbon isotopic and paleontological record across the Triassic-Jurassic boundary at the candidate GSSP section at Ferguson Hill, Muller Canyon, Nevada, USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 281-289. [79] Hüsing S K, Deenen M H L, Koopmans J G, et al. Magnetostratigraphic dating of the proposed Rhaetian GSSP at Steinbergkogel (Upper Triassic, Austria): Implications for the Late Triassic time scale[J]. Earth and Planetary Science Letters, 2011, 302(1/2): 203-216. [80] Percival L M E, Ruhl M, Hesselbo S P, et al. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(30): 7929-7934. [81] Kent D V, Olsen P E, Muttoni G. Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages[J]. Earth-Science Reviews, 2017, 166: 153-180. [82] Sha J G, Vajda V, Pan Y H, et al. Stratigraphy of the Triassic-Jurassic boundary successions of the southern margin of the Junggar Basin, northwestern China[J]. Acta Geologica Semica (English Edition), 2011, 85(2): 421-436. [83] Sha J G, Olsen P E, Pan Y H, et al. Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12): 3624-3629. [84] 卢远征,邓胜徽. 新疆准噶尔盆地南缘郝家沟组和八道湾组底部孢粉组合及三叠系—侏罗系界线[J]. 地质学报,2005,79(1):15-27. Lu Yuanzheng, Deng Shenghui. Triassic-Jurassic sporopollen assemblages on the southern margin of the Junggar Basin, Xinjiang and the T-J boundary[J]. Acta Geologica Sinica, 2005, 79(1): 15-27. [85] 卢远征,邓胜徽. 准噶尔盆地南缘三叠纪—侏罗纪之交的古气候[J]. 古地理学报,2009,11(6):652-660. Lu Yuanzheng, Deng Shenghui. Palaeoclimate around the Triassic-Jurassic boundary in southern margin of Junggar Basin[J]. Journal of Palaeogeography, 2009, 11(6): 652-660. [86] Shen J, Yin R S, Zhang S, et al. Intensified continental chemical weathering and carbon-cycle perturbations linked to volcanism during the Triassic-Jurassic transition[J]. Nature Communications, 2022, 13(1): 299. [87] Thibodeau A M, Ritterbush K, Yager J A, et al. Mercury anomalies and the timing of biotic recovery following the end-Triassic mass extinction[J]. Nature Communications, 2016, 7: 11147. [88] Blackburn T J, Olsen P E, Bowring S A, et al. Zircon U-Pb geochronology links the end-Triassic extinction with the central Atlantic magmatic province[J]. Science, 2013, 340(6135): 941-945. [89] Schaller M F, Wright J D, Kent D V. Atmospheric PCO2 associated with the central Atlantic magmatic province[J]. Science, 2011, 331(6023): 1404-1409. [90] Schaller M F, Wright J D, Kent D V, et al. Rapid Emplacement of the Central Atlantic Magmatic province as a net sink for CO2 [J]. Earth and Planetary Science Letters, 2012, 323-324: 27-39. [91] Schaefer K, Zhang T J, Bruhwiler L, et al. Amount and timing of permafrost carbon release in response to climate warming[J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(2): 165-180. [92] Ciais P, Tagliabue A, Cuntz M, et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum[J]. Nature Geoscience, 2012, 5(1): 74-79.