-
本研究中被结壳的腕足动物标本鉴定为7种:Independatrypa lemma,Uncinulusheterocostellis,Spina⁃ trypina sp.,Leiorhynchus sp.,Atrypa beta,Cyrtiopsis sp.和Cyrtospirifer sp.(图2)。壳体上的附生生物类群可分为8类,详述如下(图3)。
图 3 甘溪剖面吉维特期—法门期各类群腕足宿主及附生生物特征
Figure 3. Givetian⁃Famennian brachiopod shells and most common epibionts from the Ganxi section
横板珊瑚类Aulopora Goldfuss,1826:是一类在腕足动物上常见的附生生物[1,3,8,41]。在本研究中,Aulopora由两个未定种组成,Aulopora sp.A和Aulopora sp.B,前者具有较大的直径和较厚的外壁,通常具有明显的锥形或烟斗形萼部,后者具桶形萼部且萼部之间充满泥质。
多毛类管虫Microconchus Murchison,1839:其特征是个体微小,且具有螺旋盘绕的方解石管,在某些类型中螺旋形管可能会展开[42⁃44]。本研究中的Microconchus个体微小(0.8~3 mm),完全螺旋,具中等厚度的虫管壁,生长线光滑或微弱。
多毛类管虫Cornulites Schtotheim,1820[45⁃46]:常附着在无脊椎动物宿主的外壳上。本研究中,Cornulites具有5~9 mm长的锥形钙质管,其横截面为圆形。在幼年阶段,通常虫管外壁光滑,但在个体发育后期阶段会被环或脊装饰。
苔藓虫:应属于变口目苔藓虫类(Trepostomata Ulrich,1882),不同寄主上的苔藓虫外部特征非常相似,尽管不能鉴定,但很可能为同一种,以薄片状为主,虫室微小(直径0.1~0.3 mm),且为椭圆或多边形。
微体疑源类Allonema Ulrich & Bassler,1904:是小型的方解石质硬体生物,常见于中古生代—晚古生代,特别是在泥盆纪分布十分广泛[47⁃49]。该属曾被认为是苔藓虫[50],随后经过一系列研究,认为其属于微体疑源类[47⁃48]。Allonema个体微小,由分支或不分支的体管组成,体管被分隔成不同的囊泡。囊泡多呈椭圆形,通常排列成单排[51]。
无铰纲腕足类Petrocrania Raymond,1911[24]:壳体小,外形宽卵形—近圆形,背壳凸出,喙位于中心略靠后,向后倾斜,表面有许多同心的、不规则的生长线,通常与寄主的表面纹饰一致。腹壳附着在宿主上,可能无法观察到。
小型单体四射珊瑚:偶尔也会作为腕足动物的附生生物出现。这些单体珊瑚个体小,直径小于1 mm,萼部常被泥质充填,偶见隔壁,常缺乏鳞板,很难将其划分至科以下的分类单位。
-
附生生物附着生活在宿主的背壳或腹壳上,具有一定的生态意义。统计结果显示,选择附着在背壳或者腹壳存在显著差异(表1、图4a)。大多数附生生物附着在背壳(51.3%~79.7%),少数在腹壳(20.3%~48.7%),而附生生物Cornulites例外,65.9%的Cornulites个体附着在宿主的腹壳上。另一方面,对不同种类的腕足类宿主进行分析,也有选择性差异,其中宿主I.lemma、U.heterocostellis、Spinatrypina sp.、Leiorhynchus sp.和A.beta,大多数结壳生物都附着在背壳上。相反,对于宿主Cyrtiopsis sp.和Cyrtospirifer sp.,结壳生物更喜欢附着在它们的腹壳上,前者腹壳上的结壳数量占比为50.9%,后者为55.1%(表2、图4b)。
表 1 腕足宿主两壳上附生生物分布数量及占比
腕足种类 背壳上附生生物数量 腹壳上附生生物数量 总数 背壳上附生生物占比/% 腹壳上附生生物占比/% Independatrypa lemma 664 208 872 76.15 23.85 Uncinulusheterocostellis 1 000 295 1 295 77.22 22.78 Leiorhynchus sp. 47 28 75 62.67 37.33 Spinatrypina sp. 502 152 654 76.76 23.24 Atrypabeta 66 26 92 71.74 28.26 Cyrtiopsis sp. 105 109 214 49.07 50.93 Cyrtospirifer sp. 275 338 613 44.86 55.14 图 4 附生生物在腕足类宿主两壳间的丰度比值
Figure 4. The percentage of epibionts on two valves in: (a) epibiont taxa and (b) brachiopod species
表 2 不同附生生物类群在腕足宿主两壳上的分布数量及占比
附生生物种类 背壳上附生生物数量 腹壳上附生生物数量 总数 背壳上附生生物占比/% 腹壳上附生生物占比/% Aulopora sp.A 409 388 797 51.32 48.68 Aulopora sp.B 1 702 434 2 136 79.68 20.32 四射珊瑚 13 4 17 76.47 23.53 无铰纲腕足 79 43 122 64.75 35.25 Microconchus 151 113 264 57.20 42.80 Cornulites 15 29 44 34.09 65.91 变口目苔藓虫 160 104 264 60.61 39.39 Allonema 130 41 171 76.02 23.98 -
附生生物空间分布的分析结果表明,腕足类宿主外壳的不同分区之间存在显著差异(图5、附表1,2)。按照不同类群的腕足类宿主及不同类群的附生`生物分别进行区域丰度统计,附生生物在背壳的第3分区丰度最高,达到334个,除去仅3个腕足类别具有的第24分区外,腹壳的第17、21分区丰度最低,分别为58个和56个。无论按照何种类别进行统计,结果均显示结壳的分布主要集中在5个区域,丰度由高到低依次为I,II,III,V和IV。尽管整体规律十分明显,但不同的腕足类群与附生生物类群之间的分布依然存在差别。
-
研究中多数的附生生物在宿主壳体上表现出不同程度的定向分布特征,如Aulopora sp.A,Aulopora sp.B,Microconchus,Cornulites以及四射珊瑚。统计结果如图6所示,定向性最明确的附生生物是Cornulites,仅有2个个体因化石保存不完整无法判断其萼部方向,其余个体定向明确,且多达31个个体萼部朝向壳体前部生长。而Aulopora sp.B定向性最差,仅有2个腕足类壳体上的Aulopora sp.B整体向前或向后,其余290个壳体无法判断其方向。Aulopora sp.A生长方向较Aulopora sp.B更有规律,34个壳体上的Aulopora sp.A整体向前,83个无法判断。Microconchus虽然容易判断其口径朝向,但各个方向均有分布,向前的个体较多。
-
附生生物在宿主壳体上的位置分布可以提供多种古生态信息,包括宿主的生活状态、附生生物与宿主之间的关系以及古生态环境等方面的证据[14⁃15,24⁃25]。
前人研究表明,泥盆纪石燕类和无洞贝类上所附着的喇叭孔珊瑚、枝状苔藓虫和Cornulites显示出较明显的方向性,即沿着或朝向两壳前端接合处生长[1,52⁃55]。本研究中所有的四射珊瑚都生长在壳体前缘,萼部朝向两壳接合处。有的个体数次改变生长方向,说明其除了依靠宿主腕足吸入的水流外,很可能还受到了动荡的海底环境影响,宿主位置改变使得其生长方向发生改变。而喇叭孔珊瑚Aulopora sp.A与Aulopora sp.B在宿主壳体上的分布显示出明显差异。Aulopora sp.A在腕足类两壳上丰度几乎一致,但Aulopora sp.B大多数生活在背壳上。这主要取决于宿主的生活状态,Aulopora sp. A主要附生于垂直底栖的石燕贝类,Aulopora sp.B的宿主则以成年后腹壳接触基底的无洞贝类为主。在萼部的取向上,Aulopora sp.A除了杂乱无法判断方向的标本外,大部分的萼部都沿着或朝向两壳前端接合处生长(图6)。而Aulopora sp.B在宿主壳体上没有明确的生长方向,细小的萼部之间经常充满泥质使得萼部沿垂直壳体方向伸展(图3i)。Chang et al.[25]对宿主死亡后仍在生长的附生生物进行了统计,结果显示少数Aulopora sp.A在宿主死亡后能够在短时期内存活,但Aulopora sp.B经常包裹宿主直至宿主死亡后仍在生长。因此,Aulopora sp.A的生存更依赖于腕足类宿主活体吸入或排出的水流,而对于Aulopora sp.B,腕足类宿主可能仅作为易得的硬底基质。
Microconchus和Cornulites属于多毛类管虫,是滤食性动物,通常将虫管附着在坚硬的基质上[56]。但是由于外壳形态的不同,导致其与腕足类宿主之间的关系也完全不同。Microconchus在宿主壳体各个分区上丰度差异不大(图5b),其螺旋状虫管亦没有明显的取向(图6),大多数虫管没有明显取向或向上延伸,通常附着在腕足类壳褶的凹槽中,这可能表明Microconchus不需要依靠宿主进水或排泄物,而是从周围水流中进行滤食,腕足类宿主只为其提供硬质基底以及作为庇护所,因此它们之间只是伴生关系。与Microconchus不同,66%的Cornulites附生在腕足类宿主的腹壳上(图4b),由于个体较大,壳体前部的所有区域(I,II,III,V和IV)都显示有Cornulites分布(图5b),但其虫管口均靠近两壳接合处;另一方面,与Microconchus一样,Cornulites也喜欢附着在壳褶之间的凹槽中,Cornulites的分布位置表明腕足类宿主不仅为它们提供了理想的硬底与庇护所,同时宿主的摄食水流也为其带来了食物,因此Cornulites很可能是腕足类宿主的寄生生物[55,57]。
腕足类的产出情况对于沉积环境也具有一定的指示作用。观雾山组产出了死亡后双壳张开保存的Independatrypa lemma和两壳微张的Uncinulusheterocostellis,这是快速或瞬时埋藏的标志。并且,115个腕足壳体死后仍有附生生物生长,其中以弗拉斯期土桥子组Leiorhynchus sp.,以及法门期的茅坝组Cyrtiopsis sp.、Cyrtospirifer sp.为主,说明腕足动物死后有充足的时间供附生生物生长。
综上所述,对于7种腕足类宿主而言,腕足动物壳体靠近喙部与主端的分区附生生物丰度都较低,原因可能是其直立底栖时喙部和主端后部靠近底质,附生生物很难附着。此外,附生生物在宿主背壳与腹壳上丰度大小主要与宿主腕足动物的生活方式有关,躺卧或者直立的生活状态可极大地影响附生生物的丰度。另一方面,附生生物在各分区的丰度和生长方向则与附生生物的生活类型(如伴生还是寄生)直接相关。
宿主与结壳生物之间关系的研究可拓展到多个方面,例如,可开展结壳生物在宿主上的多样性和丰度变化在不同地理区之间的对比研究,开展同一地区不同时间间隔的纵向上的演变研究,其研究结果对恢复沉积环境、古生态和底栖群落的演替等方面,都具有一定的指示意义。笔者最近发表了有关此方面的研究成果[25],揭示了泥盆纪末的F-F生物灭绝事件并没有显著降低由结壳生物与宿主之间表达的生态多样性。由于这方面的研究工作,在国内尚不多见。为方便读者理解,已发表文章的部分内容如样品信息、地质背景、部分研究方法等与本文有所重复,特此说明。
表 附表1 不同腕足宿主上各分区的附生生物分布数量
分区 I.lemma U.heterocostellis Leiorhynchus sp. Spinatrypina sp. A.beta Cyrtiopsis sp. Cyrtospirifer sp. 1 49 74 3 42 5 11 28 2 63 122 11 60 10 14 32 3 77 123 8 67 8 17 34 4 66 131 5 50 11 16 36 5 54 83 2 44 3 6 28 6 47 54 2 38 4 7 15 7 67 96 6 45 7 10 20 8 82 111 5 45 8 13 27 9 72 104 3 45 6 10 26 10 49 71 2 39 2 0 13 11 38 31 0 27 2 1 16 12 17 26 1 15 0 7 32 13 25 36 2 21 6 15 33 14 31 48 5 26 3 15 42 15 25 31 0 17 4 14 36 16 18 14 1 12 2 6 25 17 9 9 0 12 1 8 19 18 12 13 2 9 1 9 21 19 20 19 3 12 4 6 33 20 13 10 0 10 2 7 24 21 14 15 0 8 1 3 15 22 15 13 1 9 1 6 24 23 9 61 13 1 0 12 25 24 0 0 0 0 1 1 9 表 附表2 不同附生生物类群在腕足壳上各分区的附生生物分布数量
分区 Aulopora sp. A Aulopora sp. B 四射珊瑚 无铰纲腕足 Microconchus Cornulites 变口目苔藓虫 Allonema 1 40 136 1 7 8 0 14 6 2 59 195 1 5 23 3 19 7 3 59 204 1 9 23 2 18 18 4 55 191 5 10 19 2 20 13 5 32 141 3 4 14 0 18 8 6 22 111 0 7 5 0 11 11 7 36 160 0 9 13 2 13 18 8 44 186 0 10 19 2 14 16 9 35 180 0 13 10 1 12 15 10 13 124 2 3 8 3 10 13 11 14 74 0 2 9 0 11 5 12 34 42 0 2 5 1 10 4 13 44 56 2 2 15 4 10 5 14 49 67 1 9 20 3 13 8 15 40 50 1 3 12 3 15 3 16 27 34 0 5 1 1 8 2 17 22 20 0 4 4 0 6 2 18 24 24 0 2 9 2 4 2 19 28 33 0 6 18 3 5 4 20 25 24 0 3 7 1 5 1 21 14 23 0 4 4 2 6 3 22 25 23 0 2 8 3 5 3 23 46 38 0 1 9 6 17 4 24 10 0 0 0 1 0 0 0
Encrusters on Brachiopods from the Middle-Upper Devonian and Their Paleoecological Implications in the Longmenshan Area
-
摘要: 结壳生物和宿主以及它们的相互关系构成了海洋硬底群落的一个特殊的生态系统,能够为地史时期的关键事件提供古生态学证据。中晚泥盆世发生了一系列的生物演化和环境事件,其过程和机制仍有许多不明之处。从四川龙门山地区吉维特期—法门期地层中采集了大量被附生的腕足动物宿主,其中的3 067枚腕足动物标本中,筛选具有附生生物的腕足类宿主618枚,鉴定为7种,归入7属。附生生物为6个类群,包括横板珊瑚、四射珊瑚、多毛类、疑源类、变口目苔藓虫以及无铰纲腕足类。本文对腕足类宿主壳体上不同分区附生生物的多样性及丰度进行统计分析。结果显示,腕足动物宿主的壳体,近喙部与主端的分区附生生物丰度都较低,原因可能是其直立底栖时喙部和主端后部靠近底质,附生生物难以附着。附生生物在宿主背壳与腹壳上丰度大小主要与腕足动物的生活方式有关,除成年后仍直立生活的Cyrtiopsis sp.,Cyrtospirifer sp.外,其他腕足类由于成年期躺卧生活,因此背壳上的附生生物明显多于腹壳。而附生生物在各分区的丰度和生长方向则与附生生物的生活类型直接相关,寄生类型生长过程中表现出明显的方向性,而伴生类型则无明显方向性。此外,腕足类的埋藏特征、与附生生物的关系等对沉积环境也具有一定的指示作用。Abstract: Epibionts, their hosts, and their interactions comprise a special ecosystem in the marine hard-substrate communities that could provide important paleoecological implications for critical events in Earth history. A series of biological and environmental events occurred during the Middle and Late Devonian, but their processes and mechanisms remain unclear. A total of 3 067 brachiopod specimens were sampled from the Givetian-Famennian of the Longmenshan region in South China. Then, they were examined and separated into seven species, among which 618 specimens were encrusted by epibionts. The epibionts included 6 fossil groups: tabulate corals, rugose corals, tentaculitoid tubeworms, Allonema, bryozoans, and inarticulate brachiopods, which could be further subdivided into eight groups. This study examined the abundance and diversity of epibionts in each brachiopod sector. The abundance and diversity of epibionts were low in the sectors close to the beak and cardinal extremities; it is likely difficult to attach to the shell when it is close to or buried in soft-substrate. The epibiont abundance between two valves is related to the life orientation of the brachiopod. With the exception of Spiriferoids, the other hosts became attached by their pedicle to the substrate in the adult stage, and they attained an inclined orientation with a dorsal valve facing the substrate or a vertically upright life orientation; thus, the epibionts were significantly more abundant on the dorsal valves. However, the direction of the epibionts and the encruster abundance in each sector was dependent on whether they were parasitism or commensalism. The parasitic epibionts have a growth direction, but the commensal epibionts have no clear growth direction. Therefore, the burial characteristics of brachiopods and the relationship between brachiopods and epibionts can indicate the sedimentary environment.
-
Key words:
- Devonian /
- epibionts /
- brachiopods /
- encrustation patterns /
- paleoecology
-
图 3 甘溪剖面吉维特期—法门期各类群腕足宿主及附生生物特征
(a)Independatrypa lemma;(b)Uncinulusheterocostellis;(c)Spinatrypina sp.;(d)Leiorhynchus sp.;(e)Atrypa beta;(f)Cyrtiopsis sp.;(g)Cyrtospirifer sp.;(h)Aulopora sp. A;(i)Aulopora sp. B;(j)Microconchus;(k)Cornulites;(l)变口目苔藓虫;(m)Allonema;(n)无铰纲腕足类;(o)四射珊瑚
Figure 3. Givetian⁃Famennian brachiopod shells and most common epibionts from the Ganxi section
(a) Independatrypa lemma; (b) Uncinulusheterocostellis; (c) Spinatrypina sp.; (d) Leiorhynchus sp.; (e) Atrypa beta; (f) Cyrtiopsis sp.; (g) Cyrtospirifer sp.; (h) Aulopora sp. A;(i) Aulopora sp. B; (j) Microconchus; (k) Cornulites;
(l) Trepostome bryozoan; (m) Allonema; (n) Inarticulate brachiopods; and (o) rugose coral 表 1 腕足宿主两壳上附生生物分布数量及占比
腕足种类 背壳上附生生物数量 腹壳上附生生物数量 总数 背壳上附生生物占比/% 腹壳上附生生物占比/% Independatrypa lemma 664 208 872 76.15 23.85 Uncinulusheterocostellis 1 000 295 1 295 77.22 22.78 Leiorhynchus sp. 47 28 75 62.67 37.33 Spinatrypina sp. 502 152 654 76.76 23.24 Atrypabeta 66 26 92 71.74 28.26 Cyrtiopsis sp. 105 109 214 49.07 50.93 Cyrtospirifer sp. 275 338 613 44.86 55.14 表 2 不同附生生物类群在腕足宿主两壳上的分布数量及占比
附生生物种类 背壳上附生生物数量 腹壳上附生生物数量 总数 背壳上附生生物占比/% 腹壳上附生生物占比/% Aulopora sp.A 409 388 797 51.32 48.68 Aulopora sp.B 1 702 434 2 136 79.68 20.32 四射珊瑚 13 4 17 76.47 23.53 无铰纲腕足 79 43 122 64.75 35.25 Microconchus 151 113 264 57.20 42.80 Cornulites 15 29 44 34.09 65.91 变口目苔藓虫 160 104 264 60.61 39.39 Allonema 130 41 171 76.02 23.98 表 附表1 不同腕足宿主上各分区的附生生物分布数量
分区 I.lemma U.heterocostellis Leiorhynchus sp. Spinatrypina sp. A.beta Cyrtiopsis sp. Cyrtospirifer sp. 1 49 74 3 42 5 11 28 2 63 122 11 60 10 14 32 3 77 123 8 67 8 17 34 4 66 131 5 50 11 16 36 5 54 83 2 44 3 6 28 6 47 54 2 38 4 7 15 7 67 96 6 45 7 10 20 8 82 111 5 45 8 13 27 9 72 104 3 45 6 10 26 10 49 71 2 39 2 0 13 11 38 31 0 27 2 1 16 12 17 26 1 15 0 7 32 13 25 36 2 21 6 15 33 14 31 48 5 26 3 15 42 15 25 31 0 17 4 14 36 16 18 14 1 12 2 6 25 17 9 9 0 12 1 8 19 18 12 13 2 9 1 9 21 19 20 19 3 12 4 6 33 20 13 10 0 10 2 7 24 21 14 15 0 8 1 3 15 22 15 13 1 9 1 6 24 23 9 61 13 1 0 12 25 24 0 0 0 0 1 1 9 表 附表2 不同附生生物类群在腕足壳上各分区的附生生物分布数量
分区 Aulopora sp. A Aulopora sp. B 四射珊瑚 无铰纲腕足 Microconchus Cornulites 变口目苔藓虫 Allonema 1 40 136 1 7 8 0 14 6 2 59 195 1 5 23 3 19 7 3 59 204 1 9 23 2 18 18 4 55 191 5 10 19 2 20 13 5 32 141 3 4 14 0 18 8 6 22 111 0 7 5 0 11 11 7 36 160 0 9 13 2 13 18 8 44 186 0 10 19 2 14 16 9 35 180 0 13 10 1 12 15 10 13 124 2 3 8 3 10 13 11 14 74 0 2 9 0 11 5 12 34 42 0 2 5 1 10 4 13 44 56 2 2 15 4 10 5 14 49 67 1 9 20 3 13 8 15 40 50 1 3 12 3 15 3 16 27 34 0 5 1 1 8 2 17 22 20 0 4 4 0 6 2 18 24 24 0 2 9 2 4 2 19 28 33 0 6 18 3 5 4 20 25 24 0 3 7 1 5 1 21 14 23 0 4 4 2 6 3 22 25 23 0 2 8 3 5 3 23 46 38 0 1 9 6 17 4 24 10 0 0 0 1 0 0 0 -
[1] Ager D V. The epifauna of a Devonian spiriferid[J]. Quarterly Journal of the Geological Society, 1961, 117(1/2/3/4): 1-10. [2] Richards R P. Autecology of Richmondian brachiopods (Late Ordovician of Indiana and Ohio)[J]. Journal of Paleontology, 1972, 46(3): 386-405. [3] Kesling R V, Hoare R D, Sparks D K. Epizoans of the Middle Devonian brachiopod Paraspirifer bownockeri: Their relationships to one another and to their host[J]. Journal of Paleontology, 1980, 54(6): 1141-1154. [4] Gibson M A. Some epibiont-host and epibiont-epibiont relationships from the birdsong shale member of the Lower Devonian Ross Formation (west-central Tennessee, U.S.A.)[J]. Historical Biology, 1992, 6(2): 113-132. [5] Taylor P D, Wilson M A. A new terminology for marine organisms inhabiting hard substrates[J]. Palaios, 2002, 17(5): 522-525. [6] Lescinsky H L, Edinger E, Risk E. Mollusc shell encrustation and bioerosion rates in a modern epeiric sea: Taphonomy experiments in the Java Sea, Indonesia[J]. Palaios, 2002, 17(2): 171-191. [7] Rodland D L, Kowalewski M, Carroll M, et al. Colonization of a ‘Lost World’: Encrustation patterns in modern subtropical brachiopod assemblages[J]. Palaios, 2004, 19(4): 381-395. [8] Brett C E, Smrecak T, Parsons Hubbard K, et al. Marine sclerobiofacies: Encrusting and endolithic communities on shells through time and space[M]//Talent J A. Earth and life: Global biodiversity, extinction intervals and biogeographic perturbations through time. Dordrecht: Springer, 2012: 129-157. [9] Taylor P D, Wilson M A. Palaeoecology and evolution of marine hard substrate communities[J]. Earth-Science Reviews, 2003, 62(1/2): 1-103. [10] Zhan R B, Vinn O. Cornulitid epibionts on brachiopod shells from the Late Ordovician (Middle Ashgill) of East China[J]. Estonian Journal of Earth Sciences, 2007, 56(2): 101-108. [11] Spjeldnaes N. Epifauna as a tool in autecological analysis of Silurian brachiopods[J]. Special Papers in Palaeontology, 1984, 32: 225-235. [12] Alvarez F, Taylor P D. Epizoan ecology and interactions in the Devonian of Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1987, 61: 17-31. [13] Bordeaux Y L, Brett C E. Substrate specific associations of epebionts on Middle Devonian brachiopods: Implications for paleoecology[J]. Historical Biology, 1990, 4(3/4): 203-220. [14] Bose R, Schneider C L, Leighton L R, et al. Influence of atrypid morphological shape on Devonian episkeletobiont assemblages from the Lower Genshaw Formation of the Traverse Group of Michigan: A geometric morphometric approach[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 310(3/4): 427-441. [15] Zatoń M, Borszcz T. Encrustation patterns on post-extinction early Famennian (Late Devonian) brachiopods from Russia[J]. Historical Biology, 2013, 25(1): 1-12. [16] Fraiser M L. Paleoecology of secondary tierers from western Pangean tropical marine environments during the aftermath of the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology Palaeoecology, 2011, 308(1/2): 181-189. [17] Jackson J B C. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies[J]. The American Naturalist, 1977, 111(980): 743-767. [18] Jackson J B C. Biological determinants of present and past sessile animal distributions[M]//Tevesz M J S, McCall P L. Biotic interactions in recent and fossil benthic communities. New York: Springer, 1983: 39-120. [19] Kay A M, Keough M J. Occupation of patches in the epifaunal communities on pier pilings and the bivalve Pinna bicolor at Edithburgh, South Australia[J]. Oecologia, 1981, 48(1): 123-130. [20] Rasmussen K A, Brett C E. Taphonomy of Holocene cryptic biotas from St. Croix, Virgin Islands: Information loss and preservational biases[J]. Geology, 1985, 13(8): 551-553. [21] Martindale W. Calcified epibionts as palaeoecological tools: Examples from the Recent and Pleistocene reefs of Barbados[J]. Coral Reefs, 1992, 11(3): 167-177. [22] McKinney F. Taphonomic effects and preserved overgrowth relationships among encrusting marine organisms[J]. Palaios, 1995, 10(3): 279-282. [23] McKinney F. One hundred million years of competitive interactions between bryozoan clades: Asymmetrical but not escalating[J]. Biological Journal of the Linnean Society, 1995, 56(3): 465-481. [24] Hoare R D, Steller D L. Inarticulate brachiopods of the Silica Formation (Devonian), Ohio and Michigan[J]. Museum of Paleontology, the University of Michigan, 1969, 22(20): 263-272. [25] Chang X L, Hou M C, Shi H, et al. Encrustation patterns on brachiopods from the Middle-Upper Devonian and their paleo-environmental implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584: 110703. [26] Raup D M, Sepkoski J J, Jr. Mass extinctions in the marine fossil record[J]. Science, 1982, 215(4539): 1501-1503. [27] Crowley T J, North G R. Abrupt climate change and extinction events in earth history[J]. Science, 1988, 240(4855): 996-1002. [28] 沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135. Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135. [29] Babin C. The Late Devonian mass extinction. The Frasnian/Famennian crisis. 303 pp. George R. McGhee Jr., Prix: Broché: $ 20.00, Columbia University Press, New York (1996), ISBN: 0-231-07504-9[J]. Geobios, 1996, 29(2): 234. [30] Alroy J, Aberhan M, Bottjer D J, et al. Phanerozoic trends in the global diversity of marine invertebrates[J]. Science, 2008, 321(5885): 97-100. [31] Fan J X, Shen S Z, Erwin D H, et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity[J]. Science, 2020, 367(6475): 272-277. [32] Racki G, Wignall P B. Devonian global changes-recent advances and challenges in different domains[J]. Global and Planetary Change, 2020, 191: 103200. [33] Song H J, Kemp D B, Tian L, et al. Thresholds of temperature change for mass extinctions[J]. Nature Communications, 2021, 12(1): 4694. [34] Huang C, Joachimski M M, Gong Y M. Did climate changes trigger the Late Devonian Kellwasser crisis? Evidence from a high-resolution conodont δ 18OPO4 record from South China[J]. Earth and Planetary Science Letters, 2018, 495: 174-184. [35] McGhee G R, Jr. The Late Devonian Mass Extinction: The Frasnian/Famennian crisis[M]. New York: Columbia University Press, 1996: 303. [36] 中国地质科学院成都地质矿产研究所,中国地质科学院地质研究所. 四川龙门山地区泥盆纪地层古生物及沉积相[M]. 北京:地质出版社,1988:1-348. Chengdu Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, The Institute of Geology, Chinese Academy of Geological Sciences. Paleontology and sedimentary facies of Devonian strata in Longmenshan area, Sichuan[M]. Beijing: Geological Publishing House, 1988: 1-348. [37] Li F J, Qu X L, Du L C, et al. Genetic processes and environmental significance of Lower Devonian brachiopod shell concentrations in Longmenshan area, Sichuan, China[J]. Journal of Asian Earth Sciences, 2016, 115: 393-403. [38] 陈源仁. 四川龙门山区盆系(I)下泥盆统的动态地层学和生态地层学[M]. 成都:成都科技大学出版社,1994:1-169. Chen Yuanren. Dynamic stratigraphy and ecological stratigraphy of the Lower Devonian[M]. Chengdu: Chengdu University of Science and Technology Press, 1994: 1-169. [39] Zhang L J, Knaust D, Zhao Z. Palaeoenvironmental and ecological interpretation of the trace fossil Rhizocorallium based on contained iron framoboids (Upper Devonian, South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 446: 144-151. [40] 石和. 观雾山组腕足动物Independatrypa lemma Chen上的附生动物及沉积环境分析[M]//陈源仁. 四川龙门山区盆系(I)下泥盆统的动态地层学和生态地层学. 成都:成都科技大学出版社,1994:162-169. Shi He. Epiboints on Independatrypa lemma Chen of Guanwushan Formation and the sedimentary environment[M]//Chen Yuanren. One of a series works for the Devonian of Longmenshan area, Sichuan, China. Dynamic stratigraphy and ecostratigraphy. Chengdu: Chengdu University of Science and Technology Press, 1994: 162-169. [41] Ager D V. Principles of paleoecology[M]. New York: McGraw-Hill, 1963: 371. [42] Taylor P D, Vinn O. Convergent morphology in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications[J]. Journal of the Geological Society, 2006, 163(2): 225-228. [43] Vinn O. Adaptive strategies in the evolution of encrusting tentaculitoid tubeworms[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1/2): 211-221. [44] Vinn O. Tentaculitoid tubeworms as endobiotic symbionts of Paleozoic corals and sponges[J]. Palaios, 2016, 31(9): 440-446. [45] Morris R W, Rollins H B. The distribution and paleoecological interpretation of Cornulites in the Waynesville Formation (Upper Ordovician) of southwestern Ohio[J]. The Ohio Journal of Science, 1971, 71(3): 159-170. [46] Vinn O, Mutvei H. Observations on the morphology and affinities of cornulitids from the Ordovician of Anticosti Island and the Silurian of Gotland[J]. Journal of Paleontology, 2005, 79(4): 726-737. [47] Wilson M A, Taylor P D. “Pseudobryozoans” and the problem of encruster diversity in the Paleozoic[J]. PaleoBios, 2001, 21(Suppl.2): 134-135. [48] Wilson M A, Taylor P D. The morphology and affinities of Allonema and Ascodictyon, two abundant Palaeozoic encrusters commonly misattributed to the ctenostome bryozoans[M]//Rosso A, Wyse Jackson P N, Porter J. Bryozoan studies 2013. Studi Trentini di scienze naturali 94. 2014: 259-266. [49] Olempska E, Rakowicz Ł. Affinities of Palaeozoic encrusting ascodictyid ‘pseudobryozoans’[J]. Journal of Systematic Palaeontology, 2014, 12(8): 983-999. [50] Kiepura M. Devonian bryozoans of the Holy Cross Mountains, Poland, part 1. Ctenostomata[J]. Acta Palaeontologica Polonica, 1965, 10(1): 11-48. [51] Jarochowska E, Munnecke A. The Paleozoic problematica Wetheredella and Allonema are two aspects of the same organism[J]. Facies, 2014, 60(2): 651-662. [52] Richards R P. Ecology of the Cornulitidae[J]. Journal of Paleontology, 1974, 48(3): 514-523. [53] Kesling R V, Chilman R B. Strata and megafossils of the Middle Devonian Silica Formation[M]. Ann Arbor: The University of Michigan, 1975: 1-408. [54] Morris R W, Felton S H. Symbiotic association of crinoids, platyceratid gastropods, and Cornulites in the Upper Ordovician (Cincinnatian) of the Cincinnati, Ohio region[J]. Palaios, 1993, 8(5): 465-476. [55] Musabelliu S, Zatoń M. Patterns of cornulitid encrustation on the Late Devonian brachiopod shells from Russia[J]. Proceedings of the Geologists' Association, 2018, 129(2): 227-234. [56] Vinn O, Mutvei H. Calcareous tubeworms of the Phanerozoic[J]. Estonian Journal of Earth Sciences, 2009, 58(4): 286-296. [57] Vinn O, Musabelliu S, Zatoń M. Cornulitids from the Upper Devonian of the central Devonian field, Russia[J]. GFF, 2019, 141(1): 68-76.