-
本次所采集的样品均来自西藏昌都盆地古近系贡觉组,采样地点分别在昌都的贡觉、江达、油扎村等地区,从这些剖面上选取具有代表性的新鲜的砂岩样品12件(图2),岩性主要为粉砂质泥岩、粉砂岩、泥灰岩。室内处理,将野外采集的砂岩块状样品,敲成碎块,然后放入玛瑙钵内研磨至200目,将准备好的干净样品打开,装入样品50 g,贴好标签,密封完整后,送至核工业北京地质研究院分析测试中心进行测试。主量元素,通过X射线荧光光谱法(XRF)测定,其步骤为:将200目样品在105 ℃烘箱中烘干12 h,通过1 000 ℃马弗炉中灼烧计算烧失量;然后在铂金坩埚放置助熔剂,样品及氧化剂,在1 150 ℃熔样炉中熔融14 min,冷却后进入ZSX Primus Ⅱ型全自动X射线荧光光谱仪(XRF)(Rigaku,Japan)测试,其相当偏差值小于10 %(表1)。微量元素在北京核工业测试分析中心采用ICP-MS进行分析,精度优于5%(表2,3),步骤为:1)将200目样品置于105 ℃烘箱中烘干12 h;2)准确称取粉末样品50 mg置于Teflon溶样弹中;3)先后依次缓慢加入1 mL高纯HNO3和1 mL高纯HF;4)将Teflon溶样弹放入钢套,拧紧后置于190 ℃烘箱中加热24 h以上;5)待溶样弹冷却,开盖后置于140 ℃电热板上蒸干,然后加入1 mL HNO3并再次蒸干;6)加入1 mL高纯HNO3、1 mL MQ水和1 mL内标In(浓度为1×10-6),再次将Teflon溶样弹放入钢套,拧紧后置于190 ℃烘箱中加热12 h以上;7)将溶液转入聚乙烯料瓶中,并用2% HNO3稀释至100 g以备ICP-MS测试。
表 1 昌都盆地古近系贡觉组细碎屑岩常量元素测试分析结果(%)
样品编号 岩性 采样位置(层段) SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 烧失量 FeO CIAcorr CIA CIW ICV L-18-2 粉砂质泥岩 贡觉—油扎村(Eg3) 52.26 15.94 6.9 3.55 6.21 0.68 3.65 0.1 0.72 0.12 9.46 1.75 79.44 76.09 92.14 1.37 L-19-1 泥灰岩 贡觉—油扎村(Eg3) 22.1 4.57 1.74 2.51 19.76 0.62 0.7 0.19 0.18 0.06 19.16 0.7 76.51 70.2 78.66 5.62 L-20-1 泥灰岩 贡觉—油扎村(Eg3) 54.92 10.06 3.18 2.41 12.87 1.33 1.74 0.13 0.58 0.11 11.63 1.75 73.8 69.57 79.09 2.21 L-22-2 泥质粉砂岩 贡觉—油扎村(Eg3) 60.79 10.29 3.35 1.66 9.92 1.91 1.65 0.18 0.57 0.11 8.55 0.35 67.86 65.29 72.93 1.87 L-76-3 粉砂岩 江达—雪集拉山(Eg3) 54.42 11.69 4.69 2.33 11.06 0.88 2.27 0.1 0.64 0.11 11.12 1.25 79.3 74.36 86.91 1.88 L-79-2 泥质粉砂岩 江达—雪集拉山(Eg3) 56.23 12.8 4.43 2.17 9.76 0.82 2.53 0.08 0.65 0.12 9.87 1.25 79.99 75.43 88.64 1.6 平均值 51.99 11.93 4.05 2.44 11.6 1.04 2.09 0.13 0.56 0.1 11.63 1.18 78.48 74.1 85.15 1.84 L-07-2 粉砂质泥岩 贡觉—油扎—阿中(Eg2) 55.76 13.04 4.38 0.61 11.62 0.28 2.27 0.05 0.71 0.08 10.65 0.2 87.88 82.17 95.88 1.53 L-12-4 泥灰岩 贡觉—油扎—阿中(Eg2) 52.98 18.92 5.32 3.39 4.44 0.47 4.72 0.05 0.74 0.12 8.84 3.75 79.52 76.97 95.27 1.01 L-64-3 粉砂质泥岩 江达—昌都(Eg2) 55.52 12.95 4.96 1.85 10.1 0.71 2.56 0.07 0.67 0.11 9.88 0.85 81.35 76.49 90.12 1.62 L-09-1 粉砂岩 贡觉—油扎—阿中(Eg2) 53.03 9.93 4.23 1.69 14.4 0.9 1.65 0.13 0.8 0.12 12.11 0.95 79.46 74.22 84.65 2.4 平均值 54.32 13.71 4.72 1.89 10.14 0.59 2.8 0.07 0.73 0.11 10.37 1.44 82.61 77.5 92.08 1.53 L-33-2 粉砂岩 江达—昌都(Eg1) 55.22 10.07 3.35 1.48 14.24 1.45 1.8 0.13 0.56 0.12 10.43 0.7 72.57 68.18 77.64 2.29 L-46-1 泥质粉砂岩 江达—昌都(Eg1) 50.61 12.91 5.76 2.52 11.29 1.01 2.59 0.11 0.71 0.15 11.79 0.95 78.41 73.69 86.47 1.86 平均值 52.92 11.49 4.56 2 12.77 1.23 2.2 0.12 0.64 0.14 11.11 0.83 75.82 71.15 82.37 2.05 注: ICV计算公式为:ICV=(Fe2O3+K2O+Na2O+CaO+MgO+MnO+TiO2)/Al2O3;CIA计算公式为:CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100%; CIW计算公式为:CIW=[Al2O3/(Al2O3+CaO*+Na2O)]×100%若n(CaO)<n(Na2O),n(CaO)=n(CaO*),若n(CaO)>n(Na2O),则n(CaO*)=n(Na2O)[32⁃34]。表 2 昌都盆地古近系贡觉组细碎屑岩微量元素测试分析结果(×10-6)
样品编号 B Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Mo Cd In Sb Cs Ba W Pb Th U Zr Hf L-18-2 127 17 122 81.3 16.1 41.9 46.5 90.4 21.4 159 737 24.5 1.13 0.2 0.08 1.32 13.1 644 1.94 29.7 14 4.09 171 4.86 L-19-1 36.9 4.01 27.9 19.7 4.61 12.9 22.1 100 4.73 30.5 686 8.88 4.27 2.69 0.03 0.57 2.31 100 0.553 16.9 3.59 1.47 53.8 1.5 L-20-1 119 9.3 71.8 51.5 8.93 23.2 42.2 45.6 12.1 72.6 533 24.5 0.4 0.1 0.05 0.63 5.62 400 1.44 19.7 9.47 2.41 152 4.1 L-22-2 62.5 9.51 69.4 47.7 9.08 23.3 29.9 51.3 11.9 71.9 157 25.1 7 0.2 0.05 0.77 5.72 1073 1.58 17.7 10.8 2.71 145 4.17 L-76-3 85.4 11.7 88.1 61.3 13.6 31 19.9 69.6 14.8 106 148 24.5 0.42 0.19 0.05 0.98 8.73 331 1.76 24.7 10.7 2.76 166 4.8 L-79-2 141 11 83.3 58.5 13.2 29.6 31.2 73.8 15.5 107 131 25.1 0.5 0.2 0.06 0.77 9.55 486 1.68 23.3 11.7 2.78 187 5.3 平均值(Eg3) 95.3 10.42 77.08 53.33 10.92 26.98 31.97 71.78 13.41 91.17 398.67 22.1 2.29 0.6 0.05 0.84 7.51 505.67 1.49 22 10.04 2.7 145.8 4.12 L-07-2 103 11.2 80.6 54.5 4.42 19 18 52 12.8 86.6 106 23.9 0.31 0.13 0.05 1.39 8.96 188 1.61 20.8 10.3 2.39 220 6.16 L-09-1 88.8 9.53 69.9 58.6 10.2 25.4 20.5 52.9 10.5 66 163 27.3 0.28 0.28 0.05 1.37 6.09 264 1.53 16.8 10.2 2.88 248 6.87 L-12-4 154 22.2 147 104 17.6 48.7 26.2 78.2 27.2 214 122 28.8 0.72 0.14 0.01 1.61 19.6 499 2.25 17.3 16.8 4 201 5.58 L-64-3 71.4 12.5 88.3 69.1 12.2 30.9 23.9 75.9 15.5 113 142 26.8 0.37 0.16 0.06 1.08 8.1 279 1.79 25.5 12 3.16 223 6.26 平均值(Eg2) 104.3 13.86 96.45 71.55 11.11 31 22.15 64.75 16.5 119.9 133.25 26.7 0.42 0.18 0.06 1.36 10.69 307.51 1.8 20.1 12.33 3.11 223 6.23 L-33-2 89.4 7.75 69.5 44.1 8.99 22.4 25.6 48 10.5 71 139 20.8 0.34 0.13 0.03 0.63 4.78 285 1.3 16.8 8.23 2.32 173 4.69 L-46-1 176 14.3 97.4 69.1 14.2 35 34.4 86.9 16.6 107 132 25.5 0.8 0.19 0.06 1.45 8.44 355 1.78 25.1 11.4 2.43 176 4.98 平均值(Eg1) 132.7 11 83.5 56.6 11.6 28.7 30 67.5 13.6 89 135.5 23.2 0.6 0.2 0.01 1 6.6 320 1.5 21 9.8 2.4 174.5 4.8 地壳值 7.6 18 140 110 25 89 63 94 18 78 480 24 1.3 0.2 0.1 0.6 1.4 390 1.1 0.01 5.8 1.7 130 1.5 注: 样品由核工业北京测试分析中心完成,地壳值自文献[35]。表 3 昌都盆地古近系贡觉组细碎屑岩稀土元素测试分析结果(×10-6)
编号(时代) 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LREE/HREE LaN/YbN δEu δCe La/Yb L-18-2(Eg3) 粉砂质泥岩 35.4 67.5 7.84 29.8 5.65 1.23 4.77 0.83 4.58 0.87 2.66 0.44 2.87 0.42 24.5 206.36 147.42 58.94 2.5 8.32 0.71 0.94 67.5 L-19-1(Eg3) 泥灰岩 11.1 22 2.43 9.31 1.98 0.36 1.84 0.32 1.7 0.31 0.836 0.16 0.817 0.13 8.88 66.18 47.18 19 2.48 9.16 0.57 0.98 22 L-20-1(Eg3) 泥灰岩 27.4 52.8 6.39 25.2 5.26 1.23 4.65 0.86 4.61 0.84 2.52 0.4 2.4 0.38 24.5 168.75 118.28 50.47 2.34 7.7 0.74 0.93 52.8 L-22-2(Eg3) 泥质粉砂岩 29.6 57.3 6.96 27 5.32 1.19 4.67 0.86 4.58 0.89 2.48 0.42 2.55 0.4 25.1 178.83 127.37 51.46 2.48 7.83 0.71 0.93 57.3 L-76-3(Eg3) 粉砂岩 31.2 59.6 7.21 27.8 5.56 1.2 4.93 0.86 4.56 0.87 2.68 0.42 2.74 0.42 24.5 186.25 132.57 53.68 2.47 7.68 0.69 0.92 59.6 L-79-2(Eg3) 泥质粉砂岩 31.3 61.2 7.27 28.3 5.75 1.18 4.91 0.86 4.72 0.85 2.63 0.42 2.62 0.41 25.1 188.52 135 53.52 2.52 8.05 0.66 0.94 61.2 平均值(Eg3) 27.67 53.4 6.35 24.57 4.92 1.07 4.3 0.76 4.13 0.77 2.3 0.38 2.33 0.36 22.1 165.81 117.97 47.84 2.47 8.12 0.68 0.94 12.05 L-07-2(Eg2) 粉砂质泥岩 27.7 52.3 6.36 24 4.53 1.02 4.17 0.81 4.44 0.89 2.57 0.39 2.48 0.41 23.9 167.17 115.91 51.26 2.26 7.53 0.71 0.91 52.3 L-12-4(Eg2) 泥灰岩 43.4 79.5 9.17 33.5 5.39 1.13 4.86 0.89 5.13 1.05 3.1 0.51 3.35 0.52 28.8 242.5 172.09 70.41 2.44 8.73 0.66 0.91 79.5 L-64-3(Eg2) 粉砂质泥岩 34.2 63.5 7.64 28.8 5.51 1.21 5.03 0.89 5.05 0.94 2.85 0.47 3 0.46 26.8 198.85 140.86 57.99 2.43 7.69 0.69 0.91 63.5 L-09-1(Eg2) 粉砂岩 31 59.5 7.22 29.1 5.65 1.3 5.08 0.95 4.77 0.95 2.75 0.43 2.63 0.46 27.3 188.61 133.77 54.84 2.44 7.95 0.73 0.93 59.5 平均值(Eg2) 34.08 63.7 7.6 28.85 5.27 1.17 4.79 0.89 4.85 0.96 2.82 0.45 2.87 0.46 26.7 199.28 140.66 58.63 2.39 7.97 0.7 0.92 11.83 L-33-2(Eg1) 粉砂岩 24.4 48.4 5.9 22.9 4.36 0.99 4.05 0.7 3.94 0.71 2.19 0.33 2.03 0.34 20.8 149.78 106.95 42.84 2.5 8.1 0.71 0.94 48.4 L-46-1(Eg1) 泥质粉砂岩 30.6 58.4 7.06 26.4 5.36 1.13 4.61 0.82 4.61 0.88 2.66 0.4 2.62 0.41 25.5 185.76 128.95 56.81 2.27 7.87 0.68 0.92 58.4 平均值(Eg1) 27.5 53.4 6.48 24.65 4.86 1.06 4.33 0.76 4.28 0.79 2.43 0.37 2.33 0.37 23.15 167.7 117.95 49.82 2.38 7.993 0.69 0.93 11.85 CL-1(P3) 英云闪长岩 15.8 29.02 3.86 13.4 3.02 0.77 2.6 0.43 2.38 0.49 1.38 0.21 1.35 0.19 12.86 87.76 65.1 21.89 2.97 7.89 0.82 0.87 11.7 CL-2(P3) 英云闪长岩 15 29.88 3.95 14.45 3.03 0.75 2.7 0.44 3 0.58 1.77 0.26 1.86 0.28 15.12 93.07 66.31 26.01 2.5 5.44 0.79 0.92 8.06 CL-3(P3) 英云闪长岩 8.65 20.28 2.9 11.84 3.22 0.98 3.45 0.59 3.63 0.8 2.36 0.36 2.27 0.32 20.74 82.39 46.89 34.52 1.92 2.57 0.89 0.97 3.81 CL-4(P3) 英云闪长岩 15.8 29.02 3.86 14.3 3.02 0.77 2.6 0.43 2.38 0.49 1.38 0.21 1.35 0.19 12.86 88.66 66 21.89 2.14 7.89 0.82 0.87 11.7 CL-5(P3) 英云闪长岩 23.98 46.48 5.7 19.51 3.84 0.82 3 0.45 2.41 0.49 1.38 0.2 1.33 0.19 12.72 122.5 99.51 22.17 2.98 12.16 0.71 0.93 18.03 CL-6(P3) 二长花岗岩 14.05 28.72 3.88 13.68 4.06 0.53 4.32 0.89 5.3 1.01 2.85 0.43 2.8 0.41 30.19 113.12 64.39 48.2 2.06 3.38 0.38 0.92 5.02 CL-7(P3) 黑云母花岗岩 18.21 38.66 5.04 17.99 4.54 0.45 4.35 0.72 4.56 0.91 2.63 0.4 2.48 0.33 24.07 125.34 84.44 40.45 1.59 4.95 0.31 0.96 7.34 CL-8(P3) 黑云母花岗岩 18.21 38.66 5.04 17.99 4.54 0.45 4.35 0.72 4.56 0.91 2.63 0.4 2.48 0.33 24.07 125.34 84.44 40.45 2.09 4.95 0.31 0.96 7.34 CL-9(P3) 石英闪长岩 16.14 31.93 4.15 14.88 3.36 0.86 3.02 0.49 2.81 0.59 1.71 0.26 1.65 0.23 14.6 96.68 70.46 25.36 3.33 6.59 0.81 0.92 9.78 CL-10(P3) 黑云母花岗 16.13 33.66 4.46 15.84 4.3 0.49 4.34 0.81 4.93 0.96 2.74 0.42 2.64 0.37 27.13 119.22 74.39 44.34 1.59 4.12 0.34 0.94 6.11 上地壳 30 64 7.1 26 4.5.00 0.8 3.8 0.64 3.5 0.8 2.3 0.33 2.2 0.3 22 中地壳 17 15 5.8 24 4.4.00 1.5 4 0.58 3.8 0.8 2.3 0 2.3 0.4 22 下地壳 8 20 2.6 11 2.8.00 1.1 3.1 0.48 3.1 0.7 1.9 0.32 1.5 0.3 16 注: 样品CL⁃1~CL⁃10数据来自文献[28];上中下地壳来自文献[36⁃37]。 -
晚中生代以来,我国大部分地区以发育陆相沉积为特色,陆相地层与大气直接接触,细碎屑岩敏感地记录沉积时期的古环境和古气候特点及变化[47⁃48],而沉积岩的微量元素B、Sr、Ba、Cu、V、Cr、U、Th、Zn等具有可变价态,易受环境变化影响,在沉积物中的富集程度受环境的氧化还原条件控制。因此,这些氧化还原敏感元素能够指示沉积岩的形成环境,它们的质量分数及元素比值可以作为判断沉积环境的重要指标[49⁃50]。此次通过对昌都盆地古近系贡觉组碎屑岩样品的微量元素特征比值进行分析(表4),采用沉积岩微量元素的Sr/Ba、Sr/Cu、V/Cr、U/Th、Cu/Zn元素比值,以及CIA、ICV、CIW、CIWcorr、Sr和B元素质量等指标,揭示昌都盆地贡觉组的沉积环境演化规律。
表 4 昌都盆地古近系贡觉组细碎屑岩微量元素沉积环境特征参数
样品编号 B/×10-6 Sr/Ba Sr/Cu V/Cr V/(V+Cr) Ni/Co U/Th Cu/Zn L-18-2 127.00 1.14 15.85 1.50 0.60 2.60 0.29 0.51 L-19-1 36.90 6.86 31.04 1.42 0.59 2.80 0.41 0.22 L-20-1 119.00 1.33 12.63 1.39 0.58 2.60 0.25 0.93 L-22-2 62.50 0.15 5.25 1.45 0.59 2.57 0.25 0.58 L-76-3 85.40 0.45 7.44 1.44 0.59 2.28 0.26 0.29 L-79-2 141.00 0.27 4.20 1.42 0.59 2.24 0.24 0.42 平均值 95.30 1.70 12.73 1.44 0.59 2.51 0.28 0.49 L-07-2 103.00 0.56 5.89 1.48 0.60 4.30 0.23 0.35 L-09-1 88.80 0.62 7.95 1.19 0.54 2.49 0.28 0.39 L-12-4 154.00 0.24 4.66 1.41 0.59 2.77 0.24 0.34 L-64-3 71.40 0.51 5.94 1.28 0.56 2.53 0.26 0.31 平均值 104.30 0.48 6.11 1.34 0.57 3.02 0.25 0.35 L-33-2 89.40 0.49 5.43 1.58 0.61 2.49 0.28 0.53 L-46-1 176.00 0.37 3.84 1.41 0.58 2.46 0.21 0.40 平均值 132.70 0.43 4.63 1.49 0.60 2.48 0.25 0.46
Provenance and Sedimentary Environment of Paleogene Gongjue Formation in Qamdo Basin
-
摘要: 为了研究昌都盆地古近系构造背景和沉积环境演化规律及其资源响应,采集12件昌都盆地贡觉组细碎屑岩样品,通过电子显微镜、XRF和等离子质谱分析(ICP-MS)以及野外沉积特征观察等方法进行系统研究。研究结果显示:盆地贡觉组以红色泥岩和砂岩为主,含纤维状石膏,发育交错层理,可见波痕构造和球状风化,揭示其气候以干旱氧化环境为主;镜下观察石英颗粒磨圆和分选性差,说明以近源沉积为主;主微量元素的岩性和构造图解显示样品主要落入长石砂岩和石英质砂屑砂岩区域以及岛弧环境;微量元素特征指示贡觉组一段和二段以半咸水—咸水的氧化环境为主,气候湿润,而第三段以咸水的强氧化环境为主,气候干热。上述特征表明贡觉组细碎屑岩主要是江达—阿中岛弧花岗岩体风化的产物,其环境演化可划分为两个阶段,第一阶段以贡觉组一段和二段的沉积环境变化为主,第二阶段以贡觉组第三段的沉积环境变化为主;进一步表明新特提斯闭合后,印度板块向欧亚板块俯冲,导致江达—阿中地区变形隆升更为强烈,类乌齐地区变形隆升相对弱,对油气资源的保存起着破坏作用。Abstract: To reveal the Paleogene tectonic setting, sedimentary environment evolution, and resource response of Qamdo Basin. twelve grain-fine clastic rock samples of the Gongjue Formation in the Qamdo Basin were collected and systematically studied by means of electron microscopy, XRF, plasma mass spectrometry (ICP-MS) and field observation of sedimentary characteristics. The research results show that Gongjue Formation in the basin is mainly composed of red mudstone and sandstone, containing fibrous gypsum, developing cross bedding, visible ripple structure and spherical weathering, which reveals that its climate is mainly arid and oxidative environment; Microscopic observation shows that the quartz grains are poorly rounded and sorted, indicating that the near source deposits are dominant; The lithological and structural diagrams of major and trace elements show that the samples mainly fall into feldspathic sandstone and quartzolithic sandstone areas and island arc environments; The trace element characteristics indicate that the first and second members of the Gongjue Formation are dominated by the oxidation environment of brackish water - saline water, with a humid climate, while the third member is dominated by the strong oxidation environment of saline water, with a hot and dry climate. The above characteristics indicate that the fine clastic rocks of the Gongjue Formation are mainly the products of weathering of the Jiangda Azhong island arc granite body. The environmental evolution can be divided into two environmental evolution model stages. The first stage is dominated by the changes in the sedimentary environment of the first and second members of the Gongjue Formation, and the second stage is dominated by the changes in the sedimentary environment of the third member of the Gongjue Formation; It further shows that after the closure of the New Tethys, the Indian plate subducted to the Eurasian plate, resulting in more intense deformation and uplift in the Jiangda Azhong region, and relatively weak deformation and uplift in the Leiwuqi region, which played a destructive role in the preservation of oil and gas resources.
-
Key words:
- Qamdo Basin /
- Gongjue Formation /
- tectonic setting /
- provenance analysis /
- sedimentary environment
-
表 1 昌都盆地古近系贡觉组细碎屑岩常量元素测试分析结果(%)
样品编号 岩性 采样位置(层段) SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 烧失量 FeO CIAcorr CIA CIW ICV L-18-2 粉砂质泥岩 贡觉—油扎村(Eg3) 52.26 15.94 6.9 3.55 6.21 0.68 3.65 0.1 0.72 0.12 9.46 1.75 79.44 76.09 92.14 1.37 L-19-1 泥灰岩 贡觉—油扎村(Eg3) 22.1 4.57 1.74 2.51 19.76 0.62 0.7 0.19 0.18 0.06 19.16 0.7 76.51 70.2 78.66 5.62 L-20-1 泥灰岩 贡觉—油扎村(Eg3) 54.92 10.06 3.18 2.41 12.87 1.33 1.74 0.13 0.58 0.11 11.63 1.75 73.8 69.57 79.09 2.21 L-22-2 泥质粉砂岩 贡觉—油扎村(Eg3) 60.79 10.29 3.35 1.66 9.92 1.91 1.65 0.18 0.57 0.11 8.55 0.35 67.86 65.29 72.93 1.87 L-76-3 粉砂岩 江达—雪集拉山(Eg3) 54.42 11.69 4.69 2.33 11.06 0.88 2.27 0.1 0.64 0.11 11.12 1.25 79.3 74.36 86.91 1.88 L-79-2 泥质粉砂岩 江达—雪集拉山(Eg3) 56.23 12.8 4.43 2.17 9.76 0.82 2.53 0.08 0.65 0.12 9.87 1.25 79.99 75.43 88.64 1.6 平均值 51.99 11.93 4.05 2.44 11.6 1.04 2.09 0.13 0.56 0.1 11.63 1.18 78.48 74.1 85.15 1.84 L-07-2 粉砂质泥岩 贡觉—油扎—阿中(Eg2) 55.76 13.04 4.38 0.61 11.62 0.28 2.27 0.05 0.71 0.08 10.65 0.2 87.88 82.17 95.88 1.53 L-12-4 泥灰岩 贡觉—油扎—阿中(Eg2) 52.98 18.92 5.32 3.39 4.44 0.47 4.72 0.05 0.74 0.12 8.84 3.75 79.52 76.97 95.27 1.01 L-64-3 粉砂质泥岩 江达—昌都(Eg2) 55.52 12.95 4.96 1.85 10.1 0.71 2.56 0.07 0.67 0.11 9.88 0.85 81.35 76.49 90.12 1.62 L-09-1 粉砂岩 贡觉—油扎—阿中(Eg2) 53.03 9.93 4.23 1.69 14.4 0.9 1.65 0.13 0.8 0.12 12.11 0.95 79.46 74.22 84.65 2.4 平均值 54.32 13.71 4.72 1.89 10.14 0.59 2.8 0.07 0.73 0.11 10.37 1.44 82.61 77.5 92.08 1.53 L-33-2 粉砂岩 江达—昌都(Eg1) 55.22 10.07 3.35 1.48 14.24 1.45 1.8 0.13 0.56 0.12 10.43 0.7 72.57 68.18 77.64 2.29 L-46-1 泥质粉砂岩 江达—昌都(Eg1) 50.61 12.91 5.76 2.52 11.29 1.01 2.59 0.11 0.71 0.15 11.79 0.95 78.41 73.69 86.47 1.86 平均值 52.92 11.49 4.56 2 12.77 1.23 2.2 0.12 0.64 0.14 11.11 0.83 75.82 71.15 82.37 2.05 注: ICV计算公式为:ICV=(Fe2O3+K2O+Na2O+CaO+MgO+MnO+TiO2)/Al2O3;CIA计算公式为:CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100%; CIW计算公式为:CIW=[Al2O3/(Al2O3+CaO*+Na2O)]×100%若n(CaO)<n(Na2O),n(CaO)=n(CaO*),若n(CaO)>n(Na2O),则n(CaO*)=n(Na2O)[32⁃34]。表 2 昌都盆地古近系贡觉组细碎屑岩微量元素测试分析结果(×10-6)
样品编号 B Sc V Cr Co Ni Cu Zn Ga Rb Sr Y Mo Cd In Sb Cs Ba W Pb Th U Zr Hf L-18-2 127 17 122 81.3 16.1 41.9 46.5 90.4 21.4 159 737 24.5 1.13 0.2 0.08 1.32 13.1 644 1.94 29.7 14 4.09 171 4.86 L-19-1 36.9 4.01 27.9 19.7 4.61 12.9 22.1 100 4.73 30.5 686 8.88 4.27 2.69 0.03 0.57 2.31 100 0.553 16.9 3.59 1.47 53.8 1.5 L-20-1 119 9.3 71.8 51.5 8.93 23.2 42.2 45.6 12.1 72.6 533 24.5 0.4 0.1 0.05 0.63 5.62 400 1.44 19.7 9.47 2.41 152 4.1 L-22-2 62.5 9.51 69.4 47.7 9.08 23.3 29.9 51.3 11.9 71.9 157 25.1 7 0.2 0.05 0.77 5.72 1073 1.58 17.7 10.8 2.71 145 4.17 L-76-3 85.4 11.7 88.1 61.3 13.6 31 19.9 69.6 14.8 106 148 24.5 0.42 0.19 0.05 0.98 8.73 331 1.76 24.7 10.7 2.76 166 4.8 L-79-2 141 11 83.3 58.5 13.2 29.6 31.2 73.8 15.5 107 131 25.1 0.5 0.2 0.06 0.77 9.55 486 1.68 23.3 11.7 2.78 187 5.3 平均值(Eg3) 95.3 10.42 77.08 53.33 10.92 26.98 31.97 71.78 13.41 91.17 398.67 22.1 2.29 0.6 0.05 0.84 7.51 505.67 1.49 22 10.04 2.7 145.8 4.12 L-07-2 103 11.2 80.6 54.5 4.42 19 18 52 12.8 86.6 106 23.9 0.31 0.13 0.05 1.39 8.96 188 1.61 20.8 10.3 2.39 220 6.16 L-09-1 88.8 9.53 69.9 58.6 10.2 25.4 20.5 52.9 10.5 66 163 27.3 0.28 0.28 0.05 1.37 6.09 264 1.53 16.8 10.2 2.88 248 6.87 L-12-4 154 22.2 147 104 17.6 48.7 26.2 78.2 27.2 214 122 28.8 0.72 0.14 0.01 1.61 19.6 499 2.25 17.3 16.8 4 201 5.58 L-64-3 71.4 12.5 88.3 69.1 12.2 30.9 23.9 75.9 15.5 113 142 26.8 0.37 0.16 0.06 1.08 8.1 279 1.79 25.5 12 3.16 223 6.26 平均值(Eg2) 104.3 13.86 96.45 71.55 11.11 31 22.15 64.75 16.5 119.9 133.25 26.7 0.42 0.18 0.06 1.36 10.69 307.51 1.8 20.1 12.33 3.11 223 6.23 L-33-2 89.4 7.75 69.5 44.1 8.99 22.4 25.6 48 10.5 71 139 20.8 0.34 0.13 0.03 0.63 4.78 285 1.3 16.8 8.23 2.32 173 4.69 L-46-1 176 14.3 97.4 69.1 14.2 35 34.4 86.9 16.6 107 132 25.5 0.8 0.19 0.06 1.45 8.44 355 1.78 25.1 11.4 2.43 176 4.98 平均值(Eg1) 132.7 11 83.5 56.6 11.6 28.7 30 67.5 13.6 89 135.5 23.2 0.6 0.2 0.01 1 6.6 320 1.5 21 9.8 2.4 174.5 4.8 地壳值 7.6 18 140 110 25 89 63 94 18 78 480 24 1.3 0.2 0.1 0.6 1.4 390 1.1 0.01 5.8 1.7 130 1.5 注: 样品由核工业北京测试分析中心完成,地壳值自文献[35]。表 3 昌都盆地古近系贡觉组细碎屑岩稀土元素测试分析结果(×10-6)
编号(时代) 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LREE/HREE LaN/YbN δEu δCe La/Yb L-18-2(Eg3) 粉砂质泥岩 35.4 67.5 7.84 29.8 5.65 1.23 4.77 0.83 4.58 0.87 2.66 0.44 2.87 0.42 24.5 206.36 147.42 58.94 2.5 8.32 0.71 0.94 67.5 L-19-1(Eg3) 泥灰岩 11.1 22 2.43 9.31 1.98 0.36 1.84 0.32 1.7 0.31 0.836 0.16 0.817 0.13 8.88 66.18 47.18 19 2.48 9.16 0.57 0.98 22 L-20-1(Eg3) 泥灰岩 27.4 52.8 6.39 25.2 5.26 1.23 4.65 0.86 4.61 0.84 2.52 0.4 2.4 0.38 24.5 168.75 118.28 50.47 2.34 7.7 0.74 0.93 52.8 L-22-2(Eg3) 泥质粉砂岩 29.6 57.3 6.96 27 5.32 1.19 4.67 0.86 4.58 0.89 2.48 0.42 2.55 0.4 25.1 178.83 127.37 51.46 2.48 7.83 0.71 0.93 57.3 L-76-3(Eg3) 粉砂岩 31.2 59.6 7.21 27.8 5.56 1.2 4.93 0.86 4.56 0.87 2.68 0.42 2.74 0.42 24.5 186.25 132.57 53.68 2.47 7.68 0.69 0.92 59.6 L-79-2(Eg3) 泥质粉砂岩 31.3 61.2 7.27 28.3 5.75 1.18 4.91 0.86 4.72 0.85 2.63 0.42 2.62 0.41 25.1 188.52 135 53.52 2.52 8.05 0.66 0.94 61.2 平均值(Eg3) 27.67 53.4 6.35 24.57 4.92 1.07 4.3 0.76 4.13 0.77 2.3 0.38 2.33 0.36 22.1 165.81 117.97 47.84 2.47 8.12 0.68 0.94 12.05 L-07-2(Eg2) 粉砂质泥岩 27.7 52.3 6.36 24 4.53 1.02 4.17 0.81 4.44 0.89 2.57 0.39 2.48 0.41 23.9 167.17 115.91 51.26 2.26 7.53 0.71 0.91 52.3 L-12-4(Eg2) 泥灰岩 43.4 79.5 9.17 33.5 5.39 1.13 4.86 0.89 5.13 1.05 3.1 0.51 3.35 0.52 28.8 242.5 172.09 70.41 2.44 8.73 0.66 0.91 79.5 L-64-3(Eg2) 粉砂质泥岩 34.2 63.5 7.64 28.8 5.51 1.21 5.03 0.89 5.05 0.94 2.85 0.47 3 0.46 26.8 198.85 140.86 57.99 2.43 7.69 0.69 0.91 63.5 L-09-1(Eg2) 粉砂岩 31 59.5 7.22 29.1 5.65 1.3 5.08 0.95 4.77 0.95 2.75 0.43 2.63 0.46 27.3 188.61 133.77 54.84 2.44 7.95 0.73 0.93 59.5 平均值(Eg2) 34.08 63.7 7.6 28.85 5.27 1.17 4.79 0.89 4.85 0.96 2.82 0.45 2.87 0.46 26.7 199.28 140.66 58.63 2.39 7.97 0.7 0.92 11.83 L-33-2(Eg1) 粉砂岩 24.4 48.4 5.9 22.9 4.36 0.99 4.05 0.7 3.94 0.71 2.19 0.33 2.03 0.34 20.8 149.78 106.95 42.84 2.5 8.1 0.71 0.94 48.4 L-46-1(Eg1) 泥质粉砂岩 30.6 58.4 7.06 26.4 5.36 1.13 4.61 0.82 4.61 0.88 2.66 0.4 2.62 0.41 25.5 185.76 128.95 56.81 2.27 7.87 0.68 0.92 58.4 平均值(Eg1) 27.5 53.4 6.48 24.65 4.86 1.06 4.33 0.76 4.28 0.79 2.43 0.37 2.33 0.37 23.15 167.7 117.95 49.82 2.38 7.993 0.69 0.93 11.85 CL-1(P3) 英云闪长岩 15.8 29.02 3.86 13.4 3.02 0.77 2.6 0.43 2.38 0.49 1.38 0.21 1.35 0.19 12.86 87.76 65.1 21.89 2.97 7.89 0.82 0.87 11.7 CL-2(P3) 英云闪长岩 15 29.88 3.95 14.45 3.03 0.75 2.7 0.44 3 0.58 1.77 0.26 1.86 0.28 15.12 93.07 66.31 26.01 2.5 5.44 0.79 0.92 8.06 CL-3(P3) 英云闪长岩 8.65 20.28 2.9 11.84 3.22 0.98 3.45 0.59 3.63 0.8 2.36 0.36 2.27 0.32 20.74 82.39 46.89 34.52 1.92 2.57 0.89 0.97 3.81 CL-4(P3) 英云闪长岩 15.8 29.02 3.86 14.3 3.02 0.77 2.6 0.43 2.38 0.49 1.38 0.21 1.35 0.19 12.86 88.66 66 21.89 2.14 7.89 0.82 0.87 11.7 CL-5(P3) 英云闪长岩 23.98 46.48 5.7 19.51 3.84 0.82 3 0.45 2.41 0.49 1.38 0.2 1.33 0.19 12.72 122.5 99.51 22.17 2.98 12.16 0.71 0.93 18.03 CL-6(P3) 二长花岗岩 14.05 28.72 3.88 13.68 4.06 0.53 4.32 0.89 5.3 1.01 2.85 0.43 2.8 0.41 30.19 113.12 64.39 48.2 2.06 3.38 0.38 0.92 5.02 CL-7(P3) 黑云母花岗岩 18.21 38.66 5.04 17.99 4.54 0.45 4.35 0.72 4.56 0.91 2.63 0.4 2.48 0.33 24.07 125.34 84.44 40.45 1.59 4.95 0.31 0.96 7.34 CL-8(P3) 黑云母花岗岩 18.21 38.66 5.04 17.99 4.54 0.45 4.35 0.72 4.56 0.91 2.63 0.4 2.48 0.33 24.07 125.34 84.44 40.45 2.09 4.95 0.31 0.96 7.34 CL-9(P3) 石英闪长岩 16.14 31.93 4.15 14.88 3.36 0.86 3.02 0.49 2.81 0.59 1.71 0.26 1.65 0.23 14.6 96.68 70.46 25.36 3.33 6.59 0.81 0.92 9.78 CL-10(P3) 黑云母花岗 16.13 33.66 4.46 15.84 4.3 0.49 4.34 0.81 4.93 0.96 2.74 0.42 2.64 0.37 27.13 119.22 74.39 44.34 1.59 4.12 0.34 0.94 6.11 上地壳 30 64 7.1 26 4.5.00 0.8 3.8 0.64 3.5 0.8 2.3 0.33 2.2 0.3 22 中地壳 17 15 5.8 24 4.4.00 1.5 4 0.58 3.8 0.8 2.3 0 2.3 0.4 22 下地壳 8 20 2.6 11 2.8.00 1.1 3.1 0.48 3.1 0.7 1.9 0.32 1.5 0.3 16 注: 样品CL⁃1~CL⁃10数据来自文献[28];上中下地壳来自文献[36⁃37]。表 4 昌都盆地古近系贡觉组细碎屑岩微量元素沉积环境特征参数
样品编号 B/×10-6 Sr/Ba Sr/Cu V/Cr V/(V+Cr) Ni/Co U/Th Cu/Zn L-18-2 127.00 1.14 15.85 1.50 0.60 2.60 0.29 0.51 L-19-1 36.90 6.86 31.04 1.42 0.59 2.80 0.41 0.22 L-20-1 119.00 1.33 12.63 1.39 0.58 2.60 0.25 0.93 L-22-2 62.50 0.15 5.25 1.45 0.59 2.57 0.25 0.58 L-76-3 85.40 0.45 7.44 1.44 0.59 2.28 0.26 0.29 L-79-2 141.00 0.27 4.20 1.42 0.59 2.24 0.24 0.42 平均值 95.30 1.70 12.73 1.44 0.59 2.51 0.28 0.49 L-07-2 103.00 0.56 5.89 1.48 0.60 4.30 0.23 0.35 L-09-1 88.80 0.62 7.95 1.19 0.54 2.49 0.28 0.39 L-12-4 154.00 0.24 4.66 1.41 0.59 2.77 0.24 0.34 L-64-3 71.40 0.51 5.94 1.28 0.56 2.53 0.26 0.31 平均值 104.30 0.48 6.11 1.34 0.57 3.02 0.25 0.35 L-33-2 89.40 0.49 5.43 1.58 0.61 2.49 0.28 0.53 L-46-1 176.00 0.37 3.84 1.41 0.58 2.46 0.21 0.40 平均值 132.70 0.43 4.63 1.49 0.60 2.48 0.25 0.46 -
[1] Kroon D, Norris R D, Wilson P. Exceptional Global warmth and climatic transients recorded in Oceanic Sediments[J]. JOIDES Journal, 2002, 28(1): 11-15. [2] Bralower T J, Kelly D C, Leckie R M. Biotic effects of abrupt Paleocene and Cretaceous climate events[J]. JOIDES Journal, 2002, 28(1): 29-34. [3] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展,2003,18(5):681-690. Liu Zhifei, Hu Xiumian. Extreme climates events in the Cretaceous and Paleogene[J]. Advance in Earth Sciences, 2003, 18(5): 681-690. [4] Zachos J C, Lohmann K C, Walker J C G, et al. Abrupt climate change and transient climates during the Paleogene: A marine perspective[J]. Journal of Geology, 1993, 101(2): 191-213. [5] Kennett J P, Stott L D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene[J]. Nature, 1991, 353(6341): 225-229. [6] Thomas E, Shackleton N J. The Paleocene-Eocene benthic foraminiferal extinction and stable isotope anomalies[M]//Knox R W O, Corfield R M, Dunay R E. Correlation of the Early Paleogene in northwest Europe. London: Geological Society of London, 1996: 401-411. [7] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. [8] 胡修棉. 东特提斯洋晚中生代:古近纪重大事件研究进展[J]. 自然杂志,2015,37(2):93-102. Hu Xiumian. Overview of the Late Mesozoic Paleogene major paleoceanographic and geological events in eastern Tethyan Ocean[J]. Chinese Journal of Nature, 2015, 37(2): 93-102. [9] 杨开辉,莫宣学. 滇西南晚古生代火山岩与裂谷作用及区域构造演化[J]. 岩石矿物学杂志,1993,12(4):297-311. Yang Kaihui, Mo Xuanxue. Late Paleozoic rifting-related volcanic rocks and tectonic evolution in southwestern Yunnan[J]. Acta Petrologica et Mineralogica, 1993, 12(4): 297-311. [10] 侯增谦,郑远川,卢占武,等. 青藏高原巨厚地壳:生长、加厚与演化[J]. 地质学报,2020,94(10):2797-2815. Hou Zengqian, Zheng Yuanchuan, Lu Zhanwu, et al. Growth, thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica, 2020, 94(10): 2797-2815. [11] 陶琰,毕献武,李金高,等. 西藏吉塘花岗岩地球化学特征及成因[J]. 岩石学报,2011,27(9):2763-2774. Tao Yan, Bi Xianwu, Li Jingao, et al. Geochemistry and petrogenesis of the Jitang granitoids in Tibet, SW China[J]. Acta Petrologica Sinica, 2011, 27(9): 2763-2774. [12] 王安建,曹殿华,管烨,等. 西南三江成矿带中南段金属矿床成矿规律与若干问题探讨[J]. 地质学报,2009,83(10):1365-1375. Wang Anjian, Cao Dianhua, Guan Ye, et al. Metallogenic belts of southern three rivers region, southwest China: Distribution, characteristics and discussion[J]. Acta Geologica Sinica, 2009, 83(10): 1365-1375. [13] 田世洪,杨竹森,侯增谦,等. 玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义[J]. 矿床地质,2009,28(6):747-758. Tian Shihong, Yang Zhusen, Hou Zengqian, et al. Rb-Sr and Sm-Nd Isochron ages of Dongmozhazhua and Mohailaheng Pb-Zn ore deposits in Yushu area, southern Qinghai and their geological implications[J]. Mineral Deposits, 2009, 28(6): 747-758. [14] Li L, Garzione C N, Pullen A, et al. Late Cretaceous-Cenozoic basin evolution and topographic growth of the Hoh Xil Basin, central Tibetan Plateau[J]. GSA Bulletin, 2018, 130(3/4): 499-521. [15] Spurlin M S, An Y, Harrison T M, et al. Two phases of Cenozoic deformation in northeastern Tibet: Thrusting followed by strike-slip faulting[J]. Earth Science Frontiers, 2000, 7(Suppl.1): 294. [16] Staisch L M, Niemi N A, Hong C, et al. A Cretaceous-Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateau[J]. Tectonics, 2014, 33(3): 281-301. [17] Dai J E, Wang C S, Hourigan J, et al. Insights into the early Tibetan Plateau from (U-Th)/He thermochronology[J]. Journal of the Geological Society, 2013, 170(6): 917-927. [18] Spurlin M S, Yin A, Horton B K, et al. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet[J]. GSA Bulletin, 2005, 117(9/10): 1293-1317. [19] Niu Y L. What drives the continued India-Asia convergence since the collision at 55 Ma? [J]. Science Bulletin, 2020, 65(3): 169-172. [20] 王世锋,伊海生,王成善. 青海囊谦第三纪盆地沉积学特征[J]. 成都理工学院学报,2001,28(1):13-16. Wang Shifeng, Yi Haisheng, Wang Chengshan. Sedimentary features of the Nangqian Tertiary basin in Qinghai province[J]. Journal of Chengdu University of Technology, 2001, 28(1): 13-16. [21] 周江羽,王江海, Yin An,等. 青藏高原东缘古近纪粗碎屑岩沉积学及其构造意义[J]. 地质学报,2003,77(2):262-271. Zhou Jiangyu, Wang Jianghai, Yin An, et al. Sedimentology and tectonic significance of Paleogene coarse clastic rocks in eastern Tibet[J]. Acta Geologica Sinica, 2003, 77(2): 262-271. [22] 周江羽,王江海,尹安,等. 青藏东北缘早第三纪盆地充填的沉积型式及构造背景:以囊谦和下拉秀盆地为例[J]. 沉积学报,2002,20(1):85-91. Zhou Jiangyu, Wang Jianghai, Yin An, et al. Depositional patterns and tectonic setting of Early Tertiary basins in the NE margin of the Tibetan Plateau: A case study of the Nangqian and Xialaxiu basins[J]. Acta Sedimentologica Sinica, 2002, 20(1): 85-91. [23] 吴悠,陈红汉,肖秋苟,等. 青藏高原昌都盆地上三叠统流体活动特征[J]. 地质科技情报,2010,29(2):82-86. Wu You, Chen Honghan, Xiao Qiugou, et al. Characteristics of fluid flow of the Upper Triassic in Changdu Basin, Tibet, China[J]. Geological Science and Technology Information, 2010, 29(2): 82-86. [24] 曹代勇,宋时雨,马志凯,等. 晚三叠世昌都盆地构造背景及对成煤作用的控制[J]. 地学前缘,2019,26(2):169-178. Cao Daiyong, Song Shiyu, Ma Zhikai, et al. Tectonic background of the Qamdo Basin and its structural control on coal forming in the Late Triassic[J]. Earth Science Frontiers, 2019, 26(2): 169-178. [25] 赵嘉峰,王剑,付修根,等. 西藏羌塘盆地古近纪康托组沉积物源及构造背景分析[J]. 地质论评,2022,68(1):93-110. Zhao Jiafeng, Wang Jian, Fu Xiugen, et al. Provenance and tectonic setting analysis of the Paleogene Kangtuo Formation in the Qiangtang Basin, Xizang (Tibet)[J]. Geological Review, 2022, 68(1): 93-110. [26] Zhang Z B, Zhu Z J, Li H, et al. Provenance and salt structures of gypsum formations in Pb-Zn ore-bearing Lanping Basin, Southwest China[J]. Journal of Central South University, 2020, 27(6): 1828-1845. [27] 刘小康,张治波,朱志军,等. 兰坪盆地古近系云龙组元素地球化学特征及其古环境的恢复[J]. 煤田地质与勘探,2020,48(4):109-117,125. Liu Xiaokang, Zhang Zhibo, Zhu Zhijun, et al. Geochemical characteristics of elements in the Paleogene Yunlong Formation and the restoration of paleoenvironment in Lanping Basin[J]. Coal Geology & Exploration, 2020, 48(4): 109-117, 125. [28] 西藏地质调查院. 囊谦县幅,昌都县幅,江达县幅,1:25万区域地质调查报告[R]. 2007. Xizang Institute of Geological Survey. Nangqian county, Changdu county, Jiangda county, 1: 250,000 regional geological survey report[R]. 2007. [29] 祁昭林. 青藏高原东部囊谦—昌都地区烃源岩特征及非常规油气资源前景[D]. 北京:中国地质大学(北京),2017. Qi Zhaolin. Characteristics of the source rocks in Nangqian-Qamdo area, eastern Tibet: Implications for unconventional oil and gas resources[D]. Beijing: China University of Geosciences (Beijing), 2017. [30] 左鹏. 昌都盆地上二叠统—上三叠统烃源岩特征与页岩气资源潜力[D]. 北京:中国地质大学(北京),2016. Zuo Peng. Hydrocarbon source rock characteristics and shale gas resource potential in Changdu Basin during the Upper Permian Series-Upper Triassic series[D]. Beijing: China University of Geosciences (Beijing), 2016. [31] 何书元,田有华,陈开国,等. 西藏东部早第三纪贡觉红层[C]//青藏高原地质文集(3):地层·古生物:青藏高原地质科学讨论会论文集(二). 拉萨:中国地质学会,1983. He Shuyuan, Tian Youhua, Chen Kaiguo, et al. Paleogene Gonjo red beds in east Xizang (Tibet)[C]// Geological collections of the Qinghai-Tibet Plateau (3) : Strata · Paleontology: Proceedings of the Qinghai-Tibet Plateau geological science symposium ( 2). Lhasa: Geological Society of China, 1983. [32] 胡俊杰,马寅生,吴祎,等. 柴达木盆地侏罗纪古气候演变过程:来自化学风化特征的证据[J]. 高校地质学报,2019,25(4):548-557. Hu Junjie, Ma Yinsheng, Wu Yi, et al. Jurassic palaeoclimate evolution of the Qaidam Basin: Evidence from chemical weathering analyses[J]. Geological Journal of China Universities, 2019, 25(4): 548-557. [33] 徐小涛,邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报,2018,20(3):515-522. Xu Xiaotao, Shao Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(3): 515-522. [34] Yan D T, Chen D Z, Wang Q C, et al. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze Block, South China[J]. Geology, 2010, 38(7): 599-602. [35] 黎彤. 化学元素的地球丰度[J]. 地球化学,1976(3):167-174. Li Tong. Chemical element abundances in the earth and it’s major shells[J]. Geochimica, 1999(3): 167-174. [36] Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2): 241-265. [37] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. London: Blackwell Scientific, 1985: 312. [38] Haskin L A, Paster T P. Geochemistry and mineralogy of the rare earths[J]. Handbook on the Physics and Chemistry of Rare Earths, 1979, 3: 1-80. [39] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119-139. [40] Pettijohn F J, Potter P E, Siever R. Sand and sandstone[M]. New York: Springer, 1972: 618. [41] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627. [42] 和政军,李锦轶,莫申国,等. 漠河前陆盆地砂岩岩石地球化学的构造背景和物源区分析[J]. 中国科学(D辑):地球科学,2003,33(12):1219-1226. He Zhengjun, Li Jinyi, Mo Shenguo, et al. Geochemical discriminations of sandstones from the Mohe Foreland Basin, northeastern China: Tectonic setting and provenance[J]. Science China (Seri. D): Earth Sciences, 2003, 33(12): 1219-1226. [43] 陈留勤. 江西永崇盆地晚白垩世沉积演化[M]. 北京:地质出版社,2018:1-118. Chen Liuqin. Depositional evolution of the Yongchong Basin during Late Cretaceous in Jiangxi province, SE China[M]. Beijing: Geological Publishing House, 2018: 1-118. [44] 李双应,孟庆任,李任伟,等. 山东胶莱盆地下白垩统莱阳组物质组分特征及其对源区的制约[J]. 岩石学报,2008,24(10):2395-2406. Li Shuangying, Meng Qingren, Li Renwei, et al. Characteristics of material components from the Lower Cretaceous Laiyang Formation in Jiaolai Basin, Shangdong province, eastern China and constraints to the provenance[J]. Acta Petrologica Sinica, 2008, 24(10): 2395- 2406. [45] Horton B K, Yin A, Spurlin M S, et al. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet[J]. GSA Bulletin, 2002, 114(7): 771-786. [46] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. [47] Chen L Q, Steel R J, Guo F S, et al. Alluvial fan facies of the Yongchong Basin: Implications for tectonic and paleoclimatic changes during Late Cretaceous in SE China[J]. Journal of Asian Earth Sciences, 2017, 134: 37-54. [48] Chen L Q, Guo F S, Steel R J, et al. Petrography and geochemistry of the Late Cretaceous redbeds in the Gan-Hang Belt, Southeast China: Implications for provenance, source weathering, and tectonic setting[J]. International Geology Review, 2016, 58(10): 1196-1214. [49] 田景春,张翔. 沉积地球化学[M]. 北京:地质出版社,2016. Tian Jingchun, Zhang Xiang. Sedimentary geochemistry[M]. Beijing: Geological Publishing House, 2016. [50] 张治波,朱志军,王文锋,等. 滇西兰坪盆地中—新生代蒸发岩元素地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版),2019,49(2):356-379. Zhang Zhibo, Zhu Zhijun, Wang Wenfeng, et al. Geochemical characteristics and formation environment of Mesozoic and Cenozoic evaporative rocks in Lanping Basin, western Yunnan[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2): 356-379. [51] 赵振华. 微量元素地球化学原理[M]. 北京:科学出版社,1997. Zhao Zhenhua. Geochemical principle of trace elements[M]. Beijing: Science Press, 1997. [52] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88. [53] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318. [54] 韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88. Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88. [55] Hastings D W, Emerson S R, Mix A C. Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments[J]. Paleoceanography, 1996, 11(6): 665-678. [56] Wehrli B, Stumm W. Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77. [57] 王淑芳,董大忠,王玉满,等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质,2014,19(3):27-34. Wang Shufang, Dong Dazhong, Wang Yuman, et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2014, 19(3): 27-34. [58] Wignall P B. Black shales[M]. Oxford: Clarendon Press, 1994: 46. [59] Huerta-Diaz M A, Morse J W. A quantitative method for determination of trace metal concentrations in sedimentary pyrite[J]. Marine Chemistry, 1990, 29: 119-144. [60] Luther III G W, Morse J W. Chemical influences on trace Metal-sulphide interactions in anoxic sediments[J]. Mineralogical Magazine, 1998, 62A(2): 925-926. [61] Johnson T M, DePaolo D J. Interpretation of isotopic data in groundwater-rock systems: Model development and application to Sr isotope data from yucca mountain[J]. Water Resources Research, 1994, 30(5): 1571-1587. [62] 王敏芳,焦养泉,王正海,等. 沉积环境中古盐度的恢复:以吐哈盆地西南缘水西沟群泥岩为例[J]. 新疆石油地质,2005,26(6):719-722. Wang Minfang, Jiao Yangquan, Wang Zhenghai, et al. Recovery paleosalinity in sedimentary environment: An example of mudstone in Shuixigou Group, southwestern margin of Turpan-Hami Basin[J]. Xinjiang Petroleum Geology, 2005, 26(6): 719-722. [63] 许璟,蒲仁海,杨林,等. 塔里木盆地石炭系泥岩沉积时的古盐度分析[J]. 沉积学报,2010,28(3):509-517. Xu Jing, Pu Renhai, Yang Lin, et al. The palaeosalinity analysis of Carboniferous mudstone, Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28(3): 509-517. [64] 钱利军,陈洪德,林良彪,等. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J]. 沉积学报,2012,30(6):1061-1071. Qian Lijun, Chen Hongde, Lin Liangbiao, et al. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1061-1071. [65] Wedepohl K H. Handbook of geochemistry[M]. Berlin: Springer, 1969: 248. [66] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924. [67] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. [68] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147. [69] Fu X G, Wang J, Wen H G, et al. A Toarcian Ocean Anoxic Event record from an open-ocean setting in the eastern Tethys: Implications for global climatic change and regional environmental perturbation[J]. Science China Earth Sciences, 2021, 64(11): 1860-1872. [70] Wang J, Fu X G, Wei H Y, et al. Late Triassic basin inversion of the Qiangtang Basin in northern Tibet: Implications for the closure of the Paleo-Tethys and expansion of the Neo-Tethys[J]. Journal of Asian Earth Sciences, 2022, 227: 105119. [71] 刘增乾,沈敢富,李兴振. 三江地区金矿床成矿系列与找矿前景[J]. 四川地质学报,1992,12(增刊1):61-62. Liu Zeng qian, Shen Ganfu, Li Xingzhen. Metallogenic series and prospecting prospect of gold deposits in Sanjiang area[J]. Acta Geologica Sichuan, 1992, 12(Suppl.1): 61-62.