-
碳酸盐岩研究方法多样,综合前人研究成果(表1),统计分析其针对碳酸盐岩的研究方法。结果显示,进行碳酸盐岩研究使用的主要研究方法有:(1)岩相分析;(2)层序地层分析;(3)沉积相分析;(4)电子探针;(5)压实及沉降速率计算;(6)激光测深和地形学;(7)碳氧同位素;(8)锶同位素;(9)生物组合分析;(10)磷连续提取法;(11)牙形刺分析;(12)双壳尺寸测量分析;(13)XRF分析;(14)扫描电镜分析;(15)阴极发光分析;(16)拉曼光谱;(17)TOC分析;(18)地震分析;(19)Fe形态分析;(20)黄铁矿分析;(21)天文旋回分析等。以上方法可总结为岩相、沉积相、层序、生物、组成成分、地球化学、特殊矿物及天文旋回等8类分析方法。
表 1 碳酸盐工厂主要研究方法与消亡主控因素
Table 1. Main research methods and main factors controlling carbonate factories
序号 位置 年代地层 研究方法 消亡主控因素 参考文献 1 陕西耀县桃曲坡,鄂尔多斯南缘 上奥陶统 微相分析 构造运动;海平面升降 刘采等[36] 2 Paris Basin, France 侏罗系 层序及相分析;黏土分析;氧同位素 海面温度;营养条件;海平面升降 Brigaud et al.[37] 3 Apennines, Italy 下侏罗统 薄片颗粒成分分析;电子探针 构造运动 Brandano et al.[38] 4 western France platform 侏罗系 层序与相分析;压实及沉降速率计算 海平面升降;构造运动;气候;营养条件;天文旋回 Andrieu et al.[39] 5 Mozambique Channel seamounts, SW Indian Ocean 新生界 激光测深和地形学;薄片分析;87Sr/86Sr 构造和火山运动 Courgeon et al.[40] 6 southern Amazon Craton 新元古界 相分析;层序地层旋回;碳同位素 构造运动;天文旋回 Rudnitzki et al.[41] 7 Kioto carbonate platform, southern Tibet 侏罗系 微相分析 缺氧事件;海平面升降 Han et al.[42] 8 SE Circum-Caribbean 渐新统—中新统 相分析;锶同位素 陆源输入;构造运动 Silva-Tamayo et al.[43] 9 Alborz Basin, northern Iran 下石炭统 微相分析;有孔虫生物地层学 海平面升降;构造运动;冰川作用 Abadi et al.[44] 10 the Hyblea and Pelagian carbonate platforms,central Mediterranean 渐新统—中新统 微相分析;生物组合;碳氧同位素 营养水平;构造运动;陆源输入;火山运动 Brandano et al.[45] 11 Burdigalian, NW Italy and S France 中新统 生物组合分析;磷连续提取法 营养水平 Coletti et al.[46] 12 Morocco, Italy 中侏罗统 层序和相分析;碳氧同位素;碳酸盐含量分析 海平面升降;营养水平 Bodin et al.[47] 13 the Miocene San Marino carbonate shelf, northern Apennines, Italy 中新统 地层学研究;微相分析; 构造运动;陆源输入;营养水平;全球气候事件 Salocchi et al.[48] 14 川西北,四川盆地 上三叠统 牙形刺研究;地层学研究 构造运动;气候变化;陆源输入 Shi et al.[49] 15 华南,贵州 二叠系 生物组合分析;微相分析 生物大灭绝事件,缺氧事件;气候事件 孟琦等[50] 16 the Apennine carbonate platform, southern Italy 下侏罗统 双壳尺寸测量 海洋酸化;营养水平 Posenato et al.[51] 17 Tibetan Himalaya 侏罗系 碳氧同位素;TOC分析,XRF分析 气候变化 Han et al.[52] 18 Hanwang, Sichuan Basin, South China 上三叠统 牙形刺研究;微相分析;碳氧同位素;扫描电镜;阴极发光 构造运动;陆源输入 Jin et al.[53] 19 Xisha Islands, South China Sea 上新统 微相分析;XRF分析; 海平面升降;温度变化;营养水平 Wu et al.[54] 20 Sinemurian-Pliensbachian, southern Alps 下侏罗统 碳氧同位素;TOC分析;扫描电镜 气候变化;陆源输入;营养条件;盐度 Franceschi et al.[55] 21 Antillean shallow marine carbonate factories, (Lutetian-Bartonian limestones,St. Bartholomew, French West Indies 中新统 生物组合分析;微相分析 火山运动;营养水平;光照水平 Caron et al.[56] 22 Amazon continental margin, Brazil 新近系 地震分析;钻井数据分析 构造运动 Cruz et al.[57] 23 offshore Indus Basin, the northern part of the Arabian Sea 古近系 地震分析;钻井数据分析 火山运动;构造运动;气候变化 Shahzad et al.[58] 24 西藏南部 上二叠统—中三叠统 微相分析 生物大灭绝;气候变化;构造演化;海平面升降 Li et al.[59] 25 西藏南部 上二叠统—中三叠统 主量元素;拉曼光谱;阴极发光;扫描电镜;碳氧同位素 生物大灭绝;气候变化;构造演化;海平面升降 李明涛[11] 26 Tethys 上三叠统 薄片颗粒成分分析;碳同位素 碳酸盐饱和度;海洋酸化 Jin et al.[60] 续表 序号 位置 年代地层 研究方法 消亡主控因素 参考文献 27 the central High Atlas Basin, Morocco 白垩系—上新统 微相分析;碳同位素;TOC分析 气候变化;陆源输入;营养水平;缺氧事件;海洋酸化 Krencker et al.[61] 28 the Cupido platform margin-gulf of Mexico, NE Mexico 白垩系 微相分析;碳氧同位素;TOC分析 缺氧事件;营养水平;火山运动 Núñez-Useche et al.[62] 29 Maldives 中新统 微相分析;生物组合;地震分析 气候变化(季风) Reolid et al.[63] 30 the Campos Basin, Brazil 白垩系 地震分析;钻井数据分析;微相分析 海平面升降;陆源输入,构造运动 Rebelo et al.[64] 31 Hannan-Micangshan area, South China 下寒武统 岩石学分析;主微量元素;粒度分析 气候变化;陆源输入;营养水平;海平面升降 Li et al.[65] 32 southern Pyrenees, Spanish 古新统—始新统 微相分析;生物组合;碳氧同位素 陆源输入;气候变化;营养水平 Li et al.[66] 33 western Laurentia, North America 上泥盆统 TOC分析;Fe形态;微相分析;黄铁矿分析 缺氧事件;营养水平 Li et al.[67] 34 Guizhou of South China 二叠系 微相分析;牙形刺研究; 缺氧事件;冰川事件;海平面变化;生物大灭绝事件 Meng et al.[17] 针对碳酸盐工厂的研究中,采用的技术手段同样源自碳酸盐岩的各种研究方法。但早期研究受研究技术与设备条件的限制,前人主要利用碳酸盐工厂所处的地理位置、野外宏观岩性、结构、构造及宏观古生物信息并结合室内偏光显微镜下对薄片进行岩性的鉴定、生物种类、组合及含量的定量分析,从而划分出不同的微相组合来进行碳酸盐工厂类型的划分。
在碳酸盐工厂发育特征及类型划分的基础上,通过层序地层分析、沉积相分析及地震分析等方法,并结合研究区地质背景、海平面升降变化与构造沉降速率等可用于判断碳酸盐工厂的消亡是否受构造演化及相对海平面的变化控制。但营养条件、气候变化、氧化还原条件及盐度等碳酸盐工厂消亡的其他主控因素则需要结合地球化学分析等技术手段来进行综合判断。
随着分析技术的发展,碳酸盐工厂的研究方法逐渐精细,更定量化。激光测深和地形学方法被运用于现代多个碳酸盐工厂的研究中。目前,针对碳酸盐工厂的研究仅达到碳酸盐岩组成成分及生物种类的定性研究是不够的,进行野外精细取样,室内光学显微镜下生物种属及含量的定量分析,非生物组分颗粒的粒度分析是必要的。从而使研究结果能达到更准确,更高分辨率地划分不同类型的碳酸盐工厂,并以此研究不同碳酸盐工厂间的转换特征及机制。
连续的多类型地球化学测试分析、微观Fe形态及黄铁矿分析的引入,利用数学分析方法对沉积速率及天文旋回等方面的定量化研究,且天文旋回与碳酸盐工厂潜在关系的研究中采用GR、δ13C及剩余磁等多种参数结果的综合分析等,使得碳酸盐工厂演化及主控因素的研究更深入且更精确。
Research Progress on Carbonate Factory
-
摘要:
意义 显生宙大量的碳酸盐沉积物记录着古环境及其演化信息,同时也是地球重要的碳汇。在“碳中和”背景下,碳酸盐工厂已经成为碳酸盐研究的热点之一,加强对碳酸盐工厂发育特征及演化的研究有助于认识其运行机制及主控因素。相较于国外,国内针对碳酸盐工厂的研究起步较晚,研究大多聚焦碳酸盐岩的沉积与演化,对碳酸盐工厂的类型划分及研究方法方面的研究还较为薄弱,消亡主控因素的认识也较为局限。【 进展 】因此,在前人研究的基础上,综述了碳酸盐工厂类型划分方案、研究方法以及消亡主控因素等方面的研究进展,为地质工作者进一步开展碳酸盐工厂运行机制研究提供一定的参考。【 结论与展望 】运用多学科知识方法进行碳酸盐工厂研究,从多方面认识其运行机制、演化过程及主控因素,使研究结论更准确,并发掘其中蕴藏的生物学及海洋学意义可能是未来碳酸盐工厂研究的发展方向。
Abstract:Significance A large number of carbonate deposits in the Phanerozoic record information about the evolution of the environment at that time, and they represented an important carbon sink for the Earth. Today’s need for a “carbon neutral” condition has encouraged research into the development and evolution of the carbonate factory, and is an essential primary focus of contemporary carbonate studies. Carbonate factory research began later in China than in other countries; the main focus has been on the deposition and evolution of carbonate rocks. Studies of carbonate factory classification and research methods are still weak, and the understanding of the main causes of their extinction is also limited. [Progres s ] This summary, based on the reports of a large number of studies, examines the research progress in classification schemes and research methods for recognizing the main influences on carbonate factory development, and provides a reference to assist geologists’ deeper understanding of the carbonate factory mechanism. [Conclusions and Prospects] It may be the development direction of carbonate factory research in the future to understand its operating mechanism, evolution process and main controlling factors from many aspects by using multidisciplinary knowledge methods, so as to make the research conclusions more accurate and explore its biological and oceanographic significance.
-
Key words:
- carbonate factory /
- classification scheme /
- research method /
- main controlling factors
-
表 1 碳酸盐工厂主要研究方法与消亡主控因素
Table 1. Main research methods and main factors controlling carbonate factories
序号 位置 年代地层 研究方法 消亡主控因素 参考文献 1 陕西耀县桃曲坡,鄂尔多斯南缘 上奥陶统 微相分析 构造运动;海平面升降 刘采等[36] 2 Paris Basin, France 侏罗系 层序及相分析;黏土分析;氧同位素 海面温度;营养条件;海平面升降 Brigaud et al.[37] 3 Apennines, Italy 下侏罗统 薄片颗粒成分分析;电子探针 构造运动 Brandano et al.[38] 4 western France platform 侏罗系 层序与相分析;压实及沉降速率计算 海平面升降;构造运动;气候;营养条件;天文旋回 Andrieu et al.[39] 5 Mozambique Channel seamounts, SW Indian Ocean 新生界 激光测深和地形学;薄片分析;87Sr/86Sr 构造和火山运动 Courgeon et al.[40] 6 southern Amazon Craton 新元古界 相分析;层序地层旋回;碳同位素 构造运动;天文旋回 Rudnitzki et al.[41] 7 Kioto carbonate platform, southern Tibet 侏罗系 微相分析 缺氧事件;海平面升降 Han et al.[42] 8 SE Circum-Caribbean 渐新统—中新统 相分析;锶同位素 陆源输入;构造运动 Silva-Tamayo et al.[43] 9 Alborz Basin, northern Iran 下石炭统 微相分析;有孔虫生物地层学 海平面升降;构造运动;冰川作用 Abadi et al.[44] 10 the Hyblea and Pelagian carbonate platforms,central Mediterranean 渐新统—中新统 微相分析;生物组合;碳氧同位素 营养水平;构造运动;陆源输入;火山运动 Brandano et al.[45] 11 Burdigalian, NW Italy and S France 中新统 生物组合分析;磷连续提取法 营养水平 Coletti et al.[46] 12 Morocco, Italy 中侏罗统 层序和相分析;碳氧同位素;碳酸盐含量分析 海平面升降;营养水平 Bodin et al.[47] 13 the Miocene San Marino carbonate shelf, northern Apennines, Italy 中新统 地层学研究;微相分析; 构造运动;陆源输入;营养水平;全球气候事件 Salocchi et al.[48] 14 川西北,四川盆地 上三叠统 牙形刺研究;地层学研究 构造运动;气候变化;陆源输入 Shi et al.[49] 15 华南,贵州 二叠系 生物组合分析;微相分析 生物大灭绝事件,缺氧事件;气候事件 孟琦等[50] 16 the Apennine carbonate platform, southern Italy 下侏罗统 双壳尺寸测量 海洋酸化;营养水平 Posenato et al.[51] 17 Tibetan Himalaya 侏罗系 碳氧同位素;TOC分析,XRF分析 气候变化 Han et al.[52] 18 Hanwang, Sichuan Basin, South China 上三叠统 牙形刺研究;微相分析;碳氧同位素;扫描电镜;阴极发光 构造运动;陆源输入 Jin et al.[53] 19 Xisha Islands, South China Sea 上新统 微相分析;XRF分析; 海平面升降;温度变化;营养水平 Wu et al.[54] 20 Sinemurian-Pliensbachian, southern Alps 下侏罗统 碳氧同位素;TOC分析;扫描电镜 气候变化;陆源输入;营养条件;盐度 Franceschi et al.[55] 21 Antillean shallow marine carbonate factories, (Lutetian-Bartonian limestones,St. Bartholomew, French West Indies 中新统 生物组合分析;微相分析 火山运动;营养水平;光照水平 Caron et al.[56] 22 Amazon continental margin, Brazil 新近系 地震分析;钻井数据分析 构造运动 Cruz et al.[57] 23 offshore Indus Basin, the northern part of the Arabian Sea 古近系 地震分析;钻井数据分析 火山运动;构造运动;气候变化 Shahzad et al.[58] 24 西藏南部 上二叠统—中三叠统 微相分析 生物大灭绝;气候变化;构造演化;海平面升降 Li et al.[59] 25 西藏南部 上二叠统—中三叠统 主量元素;拉曼光谱;阴极发光;扫描电镜;碳氧同位素 生物大灭绝;气候变化;构造演化;海平面升降 李明涛[11] 26 Tethys 上三叠统 薄片颗粒成分分析;碳同位素 碳酸盐饱和度;海洋酸化 Jin et al.[60] 续表 序号 位置 年代地层 研究方法 消亡主控因素 参考文献 27 the central High Atlas Basin, Morocco 白垩系—上新统 微相分析;碳同位素;TOC分析 气候变化;陆源输入;营养水平;缺氧事件;海洋酸化 Krencker et al.[61] 28 the Cupido platform margin-gulf of Mexico, NE Mexico 白垩系 微相分析;碳氧同位素;TOC分析 缺氧事件;营养水平;火山运动 Núñez-Useche et al.[62] 29 Maldives 中新统 微相分析;生物组合;地震分析 气候变化(季风) Reolid et al.[63] 30 the Campos Basin, Brazil 白垩系 地震分析;钻井数据分析;微相分析 海平面升降;陆源输入,构造运动 Rebelo et al.[64] 31 Hannan-Micangshan area, South China 下寒武统 岩石学分析;主微量元素;粒度分析 气候变化;陆源输入;营养水平;海平面升降 Li et al.[65] 32 southern Pyrenees, Spanish 古新统—始新统 微相分析;生物组合;碳氧同位素 陆源输入;气候变化;营养水平 Li et al.[66] 33 western Laurentia, North America 上泥盆统 TOC分析;Fe形态;微相分析;黄铁矿分析 缺氧事件;营养水平 Li et al.[67] 34 Guizhou of South China 二叠系 微相分析;牙形刺研究; 缺氧事件;冰川事件;海平面变化;生物大灭绝事件 Meng et al.[17] -
[1] Schlager W. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems[J]. Geological Society, London, Special Publications, 2000, 178(1): 217-227. [2] Schlager W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464. [3] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin, Heidelberg: Springer, 2010. [4] Reijmer J J G. Carbonate factories[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 80-84. [5] Pomar L, Haq B U. Decoding depositional sequences in carbonate systems: Concepts vs experience[J]. Global and Planetary Change, 2016, 146: 190-225. [6] Pomar L. Carbonate systems[M]//Scarselli N, Adam J, Chiarella D, et al. Regional geology and tectonics: Principles of geologic analysis. 2nd ed. Amsterdam: Elsevier, 2020: 235-311. [7] Reijmer J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796. [8] Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169. [9] Li X W, Falivene O, Minzoni M, et al. Interactions between sediment production and transport in the geometry of carbonate platforms: Insights from forward modeling of the Great Bank of Guizhou (Early to Middle Triassic), South China[J]. Marine and Petroleum Geology, 2020, 118: 104416. [10] Sultana D, Burgess P, Bosence D. How do carbonate factories influence carbonate platform morphology? Exploring production-transport interactions with numerical forward modelling[J]. Sedimentology, 2022, 69(1): 372-393. [11] 李明涛. 西藏南部晚二叠世—中三叠世沉积环境演变[D]. 武汉:中国地质大学,2020. Li Mingtao. Depositional evolution of Upper Permian to Middle Triassic sequence in south Tibet[D]. Wuhan: China University of Geosciences, 2020. [12] 倪新锋,沈安江,韦东晓,等. 碳酸盐岩沉积学研究热点与进展:AAPG百年纪念暨2017年会及展览综述[J]. 天然气地球科学,2018,29(5):729-742. Ni Xinfeng, Shen Anjiang, Wei Dongxiao, et al. Current hot topics and advances of carbonate sedimentology: AAPG 100 anniversary and 2017 annual meeting and exhibition[J]. Natural Gas Geoscience, 2018, 29(5): 729-742. [13] 颜佳新,孟琦,王夏,等. 碳酸盐工厂与浅水碳酸盐岩台地:研究进展与展望[J]. 古地理学报,2019,21(2):232-253. Yan Jiaxin, Meng Qi, Wang Xia, et al. Carbonate factory and carbonate platform: Progress and prospects[J]. Journal of Palaeogeography, 2019, 21(2): 232-253. [14] Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354. [15] 梅冥相. 蓝细菌繁荣滋养的苗岭世光养碳酸盐岩工厂:以安徽寿县卧龙山剖面崮山组为例[J]. 地质学报,2021,95(12):3571-3591. Mei Mingxiang. Photozoan carbonate factory nourished by cyanobacterial bloom of the Cambrian Miaolingian: An example from the Wolongshan section in Shouxian county of Anhui province, North-China Platform[J]. Acta Geologica Sinica, 2021, 95(12): 3571-3591. [16] 梅冥相. 寒武纪苗岭世特别的光养碳酸盐岩工厂:以江苏徐州贾旺剖面张夏组为例[J]. 地质学报,2022,96(3):744-768. Mei Mingxiang. A particular photozoan factory of carbonate rock of the Cambrian Miaolingian: A case study of the Zhangxia Formation at the Jiawang section in Xuzhou city of Jiangsu province[J]. Acta Geologica Sinica, 2022, 96(3): 744-768. [17] Meng Q, Xue W Q, Chen F Y, et al. Stratigraphy of the Guadalupian (Permian) siliceous deposits from central Guizhou of South China: Regional correlations with implications for carbonate productivity during the Middle Permian biocrisis[J]. Earth-Science Reviews, 2022, 228: 104011. [18] Wright V P, Burgess P M. The carbonate factory continuum, facies mosaics and microfacies: An appraisal of some of the key concepts underpinning carbonate sedimentology[J]. Facies, 2005, 51(1/2/3/4): 17-23. [19] Surlyk F. A cool-water carbonate ramp with bryozoan mounds: Late Cretaceous-Danian of the Danish Basin[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997: 293-307. [20] James N P. The cool-water carbonate depositional realm[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997: 1-20. [21] Lowenstam H A, Weiner S. On biomineralization[M]. New York: Oxford University Press, 1989. [22] Schlager W. Carbonate sedimentology and sequence stratigraphy[M]. Tulsa: SEPM Society for Sedimentary Geology, 2005. [23] Lees A, Buller A T. Modern temperate-water and warm-water shelf carbonate sediments contrasted[J]. Marine Geology, 1972, 13(5): M67-M73. [24] Pope M C, Read J F. High-resolution stratigraphy of the Lexington limestone (late Middle Ordovician), Kentucky, U.S.A.: A cool-water carbonate-clastic ramp in a tectonic ally active foreland basin[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997. [25] Brandle R T, Krause F F. Upwelling, thermoclines and wave-sweeping on an equatorial carbonate ramp: Lower Carboniferous strata of western Canada[M]//James N P, Clarke J A D. Cool-water carbonates. Tulsa: SEPM Special Publication, 1997. [26] Schlager W. The paradox of drowned reefs and carbonate platforms[J]. GSA Bulletin, 1981, 92(4): 197-211. [27] Titschack J, Fink H G, Baum D, et al. Mediterranean cold-water corals: An important regional carbonate factory?[J]. The Depositional Record, 2016, 2(1): 74-96. [28] 贾承造,张杰,沈安江,等. 非暖水碳酸盐岩:沉积学进展与油气勘探新领域[J]. 石油学报,2017,38(3):241-254. Jia Chengzao, Zhang Jie, Shen Anjiang, et al. Non-tropical carbonate: Progress in sedimentology and new field of petroleum exploration[J]. Acta Petrolei Sinica, 2017, 38(3): 241-254. [29] 苏旺,江青春,陈志勇,等. 冷水碳酸盐岩研究现状与展望[J]. 海相油气地质,2017,22(1):1-13. Su Wang, Jiang Qingchun, Chen Zhiyong, et al. Cool-water carbonates: A review of the current status and prospects[J]. Marine Origin Petroleum Geology, 2017, 22(1): 1-13. [30] Melis R, Salvi G. Foraminifer and ostracod occurrence in a cool-water carbonate factory of the cape Adare (Ross Sea, Antarctica): A key lecture for the climatic and oceanographic variations in the last 30, 000 years[J]. Geosciences, 2020, 10(10): 413. [31] Wisshak M, Form A, Jakobsen J, et al. Temperate carbonate cycling and water mass properties from intertidal to bathyal depths (Azores)[J]. Biogeosciences, 2010, 7(8): 2379-2396. [32] Riding R, Liang L Y. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 101-115. [33] Berra F, Balini M, Levera M, et al. Anatomy of carbonate mounds from the Middle Anisian of Nakhlak (central Iran): Architecture and age of a subtidal microbial-bioclastic carbonate factory[J]. Facies, 2012, 58(4): 685-705. [34] 李飞. 二叠纪—三叠纪之交鲕粒结构特征及时空分布对古海洋环境的指示[D]. 武汉:中国地质大学,2016. Li Fei. The spatial and temporal distributions of ooids and their petrological and geochemical compositions: Implications for paleoceanographic conditions in the Permian-Triassic transition[D]. Wuhan: China University of Geosciences, 2016. [35] Michel J, Laugié M, Pohl A, et al. Marine carbonate factories: A global model of carbonate platform distribution[J]. International Journal of Earth Sciences, 2019, 108(6): 1773-1792. [36] 刘采,秦松,苏文博,等. 碳酸盐台地淹没过程的微相响应:以陕西铜川桃曲坡奥陶系剖面为例[J]. 地质调查与研究,2013,36(1):23-38. Liu Cai, Qin Song, Su Wenbo, et al. Microfacies response to the drowning process of the carbonate platform: A case study on the Ordovician succession at the Taoqupo section, Tongchuan city, Shannxi province, North China Block[J]. Geological Survey and Research, 2013, 36(1): 23-38. [37] Brigaud B, Vincent B, Carpentier C, et al. Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): Interplay of climate change, eustasy and tectonics[J]. Marine and Petroleum Geology, 2014, 53: 3-29. [38] Brandano M, Corda L, Tomassetti L, et al. Frequency analysis across the drowning of a Lower Jurassic carbonate platform: The Calcare Massiccio Formation (Apennines, Italy)[J]. Marine and Petroleum Geology, 2016, 78: 606-620. [39] Andrieu S, Brigaud B, Barbarand J, et al. Disentangling the control of tectonics, eustasy, trophic conditions and climate on shallow-marine carbonate production during the Aalenian-Oxfordian interval: From the western France platform to the western Tethyan domain[J]. Sedimentary Geology, 2016, 345: 54-84. [40] Courgeon S, Jorry S J, Camoin G F, et al. Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique Channel seamounts (SW Indian Ocean)[J]. Marine Geology, 2016, 380: 90-105. [41] Rudnitzki I D, Romero G R, Hidalgo R, et al. High frequency peritidal cycles of the Upper Araras Group: Implications for disappearance of the Neoproterozoic carbonate platform in southern Amazon Craton[J]. Journal of South American Earth Sciences, 2016, 65: 67-78. [42] Han Z, Hu X M, Li J, et al. Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 456: 1-20. [43] Silva-Tamayo J C, Lara M E, Yobo L N, et al. Tectonic and environmental factors controlling on the evolution of Oligo-Miocene shallow marine carbonate factories along a tropical SE Circum-Caribbean[J]. Journal of South American Earth Sciences, 2017, 78: 213-237. [44] Abadi M S, Kulagina E I, Voeten D F A E, et al. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations[J]. Sedimentary Geology, 2017, 348: 19-36. [45] Brandano M, Cornacchia I, Tomassetti L. Global versus regional influence on the carbonate factories of Oligo-Miocene carbonate platforms in the Mediterranean area[J]. Marine and Petroleum Geology, 2017, 87: 188-202. [46] Coletti G, El Kateb A, Basso D, et al. Nutrient influence on fossil carbonate factories: Evidence from SEDEX extractions on Burdigalian limestones (Miocene, NW Italy and S France)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 475: 80-92. [47] Bodin S, Hönig M R, Krencker F N, et al. Neritic carbonate crisis during the Early Bajocian: Divergent responses to a global environmental perturbation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 184-199. [48] Salocchi A C, Argentino C, Fontana D. Evolution of a Miocene carbonate shelf (northern Apennines, Italy) revealed through a quantitative compositional study[J]. Marine and Petroleum Geology, 2017, 79: 340-350. [49] Shi Z Q, Preto N, Jiang H S, et al. Demise of Late Triassic sponge mounds along the northwestern margin of the Yangtze Block, South China: Related to the Carnian Pluvial Phase?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 247-263. [50] 孟琦,黄恒,颜佳新,等. 黔南地区中二叠世碳酸盐台地边缘沉积演化及古海洋意义[J]. 古地理学报,2018,20(1):87-103. Meng Qi, Huang Heng, Yan Jiaxin, et al. Sedimentary evolution of the Middle Permian carbonate platform margin in southern Guizhou and its palaeo-oceanographic implications[J]. Journal of Palaeogeography, 2018, 20(1): 87-103. [51] Posenato R, Bassi D, Trecalli A, et al. Taphonomy and evolution of Lower Jurassic lithiotid bivalve accumulations in the Apennine carbonate platform (southern Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 489: 261-271. [52] Han Z, Hu X M, Kemp D B, et al. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise[J]. Earth and Planetary Science Letters, 2018, 489: 59-71. [53] Jin X, Shi Z Q, Rigo M, et al. Carbonate platform crisis in the Carnian (Late Triassic) of Hanwang (Sichuan Basin, South China): Insights from conodonts and stable isotope data[J]. Journal of Asian Earth Sciences, 2018, 164: 104-124. [54] Wu F, Xie X N, Betzler C, et al. The impact of eustatic sea-level fluctuations, temperature variations and nutrient-level changes since the Pliocene on tropical carbonate platform (Xisha Islands, South China Sea)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514: 373-385. [55] Franceschi M, Dal Corso J, Cobianchi M, et al. Tethyan carbonate platform transformations during the Early Jurassic (Sinemurian- Pliensbachian, southern Alps): Comparison with the Late Triassic Carnian Pluvial Episode[J]. GSA Bulletin, 2019, 131(7/8): 1255-1275. [56] Caron V, Bailleul J, Chanier F, et al. Demise and recovery of Antillean shallow marine carbonate factories adjacent to active submarine volcanoes (Lutetian-Bartonian limestones, St. Bartholomew, French West Indies)[J]. Sedimentary Geology, 2019, 387: 104-125. [57] Cruz A M, Reis A T, Suc J P, et al. Neogene evolution and demise of the Amapá carbonate platform, Amazon continental margin, Brazil[J]. Marine and Petroleum Geology, 2019, 105: 185-203. [58] Shahzad K, Betzler C, Qayyum F. Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (offshore Indus Basin)[J]. Marine and Petroleum Geology, 2019, 101: 519-539. [59] Li M T, Song H J, Woods A D, et al. Facies and evolution of the carbonate factory during the Permian-Triassic crisis in south Tibet, China[J]. Sedimentology, 2019, 66(7): 3008-3028. [60] Jin X, Gianolla P, Shi Z Q, et al. Synchronized changes in shallow water carbonate production during the Carnian Pluvial Episode (Late Triassic) throughout Tethys[J]. Global and Planetary Change, 2020, 184: 103035. [61] Krencker F N, Fantasia A, Danisch J, et al. Two-phased collapse of the shallow-water carbonate factory during the Late Pliensbachian-Toarcian driven by changing climate and enhanced continental weathering in the northwestern Gondwana margin[J]. Earth-Science Reviews, 2020, 208: 103254. [62] Núñez-Useche F, Barragán R, Torres-Martínez M A, et al. Response of the western proto-North Atlantic margin to the early Aptian oceanic anoxic event (OAE) 1a: An example from the Cupido platform margin-gulf of Mexico, NE Mexico[J]. Cretaceous Research, 2020, 113: 104488. [63] Reolid J, Betzler C, Braga J C, et al. Facies and geometry of drowning steps in a Miocene carbonate platform (Maldives)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109455. [64] Rebelo T B, Batezelli A, Luna J S. Stratigraphic evolution and carbonate factory implications: Case study of the Albian carbonates of the Campos Basin, Brazil[J]. The Depositional Record, 2021, 7(2): 271-293. [65] Li H, Li F, Li X, et al. Development and collapse of the Early Cambrian shallow-water carbonate factories in the Hannan-Micangshan area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 583: 110665. [66] Li J, Hu X M, Garzanti E, et al. Climate-driven hydrological change and carbonate platform demise induced by the Paleocene-Eocene Thermal Maximum (southern Pyrenees)[J]. Palaeogeography,Palaeoclimatology, Palaeoecology, 2021, 567:110250. [67] Li S, Wignall P B, Poulton S W, et al. Carbonate shutdown, phosphogenesis and the variable style of marine anoxia in the Late Famennian (Late Devonian) in western Laurentia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589: 110835. [68] Godet A. Drowning unconformities: Palaeoenvironmental significance and involvement of global processes[J]. Sedimentary Geology, 2013, 293: 45-66. [69] Brandano M, Mateu-Vicens G, Baceta J I. Understanding carbonate factories through palaeoecological and sedimentological signals-Tribute to Luis Pomar[J]. Sedimentology, 2022, 69(1): 5-23. [70] Margalef R. The pelagic ecosystem of the Caribbean Sea[C]//United Nations Educational, Scientific and Cultural Organization. Symposium on investigations and resources of the Caribbean Sea and adjacent regions. Paris: UNESCO, 1969: 483-498. [71] Hallock P, Schlager W. Nutrient excess and the demise of coral reefs and carbonate platforms[J]. Palaios, 1986, 1(4): 389-398. [72] Riley G A. Oceanography of long island sound, 1952-1954, II. Physical oceanography[J]. Bulletin of the Bingham Oceanographic Collection, 1956, 15: 15-46. [73] Smith S V, Kimmerer W J, Laws E A, et al. Kaneohe Bay sewage diversion experiment: Perspectives on ecosystem responses to nutritional perturbation[J]. Pacific Science, 1981, 35(4): 279-395. [74] Huston M. Variation in coral growth rates with depth at Discovery Bay, Jamaica[J]. Coral Reefs, 1985, 4(1): 19-25. [75] Kanwisher J W, Wainwright S A. Oxygen balance in some reef corals[J]. The Biological Bulletin, 1967, 133(2): 378-390. [76] Reiss Z, Hottinger L. The gulf of Aqaba: A rift-shaped depression[M]//Reiss Z, Hottinger L. The gulf of Aqaba. Berlin, Heidelberg: Springer, 1984: 19-32. [77] Jaap W C. The ecology of the south Florida coral reefs: A community profile[R]. Petersburg: Florida Dept. of Natural Resources, St. Marine Research Lab, 1984. [78] Tomascik T, Sander F. Effects of eutrophication on reef-building corals: II. Structure of scleractinian coral communities on fringing reefs, Barbados, West Indies[J]. Marine Biology, 1987, 94(1): 53-75. [79] Simkiss K. Phosphates as crystal poisons of calcification[J]. Biological Reviews, 1964, 39(4): 487-504. [80] Kinsey D W, Domm A. Effects of fertilization on a coral reef environment- primary production studies[C]// Great Barrier Reef Committee. Proceedings of the 2nd International Coral Reef Symposium. Brisbane, Australia: Great Barrier Reef Committee, 1974, (1): 49-66. [81] Kinsey D W, Davies P J. Effects of elevated nitrogen and phosphorus on coral reef growth[J]. Limnology and Oceanography, 1979, 24(5): 935-940. [82] Wilmsen M. Evolution and demise of a Mid-Cretaceous carbonate shelf: The Altamira Limestones (Cenomanian) of northern Cantabria (Spain)[J]. Sedimentary Geology, 2000, 133(3/4): 195-226. [83] Highsmith R C. Corals: The inside story[D]. Washington: University of Washington, 1979. [84] Highsmith R C. Geographic patterns of coral bioerosion: A productivity hypothesis[J]. Journal of Experimental Marine Biology and Ecology, 1980, 46(2): 177-196. [85] Brock R E, Smith S V. Response of coral reef cryptofaunal communities to food and space[J]. Coral Reefs, 1983, 1(3): 179-183. [86] Keim L, Brandner R, Krystyn L, et al. Termination of carbonate slope progradation: An example from the Carnian of the dolomites, northern Italy[J]. Sedimentary Geology, 2001, 143(3/4): 303-323. [87] Halfar J, Strasser M, Riegl B, et al. Oceanography, sedimentology and acoustic mapping of a bryomol carbonate factory in the northern gulf of California, Mexico[J]. Geological Society, London, Special Publications, 2006, 255(1): 197-215. [88] Wilson M E J. Tectonic and volcanic influences on the development and diachronous termination of a Tertiary tropical carbonate platform[J]. Journal of Sedimentary Research, 2000, 70(2): 310-324. [89] Caplan M L, Bustin R M, Grimm K A. Demise of a Devonian-Carboniferous carbonate ramp by eutrophication[J]. Geology, 1996, 24(8): 715-718. [90] Fyhn M B W, Boldreel L O, Nielsen L H. Tectonic and climatic control on growth and demise of the Phanh Rang carbonate platform offshore south Vietnam[J]. Basin Research, 2009, 21(2): 225-251. [91] Halfar J, Godinez-Orta L, Mutti M, et al. Nutrient and temperature controls on modern carbonate production: An example from the gulf of California, Mexico[J]. Geology, 2004, 32(3): 213-216. [92] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(/2): 12-32. [93] Bekker A, Eriksson K A. A Paleoproterozoic drowned carbonate platform on the southeastern margin of the Wyoming Craton: A record of the Kenorland breakup[J]. Precambrian Research, 2003, 120(3/4): 327-364. [94] Keim L, Spötl C, Brandner R. The aftermath of the Carnian carbonate platform demise: A basinal perspective (dolomites, southern Alps)[J]. Sedimentology, 2006, 53(2): 361-386. [95] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: Causes and consequences[J]. Geologie en Mijnbouw, 1976, 55(3/4): 179-184. [96] Arthur M A, Schlanger S O. Cretaceous “oceanic anoxic events” as causal factors in development of reef-reservoired giant oil fields[J]. AAPG Bulletin, 1979, 63(6): 870-885. [97] Jenkyns H C. Cretaceous anoxic events: From continents to oceans[J]. Journal of the Geological Society, 1980, 137(2): 171-188. [98] Fischer A G, Silva I P, de Boer P L. Cyclostratigraphy[M]//Ginsburg R N, Beaudoin B. Cretaceous resources, events and rhythms. Dordrecht: Springer, 1990. [99] Gröcke D R, Hesselbo S P, Jenkyns H C. Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change[J]. Geology, 1999, 27(2): 155-158. [100] Leckie R M, Bralower T J, Cashman R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 2002, 17(3): 1041. [101] Föllmi K B, Gainon F. Demise of the northern tethyan Urgonian carbonate platform and subsequent transition towards pelagic conditions: The sedimentary record of the Col de la Plaine Morte area, central Switzerland[J]. Sedimentary Geology, 2008, 205(3/4): 142-159. [102] Najarro M, Rosales I, Martín-Chivelet J. Major palaeoenvironmental perturbation in an early Aptian carbonate platform: Prelude of the Oceanic Anoxic Event 1a?[J]. Sedimentary Geology, 2011, 235(1/2): 50-71. [103] Jenkyns H C, Sarti M, Masetti D, et al. Ammonites and stratigraphy of Lower Jurassic black shales and pelagic limestones from the Belluno Trough, southern Alps, Italy[J]. Eclogae Geologicae Helvetiae, 1985, 78(2): 299-311. [104] Fischer A G, Arthur M A. Secular variations in the pelagic realm[M]//Cook H E, Enos P. Deep-water carbonate environments. Tulsa: SEPM Special Publication, 1977: 19-50. [105] Song H J, Wignall P B, Chu D L, et al. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath[J]. Scientific Reports, 2014, 4: 4132. [106] 宋海军,童金南. 二叠纪—三叠纪之交生物大灭绝与残存[J]. 地球科学,2016,41(6):901-918. Song Haijun, Tong Jinnan. Mass extinction and survival during the Permian-Triassic crisis[J]. Earth Science, 2016, 41(6): 901-918. [107] Gill B C, Lyons T W, Young S A, et al. Geochemical evidence for widespread euxinia in the Later Cambrian ocean[J]. Nature, 2011, 469(7328): 80-83. [108] Trecalli A, Spangenberg J, Adatte T, et al. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event[J]. Earth and Planetary Science Letters, 2012, 357-358: 214-225. [109] Lü C L, Wu S G, Yao Y J, et al. Development and controlling factors of Miocene carbonate platform in the Nam Con Son Basin, southwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 45: 55-68. [110] Taira K. The effect of tectonism on the climate of the past 1200 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1982, 39(1/2): 165-169. [111] Vogt P R. Volcanogenic upwelling of anoxic, nutrient-rich water: A possible factor in carbonate-bank/reef demise and benthic faunal extinctions?[J]. GSA Bulletin, 1989, 101(10): 1225-1245. [112] Bahamonde J R, Colmenero J R, Vera C. Growth and demise of Late Carboniferous carbonate platforms in the eastern Cantabrian zone, Asturias, northwestern Spain[J]. Sedimentary Geology, 1997, 110(1/2): 99-122. [113] Wilson M E J, Lokier S W. Siliciclastic and volcaniclastic influences on equatorial carbonates: Insights from the Neogene of Indonesia[J]. Sedimentology, 2002, 49(3): 583-601. [114] Fernández-Mendiola P A, García-Mondéjar J. Carbonate platform growth influenced by contemporaneous basaltic intrusion (Albian of Larrano, Spain)[J]. Sedimentology, 2003, 50(5): 961-978. [115] Álvaro J J, Clausen S. Botoman (Lower Cambrian) turbid-and clear-water reefs and associated environments from the High Atlas, Morocco[J]. Geological Society, London, Special Publications, 2007, 275(1): 51-70. [116] Álvaro J J, Ezzouhairi H, Ayad N A, et al. Short-term episodes of carbonate productivity in a Cambrian uplifted rift shoulder of the coastal Meseta, Morocco[J]. Gondwana Research, 2008, 14(3): 410-428. [117] 李泯星,屈海洲,程曦,等. 火山作用对碳酸盐岩沉积及成岩的影响[J]. 沉积学报,2020,38(4):810-825. Li Minxing, Qu Haizhou, Cheng Xi, et al. Influence of volcanism on carbonate sedimentation and diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(4): 810-825. [118] Huck S, Stein M, Immenhauser A, et al. Response of proto-North Atlantic carbonate-platform ecosystems to OAE1a-related stressors[J]. Sedimentary Geology, 2014, 313: 15-31. [119] 时志强,钱利军,曾德勇,等. 晚三叠世卡尼期碳酸盐生产危机在东特提斯地区的地质记录[J]. 地质论评,2010,56(3):321-328. Shi Zhiqiang, Qian Lijun, Zeng Deyong, et al. Geological records of Late Triassic Carnian carbonate productivity crisis in eastern tethys region (SW China)[J]. Geological Review, 2010, 56(3): 321-328. [120] Wolfgang K, Flügel E, Golonka J. Paleoreef maps: Evaluation of a comprehensive database on Phanerozoic reefs[J]. AAPG Bulletin, 1999, 83(10): 1320-1336. [121] Pálfy J, Kovács Z, Demény A, et al. End-Triassic crisis and “unreefing” led to the demise of the Dachstein carbonate platform: A revised model and evidence from the Transdanubian range, Hungary[J]. Global and Planetary Change, 2021, 199: 103428. [122] Philip J M, Airaud-Crumiere C. The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: A global control[J]. Coral Reefs, 1991, 10(2): 115-125. [123] Iba Y, Sano S I. Mid-Cretaceous step-wise demise of the carbonate platform biota in the Northwest Pacific and establishment of the North Pacific biotic province[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(3/4): 462-482. [124] Whalen M T, Day J, Eberli G P, et al. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from the Late Devonian, Alberta Basin, Canada[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 127-151. [125] Graziano R. The Early Cretaceous drownings of tethyan carbonate platforms: Controlling mechanisms and paleoceanography. Insights from the Apulia record[C]//COFIN. Proceedings of the COFIN 2000 workshop, February 25-27, 2003, Pozzuoli, Napoli, Italia. Napoli: De Frede, 2003: 55-62. [126] Huck S, Rameil N, Korbar T, et al. Latitudinally different responses of tethyan shoal-water carbonate systems to the early Aptian oceanic anoxic event (OAE 1a)[J]. Sedimentology, 2010, 57(7): 1585-1614. [127] Hallock P. The role of nutrient availability in bioerosion: Consequences to carbonate buildups[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 63(1/2/3): 275-291. [128] Miller A G, Espie G S, Canvin D T. Physiological aspects of CO2 and HCO3- transport by cyanobacteria: A review[J]. Canadian Journal of Botany, 1990, 68(6): 1291-1302. [129] Mutti M, Hallock P. Carbonate systems along nutrient and temperature gradients: Some sedimentological and geochemical constraints[J]. International Journal of Earth Sciences, 2003, 92(4): 465-475. [130] Raspini A. Shallow water carbonate platforms (late Aptian-early Albian, southern Apennines) in the context of supraregional to global changes: Re-appraisal of palaeoecological events as reflectors of carbonate factory response[J]. Solid Earth, 2012, 3(2): 225-249. [131] Poag C W. Rise and demise of the Bahama-grand banks gigaplatform, northern margin of the Jurassic proto-Atlantic seaway[J]. Marine Geology, 1991, 102(1/2/3/4): 63-130. [132] Merino-Tomé Ó, Porta G D, Kenter J A M, et al. Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): Influence of tectonics, eustacy and carbonate production[J]. Sedimentology, 2012, 59(1): 118-155. [133] Jarvis I, Carson G A, Cooper M K E, et al. Microfossil assemblages and the Cenomanian-Turonian (Late Cretaceous) oceanic anoxic event[J]. Cretaceous Research, 1988, 9(1): 3-103. [134] Thierry J, Peter R V. Shelfal accommodation as a major control on carbonate platforms[J]. Bulletin de la Société Géologique de France, 1995, 166(4): 423-435. [135] Sattler U, Immenhauser A, Schlager W, et al. Drowning history of a Miocene carbonate platform (Zhujiang Formation, South China Sea)[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 318-331. [136] Allan J R, Matthews R K. Isotope signatures associated with early meteoric diagenesis[J]. Sedimentology, 1982, 29(6): 797-817. [137] Joachimski M M. Subaerial exposure and deposition of shallowing upward sequences: Evidence from stable isotopes of Purbeckian peritidal carbonates (basal Cretaceous), Swiss and French Jura Mountains[J]. Sedimentology, 1994, 41(4): 805-824. [138] Sattler U, Immenhauser A, Hillgärtner H, et al. Characterization, lateral variability and lateral extent of discontinuity surfaces on a carbonate platform (Barremian to lower Aptian, Oman)[J]. Sedimentology, 2005, 52(2): 339-361. [139] Immenhauser A, Creusen A, Esteban M, et al. Recognition and interpretation of polygenic discontinuity surfaces in the Middle Cretaceous Shu’aiba, Nahr Umr, and Natih Formations of northern Oman[J]. GeoArabia, 2000, 5(2): 299-322. [140] Dickson J A D, Coleman M L. Changes in carbon and oxygen isotope composition during limestone diagenesis[J]. Sedimentology, 1980, 27(1): 107-118. [141] Esteban M, Taberner C. Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines[J]. Journal of Geochemical Exploration, 2003, 78-79: 355-359. [142] Nelson C S. An introductory perspective on non-tropical shelf carbonates[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 3-12. [143] James N P, Clarke J A D. Cool-water carbonates[M]. Tulsa: SEPM Society for Sedimentary Geology, 1997. [144] Simms M J, Ruffell A H. Synchroneity of climatic change and extinctions in the Late Triassic[J]. Geology, 1989, 17(3): 265-268. [145] Hornung T, Krystyn L, Brandner R. A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: Evidence for the Alpine Reingraben Event from Spiti (Indian Himalaya)?[J]. Journal of Asian Earth Sciences, 2007, 30(2): 285-302. [146] Rigo M, Preto N, Roghi G, et al. A rise in the carbonate compensation depth of western tethys in the Carnian (Late Triassic): Deep-water evidence for the Carnian Pluvial Event[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 246(2/3/4): 188-205. [147] Lukeneder S, Lukeneder A, Harzhauser M, et al. A delayed carbonate factory breakdown during the tethyan-wide Carnian Pluvial Episode along the Cimmerian terranes (Taurus, Turkey)[J]. Facies, 2012, 58(2): 279-296. [148] 金鑫,时志强,王艳艳,等. 晚三叠世中卡尼期极端气候事件:研究进展及存在问题[J]. 沉积学报,2015,33(1):105-115. Jin Xin, Shi Zhiqiang, Wang Yanyan, et al. Mid-Carnian (Late Triassic) extreme climate event: Advances and unsolved problems[J]. Acta Sedimentologica Sinica, 2015, 33(1): 105-115. [149] Gattolin G, Preto N, Breda A, et al. Sequence stratigraphy after the demise of a high-relief carbonate platform (Carnian of the dolomites): Sea-level and climate disentangled[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 423: 1-17. [150] Li Q, Ruhl M, Wang Y D, et al. Response of Carnian Pluvial Episode evidenced by organic carbon isotopic excursions from western Hubei, South China[J]. Palaeoworld, 2022, 31(2): 324-333. [151] Betzler C, Brachert T C, Kroon D. Role of climate in partial drowning of the Queensland Plateau carbonate platform (northeastern Australia)[J]. Marine Geology, 1995, 123(1/2): 11-32. [152] Simone L, Carannante G. The fate of Foramol (“temperate-type”) carbonate platforms[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 347-354. [153] Bourrouilh-Le Jan F G, Hottinger L C. Occurrence of rhodolites in the tropical Pacific: A consequence of Mid-Miocene paleo-oceanographic change[J]. Sedimentary Geology, 1988, 60(1/2/3/4): 355-358, 363-367. [154] Adams C G, Lee D E, Rosen B R. Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 77(3/4): 289-313. [155] Rasser M W, Scheibner C, Mutti M. A paleoenvironmental standard section for Early Ilerdian tropical carbonate factories (Corbieres, France; Pyrenees, Spain)[J]. Facies, 2005, 51(1/2/3/4): 218-232. [156] Chatalov A, Bonev N, Ivanova D. Depositional characteristics and constraints on the mid-Valanginian demise of a carbonate platform in the intra-tethyan domain, Circum-Rhodope Belt, northern Greece[J]. Cretaceous Research, 2015, 55: 84-115. [157] Donnadieu Y, Dromart G, Goddéris Y, et al. A mechanism for brief glacial episodes in the Mesozoic greenhouse[J]. Paleoceanography, 2011, 26(3): PA3212. [158] Krencker F N, Bodin S, Hoffmann R, et al. The Middle Toarcian cold snap: Trigger of mass extinction and carbonate factory demise[J]. Global and Planetary Change, 2014, 117: 64-78. [159] Martinez M, Dera G. Orbital pacing of carbon fluxes by a ~ 9-My eccentricity cycle during the Mesozoic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41): 12604-12609. [160] 高远. 北羌塘坳陷中—下侏罗统多级别层序格架及意义:以羌科1井雀莫错组为例[D]. 北京:中国地质大学,2020. Gao Yuan. Sequence stratigraphic frameworks in different scales of Lower-Middle Jurassic in the northern Qiangtang Depression and their significances: A case study of the Quemoco Formation in the QK-1 well[D]. Beijing: China University of Geosciences, 2020. [161] Heydari E, Arzani N, Safaei M, et al. Ocean's response to a changing climate: Clues from variations in carbonate mineralogy across the Permian-Triassic boundary of the Shareza section, Iran[J]. Global and Planetary Change, 2013, 105: 79-90. [162] Slater S M, Bown P, Twitchett R J, et al. Global record of “ghost” nannofossils reveals plankton resilience to high CO2 and warming[J]. Science, 2022, 376(6595): 853-856. [163] Liang H D. End-Permian catastrophic event of marine acidification by hydrated sulfuric acid: Mineralogical evidence from Meishan section of South China[J]. Chinese Science Bulletin, 2002, 47(16): 1393-1397. [164] Heydari E, Hassanzadeh J. Deev Jahi Model of the Permian-Triassic boundary mass extinction: A case for gas hydrates as the main cause of biological crisis on Earth[J]. Sedimentary Geology, 2003, 163(1/2): 147-163. [165] Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5728): 1611-1615. [166] Payne J L, Kump L R. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 264-277. [167] Wignall P B, Kershaw S, Collin P Y, et al. Erosional truncation of uppermost Permian shallow-marine carbonates and implications for Permian-Triassic boundary events: Comment[J]. GSA Bulletin, 2009, 121(5/6): 954-956. [168] Payne J L, Turchyn A V, Paytan A, et al. Calcium isotope constraints on the end-Permian mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8543-8548. [169] Kiessling W, Simpson C. On the potential for ocean acidification to be a general cause of ancient reef crises[J]. Global Change Biology, 2011, 17(1): 56-67. [170] Montenegro A, Spence P, Meissner K J, et al. Climate simulations of the Permian-Triassic boundary: Ocean acidification and the extinction event[J]. Paleoceanography, 2011, 26(3): PA3207. [171] Weidlich O, Bernecker M. Biotic carbonate precipitation inhibited during the Early Triassic at the rim of the Arabian Platform (Oman)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 129-150. [172] Clapham M E, Payne J L. Acidification, anoxia, and extinction: A multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian[J]. Geology, 2011, 39(11): 1059-1062. [173] Georgiev S, Stein H J, Hannah J L, et al. Hot acidic Late Permian seas stifle life in record time[J]. Earth and Planetary Science Letters, 2011, 310(3/4): 389-400. [174] Beauchamp B, Grasby S E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350-352: 73-90. [175] Payne J L, Clapham M E. End-Permian mass extinction in the oceans: An ancient analog for the twenty-first century?[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 89-111. [176] Kump L R, Bralower T J, Ridgwell A. Ocean acidification in deep time[J]. Oceanography, 2009, 22(4): 94-107. [177] Joachimski M M, Müller J, Gallagher T M, et al. Five million years of high atmospheric CO2 in the aftermath of the Permian-Triassic mass extinction[J]. Geology, 2022, 50(6): 650-654. [178] Kantzas E P, Val Martin M, Lomas M R, et al. Substantial carbon drawdown potential from enhanced rock weathering in the United Kingdom[J]. Nature Geoscience, 2022, 15(5): 382-389. [179] Jin X, Franceschi M, Martini R, et al. Eustatic sea-level fall and global fluctuations in carbonate production during the Carnian Pluvial Episode[J]. Earth and Planetary Science Letters, 2022, 594: 117698. [180] Franceschi M, Preto N, Marangon A, et al. High precipitation rate in a Middle Triassic carbonate platform: Implications on the relationship between seawater saturation state and carbonate production[J]. Earth and Planetary Science Letters, 2016, 444: 215-224. [181] 古强,邢凤存,钱红杉,等. 川东北飞仙关组鲕粒特征与水动力相关性研究[J]. 沉积学报,2021,39(6):1371-1386. Gu Qiang, Xing Fengcun, Qian Hongshan, et al. Correlation between ooid characteristics and hydrodynamic forces in the Feixianguan Formation, northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1371-1386. [182] Li X W, Trower E J, Lehrmann D J, et al. Implications of giant ooids for the carbonate chemistry of Early Triassic seawater[J]. Geology, 2021, 49(2): 156-161. [183] Lees A. Possible influence of salinity and temperature on modern shelf carbonate sedimentation[J]. Marine Geology, 1975, 19(3): 159-198. [184] Allison P A, Wright V P. Switching off the carbonate factory: A-tidality, stratification and brackish wedges in Epeiric seas[J]. Sedimentary Geology, 2005, 179(3/4): 175-184. [185] 徐捷凯. 颗石藻对盐度与碳酸盐系统变化的生理学响应[D]. 厦门:厦门大学,2018. Xu Jiekai. Physiological responses of coccolithophores to changes in salinity and carbonate chemistry[D]. Xiamen: Xiamen University, 2018. [186] Sun S Q. Skeletal aragonite dissolution from hypersaline seawater: A hypothesis[J]. Sedimentary Geology, 1992, 77(3/4): 249-257. [187] 宋国奇,王延章,石小虎,等. 东营沙四段古盐度对碳酸盐岩沉积的控制作用[J]. 西南石油大学学报,2013,35(2):8-14. Song Guoqi, Wang Yanzhang, Shi Xiaohu, et al. Palaeosalinity and its controlling on the development of beach and bar in Lake Facies[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(2): 8-14. [188] Krijgsman W, Langereis C G, Zachariasse W J, et al. Late Neogene evolution of the Taza-Guercif Basin (Rifian Corridor, Morocco) and implications for the Messinian salinity crisis[J]. Marine Geology, 1999, 153(1/2/3/4): 147-160. [189] Krijgsman W, Hilgen F J, Raffi I, et al. Chronology, causes and progression of the Messinian salinity crisis[J]. Nature, 1999, 400(6745): 652-655. [190] Manzi V, Lugli S, Roveri M, et al. A new facies model for the Upper Gypsum of Sicily (Italy): Chronological and palaeoenvironmental constraints for the Messinian salinity crisis in the Mediterranean[J]. Sedimentology, 2009, 56(7): 1937-1960. [191] Manzi V, Lugli S, Roveri M, et al. The Messinian “Calcare di Base” (Sicily, Italy) revisited[J]. GSA Bulletin, 2011, 123(1/2): 347-370. [192] Manzi V, Gennari R, Hilgen F, et al. Age refinement of the Messinian salinity crisis onset in the Mediterranean[J]. Terra Nova, 2013, 25(4): 315-322. [193] Manzi V, Lugli S, Roveri M, et al. The Messinian salinity crisis in Cyprus: A further step towards a new stratigraphic framework for eastern Mediterranean[J]. Basin Research, 2016, 28(2): 207-236. [194] Bourillot R, Vennin E, Kolodka C, et al. The role of topography and erosion in the development and architecture of shallow-water coral bioherms (Tortonian–Messinian, Cabo de Gata, SE Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(1/2): 92-114. [195] Hoffmann R, Bitner M A, Pisera A, et al. Late Miocene biota from the Abad member of the Carboneras-Nijar Basin (Spain, Andalusia): A bathyal fossil assemblage pre-dating the Messinian salinity crisis[J]. Geobios, 2020, 59: 1-28. [196] Tzevahirtzian A, Caruso A, Scopelliti G, et al. Onset of the Messinian Salinity Crisis: Sedimentological, petrographic and geochemical characterization of the pre-salt sediments from a new core (Caltanissetta Basin, Sicily)[J]. Marine and Petroleum Geology, 2022, 141: 105686. [197] Caruso A, Pierre C, Blanc-Valleron M M, et al. Carbonate deposition and diagenesis in evaporitic environments: The evaporative and sulphur-bearing limestones during the settlement of the Messinian Salinity Crisis in Sicily and Calabria[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 429: 136-162. [198] Borrelli M, Perri E, Avagliano D, et al. Paleogeographic and sedimentary evolution of North Calabrian basins during the Messinian Salinity Crisis (South Italy)[J]. Marine and Petroleum Geology, 2022, 141: 105726. [199] Bourillot R, Vennin E, Rouchy J M, et al. The end of the Messinian Salinity Crisis in the western Mediterranean: Insights from the carbonate platforms of south-eastern Spain[J]. Sedimentary Geology, 2010, 229(4): 224-253. [200] Bourillot R, Vennin E, Rouchy J M, et al. Structure and evolution of a Messinian mixed carbonate-siliciclastic platform: The role of evaporites (Sorbas Basin, south-east Spain)[J]. Sedimentology, 2010, 57(2): 477-512. [201] Gindre-Chanu L, Borrelli M, Caruso A, et al. Carbonate/evaporitic sedimentation during the Messinian salinity crisis in active accretionary wedge basins of the northern Calabria, southern Italy[J]. Marine and Petroleum Geology, 2020, 112: 104066. [202] Andreetto F, Aloisi G, Raad F, et al. Freshening of the Mediterranean Salt Giant: Controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis[J]. Earth-Science Reviews, 2021, 216: 103577. [203] Schlager W. Scaling of sedimentation rates and drowning of reefs and carbonate platforms[J]. Geology, 1999, 27(2): 183-186. [204] Schlager W, Marsal D, van der Geest P A G, et al. Sedimentation rates, observation span, and the problem of spurious correlation[J]. Mathematical Geology, 1998, 30(5): 547-556.