-
研究共采集了57个新鲜黑色页岩样品。所采集的样品均是未受风化作用影响的新鲜岩石,并避开后期充填的方解石脉体。制作成岩石薄片用于草莓状黄铁矿粒径统计,研磨成粉末用于古环境沉积地球化学分析。
使用高频红外碳硫分析仪(TL851-6K)测定了样品的TOC含量,测定之前使用稀盐酸对无机碳进行完全消解,TOC值分析精度优于10%,该实验在西南石油大学羌塘盆地研究院完成。样品的主量、微量元素及稀土元素测试在核工业北京地质研究院分析测试中心进行,主量元素通过熔片法进行X射线荧光(XRF)分析,微量元素采用高分辨电感耦合等离子体质谱仪(ICP-MS)进行测试分析,分析精度优于5%。
利用富集系数来评估元素的富集程度,富集系数公式计算如下[24]:
XEF=(X/Al)sample/(X/Al)PAAS (1) 式中:X表示样品中给定元素的浓度,而PAAS表示后太古代澳大利亚页岩标准中该元素的平均浓度[25]。通常,当XEF<1.0时表示元素相对亏损;当XEF>1.0则表示元素的相对富集度;XEF>3表示中等富集;XEF>10代表强富集[26]。
元素的过量浓度,包括钡(BaXS)、硅(SiXS)和磷(PXS),通常用作指示海洋初级生产力水平的相对指标。元素X的过量浓度(XXS)通过从元素X总量中减去陆源输入的部分计算得出,公式如下[27]:
XXS=Xsample-(Alsample×[X/Al]PAAS) (2) 式中:X和Al表示样品和PAAS标准化后元素X和Al的含量。
草莓状黄铁矿粒径观察在反射光学显微镜成像下进行,使用微区形貌及原位多组分快速元素分析系统(LIBS),型号为德国徕卡DM6M,最大放大倍数约4 000倍,镜下识别并观察黄铁矿形态并统计草莓状黄铁矿直径。每个样品统计100个以上的草莓状黄铁矿。复合草莓状黄铁矿不在统计范围之内[28]。另外,由于岩石薄片切面未必穿过草莓状黄铁矿中心,其测量的粒径略小于其真实粒径。但当统计的样本个数足够大时(n>100),平均粒径的偏差小于10%[29]。该实验在西南石油大学羌塘盆地研究院完成。
-
野外露头沉积相分析表明,水井沱组与下伏灯影组呈整合接触(图3a),主要以陆棚、斜坡及碳酸盐台地相沉积为特征(图3b~f),期间沉积环境变化较大,整体上经历了浅水陆棚—深水陆棚—斜坡—碳酸盐台地的演化过程,沉积相及沉积充填演化序列反映了研究区水体浅—深—浅的变化过程。结合实验室薄片鉴定与岩矿分析,将水井沱组黑色页岩段划分出以下5种沉积微相。
图 3 修齐剖面水井沱组黑色页岩特征
Figure 3. Characteristics of black shales from the Shuijingtuo Formation at Xiuqi section
1) 浅水混积陆棚粉砂质灰岩和粉砂质白云岩微相(TOC介于0.3%~1.0%)
该沉积微相发育于水井沱组一段底部及水井沱组一段顶部,厚约6 m,水井沱组一段底部为黄褐色,顶部为灰色。碳酸盐含量约55%,颗粒成分以石英粉砂为主,含量约40%,含有少量长石,颗粒磨圆较差,黄铁矿含量极低,这些颗粒在局部形成水平纹层(图4a,b),指示台地与陆棚过渡的浅水环境。底部粉砂质白云岩TOC介于0.3%~0.5%,顶部粉砂质灰岩约为1.0%。
图 4 修齐剖面水井沱组浅水陆棚相镜下照片
Figure 4. Microscopic photos of the shallow water shelf facies of the Shuijingtuo Formation at Xiuqi section
2) 浅水陆棚粉砂质泥岩或粉砂岩微相(TOC介于0.89%~1.16%)
该沉积微相发育于水井沱组一段下部及上部,厚约30 m,发育明显韵律层(图4c,d),局部粉砂含量较多,颜色为中—深灰色,纹层厚度一般介于2~5 mm。镜下观察发现,亮纹层粉砂含量较多,较粗的矿物向上逐渐减少,暗纹层以黏土矿物为主。该岩相主要由黏土矿物、石英、黄铁矿和方解石组成,也有少量长石和云母。泥质矿物中存在石英及长石颗粒,粒径介于6~55 μm(图4e~g),颗粒分选较好,矿物边缘多不清晰,具有水动力较强、矿物颗粒分布均匀、粒度较粗的特点。TOC含量介于0.89%~1.16%。
3) 深水陆棚含钙质结核泥岩和含钙质结核泥质粉砂岩微相(TOC介于0.82%~1.21%)
该沉积微相发育于水井沱一段中部,深灰色薄层含钙质结核泥岩与黑色薄层含钙质结核泥质粉砂岩互层,指示水体的短暂波动,发育水平层理、微粒序层理(图5a,b)、均质块状层理、钙质结核(图3c,d),厚约100 m,为深水垂向加积与低密度浊流沉积环境,水动力条件较弱,单层厚度介于0.02~0.50 m,纹层厚度一般小于2 mm。显微观察显示,粉砂质泥岩中碎屑矿物主要由圆—次圆形、分选较好的石英颗粒组成,局部可见云母碎片(图5c,d),黄铁矿和TOC含量较高,TOC含量介于0.82%~1.21%。
图 5 修齐剖面水井沱组深水陆棚相镜下照片
Figure 5. Microscopic photos of the deep⁃water shelf facies of the Shuijingtuo Formation at Xiuqi section
4) 深水陆棚粉砂质泥岩与泥质粉砂岩微相(TOC介于1.5%~1.8%)
该沉积微相发育于水井沱组一段中上部,厚约50 m,颜色为深灰色,纹层厚度一般小于2 mm,粉砂质泥岩与泥质粉砂岩薄层互层,局部粉砂含量明显增多。石英含量介于10%~30%,云母含量约为1%(图6a,b),黄铁矿含量较砂泥质浅水陆棚相明显增多。有机质含量介于1.5%~1.8%。
图 6 修齐剖面水井沱组深水陆棚相及斜坡相镜下照片
Figure 6. Microscopic photos of the deep⁃water shelf and slope facies of the Shuijingtuo Formation at Xiuqi section
5) 斜坡浊积砂泥岩微相(TOC介于0.85%~1.06%)
该沉积微相发育于水井沱组一段上部,也发育于中部黑色硅质页岩夹层中,单层厚度介于0.02~0.20 m,颜色为浅—中灰色。显微观察显示,细—粉砂岩中碎屑颗粒占75%~90%,主要由圆—次圆形、分选较好的石英颗粒组成,局部可见云母碎片。在泥质岩块体上,可见由滑塌作用形成的变形层理;细—粉砂岩底部发育正粒序微粒序层理(图6c~g),由底部细—粉砂岩过渡到顶部泥岩。TOC含量介于0.85%~1.06%。
为方便下文沉积地球化学化环境分析,根据岩相组合及TOC含量将水井沱组一段分为三个亚段:砂泥质浅水陆棚相(A亚段)、深水陆棚相(B亚段)及浊积砂微相(C亚段)。
-
野外及实验室研究表明,水井沱组一段黑色页岩中黄铁矿形态主要为自形—半自形(图7g~i)以及草莓状黄铁矿(图7a~g)。草莓状黄铁矿主要以分散的正常草莓状形式存在(图7a,b),偶见多个草莓状黄铁矿堆积在一起(图7c),部分草莓状黄铁矿发生了后期的成岩二次生长,形成部分充填草莓状黄铁矿(见残余微孔,图7d,e),但这种部分充填或充填的草莓状黄铁矿粒径与正常草莓状黄铁矿相差小于10%,可以进行粒径的统计。同时,见少量不规则黄铁矿微晶集合体(图7f,g),部分为填充型草莓状黄铁矿(图7d,e)。从A亚段至C亚段,草莓状黄铁矿的形态、大小都发生了显著变化。在A亚段中,草莓状黄铁矿缺乏,黄铁矿以自形—半自形黄铁矿为主;在B亚段中,草莓状黄铁矿数量大幅增多,且黄铁矿以草莓状黄铁矿为主,黄铁矿颗粒中60%~70%为草莓状黄铁矿;在C亚段中,草莓状黄铁矿数量少,且自形—半自形黄铁矿碎片占主导地位,黄铁矿颗粒中约20%为草莓状黄铁矿。
-
川东北地区城口修齐剖面水井沱组黑色岩系的TOC含量介于0.17%~1.53%,平均值为0.99%。A亚段有机碳含量相对较低,介于0.29%~0.54%;B亚段有机碳含量相对较高,介于0.82%~1.53%;C亚段有机碳含量中等,介于0.85%~1.05%。TOC分布特征为,底部A亚段TOC值较低,中部B亚段TOC值升高,顶部C亚段TOC逐渐下降。该剖面水井沱组一段黑色页岩TOC特征总体上具有低—高—低的特征(图2、表1),高TOC主要发育于B亚段。
表 1 修齐剖面水井沱组微量元素地球化学指标
Table 1. Trace elements and geochemical index of the Shuijingtuo Formation at Xiuqi section
亚段 样品编号 w(TOC)/% U/Th Corg/P MoEF UEF BaXS P/Ti CIA Ga/Rb Mo/TOC Co×Mn A亚段 XQ67 0.290 0.40 17.77 2.89 4.40 1 349.6 0.24 51.72 0.20 19.90 0.62 XQ74 0.541 0.59 26.89 5.17 5.95 1 893.4 0.26 64.82 0.19 15.62 0.04 XQ85 0.332 1.04 16.05 4.94 8.24 1 677.3 0.30 62.96 0.19 32.79 0.09 B亚段 XQ95 0.895 1.03 40.42 4.86 11.20 511.6 0.29 64.21 0.19 17.65 0.15 XQ101 1.150 0.99 52.53 5.29 11.03 429.4 0.33 52.31 0.20 11.65 0.61 XQ115 1.001 1.07 45.52 6.26 12.48 566.7 0.37 52.15 0.20 14.19 0.70 XQ127 1.161 1.28 60.78 5.06 9.14 881.1 0.33 53.33 0.19 7.97 0.70 XQ131 0.870 0.96 40.38 4.14 6.01 201.5 0.29 62.52 0.19 9.45 0.31 XQ135 1.212 0.85 49.59 7.91 14.49 232.6 0.32 60.09 0.21 17.00 0.54 XQ139 0.909 1.59 42.52 6.09 13.02 514.7 0.30 55.95 0.19 19.02 0.78 XQ145 0.950 1.20 45.29 6.19 13.77 1 100.7 0.31 53.11 0.19 18.32 0.78 XQ149 0.912 1.24 42.81 6.18 8.08 727.2 0.30 53.16 0.20 11.51 0.64 XQ153 0.869 1.11 45.46 6.63 16.13 318.3 0.27 60.00 0.19 24.29 0.63 XQ157 0.826 1.31 37.57 5.50 10.02 1 075.3 0.33 52.49 0.19 14.65 0.76 XQ161 1.460 1.04 68.26 6.91 17.42 1 758.1 0.35 56.12 0.18 13.70 0.75 XQ165 1.427 1.37 64.94 5.38 11.22 501.7 0.32 53.79 0.19 10.02 0.69 XQ167 1.533 1.09 57.03 5.99 11.02 708.3 0.39 55.99 0.18 9.33 0.70 XQ169 1.461 1.23 51.88 8.08 21.22 933.3 0.41 57.60 0.17 18.69 1.12 C亚段 XQ173 0.854 1.62 40.26 3.94 10.34 820.3 0.30 58.98 0.19 17.91 0.28 XQ175 1.030 0.78 66.59 3.71 6.60 1 056.6 0.24 54.44 0.19 8.11 0.72 XQ177 0.969 0.75 31.92 5.51 10.74 637.3 0.44 57.97 0.18 14.66 0.78 XQ179 1.051 1.16 72.73 4.10 7.73 767.6 0.21 54.09 0.19 9.89 0.66 XQ180 1.066 0.82 73.34 3.46 5.88 490.4 0.21 52.33 0.20 7.26 0.70 XQ181 1.051 0.65 68.71 4.47 6.56 676.9 0.20 56.88 0.19 8.75 0.68 -
样品的主要元素含量如表2所示。页岩中的Al2O3、SiO2和CaO分别对应石英、黏土和碳酸盐岩,是海相页岩的主要成分,三元图指示了这三种矿物主要元素的相对含量[27]。三元图显示,页岩中SiO2与CaO相对于Al2O3和更富集,SiO2含量介于55.56%~70.22%;CaO含量介于0.53%~11.42%。表明页岩矿物成分主要为石英和碳酸盐岩,缺少黏土矿物(图8)。
表 2 修齐剖面水井沱组主量元素特征表
Table 2. Test results of major elements in the Shuijingtuo Formation shale at Xiuqi section
亚段 样品编号 w(TOC)/% 主量元素/% SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 FeO 烧失量 A亚段 XQ67 0.290 63.20 13.25 4.58 1.75 3.91 2.92 2.55 0.047 0.799 0.193 0.96 6.76 XQ74 0.541 68.49 14.36 2.62 1.61 0.688 2.25 3.15 0.011 0.928 0.238 0.55 5.57 XQ85 0.332 70.22 13.37 3.31 1.36 0.647 2.66 2.68 0.015 0.816 0.245 0.59 4.58 B亚段 XQ95 0.895 67.69 14.27 3.68 1.69 0.528 2.64 3.03 0.018 0.892 0.262 1.55 5.20 XQ101 1.150 64.48 12.29 4.08 2.39 2.92 2.60 2.45 0.044 0.784 0.259 2.34 7.70 XQ115 1.001 61.47 11.51 3.72 2.11 6.27 2.45 2.31 0.055 0.705 0.260 2.02 9.13 XQ127 1.161 55.56 10.23 3.46 2.01 11.42 2.02 2.13 0.061 0.690 0.226 1.73 12.12 XQ131 0.870 66.45 13.86 4.32 2.11 0.746 2.69 2.90 0.025 0.889 0.255 2.33 5.66 XQ135 1.212 63.65 14.38 4.54 2.28 1.18 3.02 2.89 0.033 0.906 0.289 1.93 6.81 XQ139 0.909 63.45 13.44 5.07 2.22 2.19 2.53 2.81 0.046 0.843 0.253 2.44 7.14 XQ145 0.950 62.68 12.78 4.61 2.54 3.32 2.58 2.58 0.054 0.795 0.248 2.40 7.77 XQ149 0.912 63.70 13.15 4.31 2.44 2.81 2.63 2.71 0.045 0.834 0.252 2.14 7.07 XQ153 0.869 63.84 13.23 5.94 2.12 1.11 2.64 2.77 0.036 0.822 0.226 1.97 7.21 XQ157 0.826 61.83 12.21 4.08 2.49 4.65 2.53 2.52 0.060 0.782 0.260 2.33 8.50 XQ161 1.460 59.65 11.61 4.14 2.48 6.24 1.92 2.55 0.052 0.723 0.253 2.38 10.35 XQ165 1.427 63.19 12.89 4.54 2.64 2.78 2.49 2.66 0.045 0.802 0.260 2.31 7.65 XQ167 1.533 61.50 13.12 4.87 2.67 3.20 2.18 2.90 0.043 0.816 0.318 2.52 8.34 XQ169 1.461 57.97 13.01 5.64 3.11 4.32 1.94 2.95 0.055 0.804 0.333 2.76 9.87 C亚段 XQ173 0.854 65.23 14.97 2.85 1.91 1.32 3.07 3.29 0.020 0.836 0.251 1.19 6.15 XQ175 1.030 60.78 12.81 4.64 2.63 4.07 2.38 2.67 0.048 0.774 0.183 2.52 9.01 XQ177 0.969 61.12 13.37 4.86 2.96 3.39 1.94 3.06 0.045 0.812 0.359 2.76 8.06 XQ179 1.051 62.23 13.61 4.27 2.32 3.30 2.56 2.89 0.041 0.818 0.171 1.90 7.72 XQ180 1.066 61.14 13.31 4.49 2.53 3.55 2.82 2.63 0.045 0.825 0.172 1.95 8.38 XQ181 1.051 62.69 14.18 4.59 2.47 2.11 2.44 3.08 0.038 0.892 0.181 1.97 7.29 从富集系数上来看,与上陆壳(UCC)成分相比,页岩样品中的MnO2显著亏损(图9)[25],其他主要元素的氧化物与PAAS页岩基本相同。样品的主量元素含量变化基本一致,其中,B亚段更富集CaO、P2O5、MnO等元素、A亚段则明显亏损CaO、MgO、MnO元素。
微量元素具体含量如表2所示,样品的微量元素平均富集系数如图9所示,水井沱组一段页岩与UCC页岩相比,Mo、U、V、Sb元素明显富集,Cr、Co、Rb、Th、Pb呈现明显亏损。一般来说,Mo、U、V与泥岩形成过程中的氧化还原条件有关。样品呈现出大致相同的变化趋势,其中,B亚段较A亚段、C亚段更富集V、U、Mo、Zn、Ni、Tl、Cd等元素,氧化还原敏感元素明显富集。
-
古生产力是指生物在能量循环中单位面积和单位时间所能产生的有机物质总量[30]。目前,恢复古生产力的主要手段是地球化学指标。然而,由于这些指标容易受到氧化还原条件和成岩蚀变的影响,结果在一定程度上并不可靠[31],因此,需要结合多个指标进行综合分析。
重晶石富集率通常与海洋初级生产力呈正相关,在还原条件下,重晶石以生物成因重晶石的形式集中在有机物颗粒上,因此,BaXS通常被广泛用作重建古生产力的指标[32];P是浮游生物生长所必需的营养素,可以用来估算古代的生物生产力,为避免陆源碎屑中P的影响,通常使用P/Ti值来判断生产力[33]。研究认为,P/Ti高于0.79作为高生产率的标志;0.34<P/Ti<0.79代表中等生产力;P/Ti<0.34代表低生产力[33]。
修齐剖面水井沱组一段P/Ti比值介于0.20~0.44,平均值0.31,显示出整体较低的古生产力水平,属于低古生产力沉积模式,但在B亚段(高TOC层段),古生产力有升高的趋势。地球化学指标与TOC含量的交会图显示了线性相关关系(图10),其中,R2值介于0~0.2,表示极弱相关或无相关;0.2~0.4为弱相关;0.4~0.6为中等程度相关;0.6~0.8为强相关;0.8~1.0极强相关[34]。通过相关性分析,BaXS(R2=0.13)和P/Ti(R2=0.17)与TOC存在极弱相关性。水井沱组一段的古生产力水平与TOC呈弱相关(图10),表明古生产力对有机质富集造成了一定影响,但并不是影响水井沱组页岩有机质富集的首要因素。
-
陆源碎屑输入会稀释有机质并减缓其沉降速率,从而对有机质富集产生影响;同时,陆源输入作为吸附剂使有机质吸附在铝硅酸盐上,控制有机质的埋藏速率和细菌降解效率[35]。陆源碎屑流入在有机质富集中起着重要作用[36]:一方面,适当的流入能将营养物质带入水体,提高生产力,这有利于有机质富集;另一方面,陆源输入会导致有机质稀释[15]。
Ti和Al是陆源的稳定元素,铝通常来自铝硅酸盐黏土矿物,而钛通常以钛铁矿和二氧化钛的形式存在于沉积物[37]。Ti和Al几乎不受成岩作用和风化作用的影响,在沉积过程中表现出良好的化学稳定性,因此,Ti和Al通常用于指示陆源输入强度指标[24,38]。结果显示,Ti和Al的相关性较高(R2=0.81)且呈现相似的变化趋势(图11),水井沱组一段的陆源输入整体较低,除个别数据突变外,并没有明显的变化趋势,表明此剖面水井沱组一段沉积时期风化程度处在较低水平(与古气候相一致)且地理位置位于远离海岸的区域,陆源输入相对稳定,且Ti(R2=0.07)和Al(R2=0.09)与TOC之间没有明显线性相关性,表明有机质富集过程基本不受陆源输入影响。
-
沉积盆地中的水体限制对沉积物中有机质的积累和保存起着积极的作用,受限的水体会导致水体的缺氧条件而有利于有机质的保存[39]。在停滞的深水环境中,硫酸盐还原细菌导致硫化环境的形成,并促进沉积物中Mo的富集。因此,停滞的底水循环和硫化环境将导致Mo以大于外部Mo供应的速率进入沉积物,这将导致沉积物中保持较低的Mo/TOC比率[39⁃40]。因此,Mo/TOC比率被认为是评估水体受限程度的良好指标[33,39]。停滞程度可分为三种类型:强停滞环境(Mo/TOC<4.5)、半停滞环境(4.5<Mo/TOC<45),以及弱停滞环境(Mo/TOC>45)[40]。此外,自生U优先富集于Fe2+与Fe3+氧化还原界面的贫氧环境中,而自生Mo的富集相对较晚,需要H2S的参与。与此同时,一定水动力条件下的颗粒搬运、沉积过程可以加速Mo向沉积物的转移,而U不受这一过程的影响。在水体受限的环境中,Mo/U比值往往较低,通常小于海水值的一倍。由于需要消除陆源碎屑输入的对元素富集的影响,通常采用富集系数计算微量元素富集程度[24]。因此,沉积物中的UEF-MoEF交会模型通常用于确定水体限制的程度[26]。
研究剖面Mo/TOC比值介于8.8~32.8,平均值为15.1,其中,A亚段Mo/TOC比值平均为11.1;B亚段Mo/TOC比值平均为14.4;C亚段Mo/TOC比值平均为22.7(表1)。指示水井沱组一段页岩为弱—中等停滞环境,在水井沱组A亚段至C亚段沉积时期,海水停滞程度逐步减弱。UEF-MoEF交会图也显示岩石由老至新海水停滞程度逐步减弱的结果(图12)。
-
水体氧化还原条件是影响有机物保存的重要因素[35],在缺氧环境中,有机质能得到很好地保存和富集[41];并且,有机质富集的空间分布特点与古水体氧化还原结构模式及其变化是密切相关的[13]。沉积物中存在的Ni、V、Co、U和Mo等氧化还原敏感微量元素,可用于区分水体的古氧化还原条件,这些元素在氧化/次氧化环境中不会大量沉积。因此,这些微量元素在缺氧环境中显著富集,而在有氧状态下缺乏,氧化还原敏感元素已被广泛用作古氧化还原条件的指标[42]。
一些研究认为,由于自生成分对评价氧化还原的影响,传统指标如V/Cr、V/(V+Ni)、和Ni/Co不适用于扬子地台的氧化还原条件评估[22]。传统氧化还原敏感元素指标失效被归因于一次重大的上升流事件,该事件使富含营养的深水与浅层硫化物池接触,从而清除了水体中的Mo、Ni及V等元素[43]。
在还原性环境条件下,泥岩中U含量较高[24];Th在氧化环境中含量相对较高;Mo在缺氧件下形成钼化合物而富集[24]。本文使用U/Th、UEF、MoEF作为评估水井沱组一段古氧化还原条件指标,此前的研究已经为U/Th比率确定了标准值[44],U/Th<0.75代表氧化环境;0.75<U/Th<1.25表示贫氧环境;U/Th>1.25代表缺氧/硫化环境。有机碳与磷的比值(Corg/P)受到海底氧化还原条件的强烈影响,因此,有机碳磷比(Corg/P)可作为评价海洋氧化还原条件的地球化学指标。在缺氧条件下,一些磷(P)可能从有机物中释放,导致沉积物中的P亏损,从而增加Corg/P比率[45]。Corg/P<50表示氧化条件,Corg/P介于50~100表示贫氧条件,Corg/P>100表示硫化条件[45]。
修齐剖面水井坨组U/Th比值(介于0.58~1.62,A亚段平均值为0.88,B亚段平均值为1.21,C亚段平均值为0.83)表明,水井沱组一段沉积期间,底水处于氧化—贫氧—缺氧波动状态,由底至顶A亚段为氧化—贫氧环境;B亚段为贫氧—缺氧环境;C亚段为贫氧环境。UEF、MoEF的变化也表明水井沱组一段页岩由底至顶整体呈氧化—缺氧—贫氧的变化规律(图11)。尽管一些样品在不同指标下的氧化还原状态并不相同,所有指标都表明,水井沱组B亚段(高TOC段)处在更还原的沉积环境,这与TOC的变化规律相一致(图11)。
-
研究表明,草莓状黄铁矿形态及粒径变化趋势通常与氧化还原条件有关[29]。沉积地层中的草莓状黄铁矿,即使受后期成岩蚀变作用的影响,原始草莓状形态仍可以清晰辨别,且粒径不会受到明显影响[46]。地表风化作用虽然能破坏草莓状黄铁矿的成分,但其形态大小没有受到影响。因此,草莓状黄铁矿形态和粒径大小是古沉积水体环境研究的可靠指标,已经广泛应用于古代沉积岩的研究[47⁃49]。在硫化缺氧环境中,草莓状黄铁矿形成于硫化水中,当其生长到一定体积和重量时沉入下覆沉积物并停止生长,因而其直径大小往往比较小;而在非硫化的氧化至贫氧环境中,草莓状黄铁矿一般形成于沉积物缺氧的孔隙水,其生长时间较长,因而粒径也较大[29]。反过来,根据草莓状黄铁矿粒径大小来评估古沉积水体的氧化还原条件。表3总结了部分黄铁矿粒径与氧化还原环境的关系,但只适合进行定性的分析,而半定量的分析还需要进行大量的统计,借助盒须图(图13、表4)以及统计的平均粒径与标准偏差(图14)进行定量分析。
表 3 不同氧化还原条件下草莓状黄铁矿粒径特征[48]
Table 3. Particle size characteristics of pyrite framboids under different redox conditions[48]
氧化还原条件 平均粒径/μm 粒径特征 沉积特征 氧化环境 无草莓状黄铁矿,自形黄铁矿晶体少 细水平纹层发育 上贫氧环境 极少草莓状黄铁矿,且粒径范围极大,几乎没有粒径<5 μm的分子出现 细水平纹层发育 下贫氧环境 6~10 少数粒径较大,并有少量自形晶黄铁矿出现 细水平纹层发育,出现少量生物扰动 缺氧环境 4~6 数量较多,少数个体较大(>10 μm),且以草莓状黄铁矿为主 可见小潜穴,纹层被生物扰动破坏 硫化环境 3~5 数量丰富,粒径分布很窄,且以草莓状黄铁矿为主 潜穴发育,或块状构造 图 13 水井沱组草莓状黄铁矿粒径分布盒须图
Figure 13. Box and whisker plots showing framboid size distributions in the Shuiijngtuo Formation
表 4 水井沱组一段草莓状黄铁矿粒径分布特征
Table 4. Distribution of the framboidal pyrite size in the First member of Shuijingtuo Formation
岩性分段 样品号 数量 平均值 最大值 四分之一分位值 中值 标准差 偏态系数 平均粒径+标准偏差 C亚段 XQ179 154 5.80 13.91 4.58 5.59 1.77 1.52 7.58 XQ177 186 5.69 9.05 3.97 4.83 1.38 0.57 7.07 XQ175 296 5.32 11.82 4.19 5.01 1.58 0.85 6.90 XQ173 253 5.79 15.24 4.18 5.21 1.83 1.30 7.62 B亚段 XQ171 338 5.39 11.07 4.28 5.21 1.56 0.56 6.94 XQ169 311 5.37 10.70 4.21 5.19 1.53 0.46 6.90 XQ167 239 5.14 11.48 4.08 4.96 1.51 0.94 6.65 XQ165 358 4.99 11.11 3.76 4.65 1.59 0.89 6.59 XQ163 321 5.36 11.11 4.21 5.20 1.58 0.81 6.94 XQ161 323 5.62 11.63 4.54 5.64 1.43 0.39 7.05 XQ157 327 5.07 13.87 3.89 4.79 1.56 1.34 6.63 XQ153 351 4.93 9.39 4.03 4.81 1.34 0.58 6.27 XQ149 205 5.68 10.15 4.56 5.44 1.46 0.68 7.14 XQ145 185 5.75 9.66 4.89 5.62 1.29 0.63 7.04 XQ139 233 5.19 13.91 4.06 4.90 1.61 1.46 6.79 XQ135 336 5.47 12.77 4.25 5.26 1.66 1.01 7.13 XQ131 571 4.84 9.67 3.84 4.65 1.35 0.58 6.18 XQ127 315 4.84 9.22 3.83 4.63 1.33 0.62 6.17 XQ115 349 4.69 10.12 3.61 4.48 1.47 0.69 6.17 XQ101 244 5.19 10.03 4.25 5.08 1.38 0.60 6.57 XQ95 147 5.53 13.70 4.30 5.55 1.63 0.95 7.16 在富氧条件下,草莓状黄铁矿很少甚至缺失[28,50],水井沱组一段A亚段及C亚段顶部的样品中,未发现可统计数量的草莓状黄铁矿,可能指示A亚段及C亚段顶部为氧化环境。水井沱组B亚段含有较小的草莓状黄铁矿,其最大粒径大多小于15 μm,平均粒径小(4.84~5.8 μm)且分布集中,这些特征反映了水井沱组B亚段水体主体为缺氧甚至硫化环境[48]。平均粒径与标准偏差之和的曲线(图13)表明其沉积古水体氧化还原条件发生了明显的周期性变化,可分为三期由强硫化至弱硫化的变化旋回[51]。
通过草莓状黄铁矿粒径平均值—标准偏差(图14)及平均值—偏态系数交汇图也能区分硫化水体和贫氧—氧化水体环境[28],据此标准,对修齐剖面水井沱组一段的古氧化还原条件进行了半定量评估,结果表明水井沱组一段沉积时期的古氧化还原条件从底部A亚段的氧化条件突变为B亚段的缺氧硫化环境,且在顶部C亚段逐渐演变为氧化—贫氧条件(图13)。
-
根据以上沉积学、矿物学及沉积地球化学研究,结合岩相组合及地球化学数据指标,认为水井沱组下部处于远岸的低能深水环境,而氧化还原指标Corg/P、U/Th、UEF、MoEF与TOC之间存在良好的正相关关系,反映底水氧化还原条件对有机质保存具有重要的控制作用。
水井沱组一段页岩的古生产力水平整体较低,与TOC呈弱相关(图10),表明古生产力对水井沱组一段黑色页岩的有机质富集可能影响较小。由于水井沱组一段沉积时期风化程度处在较低水平且处于远离海岸的沉积环境,陆源输入相对稳定,且Ti和Al与TOC之间没有明显相关性(图10),指示有机质富集过程基本不受陆源输入影响。
基于上述地球化学参数、相关分析及有机质富集因素综合分析,认为水井沱组黑色页岩有机质富集主要受氧化还原条件控制。扬子北缘早寒武世水井沱组富有机质页岩的形成演化模式(图15,16)可以表述为三个演化阶段。
图 15 上扬子地区水井沱组页岩沉积模式与海洋氧化还原分布模式图
Figure 15. Organic enrichment model and ocean redox evolution for the Shuijingtuo Formation in the Upper Yangtze area
图 16 上扬子地区水井沱组连井图
Figure 16. Well correlation diagram for the Shuijingtuo Formation in the Upper Yangtze area
第一阶段(A亚段):沉积初期水深较浅,古气候寒冷干旱,这种气候条件不利于藻类等水生生物的繁殖,古生产力相对较低,沉积底部黄色泥质粉砂岩。在此阶段,沉积物底水处于氧化—次氧化环境,这对有机质的生产及保存都极为不利,对应下部黄色泥质粉砂岩的低TOC层段(图15a)。
第二阶段(B亚段):由于海侵事件导致海平面上升,水体加深导致氧化还原状态改变,底水在缺氧条件下有利于有机质保存,沉积了较厚的黑色页岩,页岩TOC含量显著升高(图15b)。
第三阶段(C亚段):海平面降低水体再次变浅,沉积灰色粉砂质页岩,生产力水平增加,但水体氧含量增加,不利于有机质富集,TOC略低于B亚段(图15c)。
Controlling Factors of Organic Enrichment in the Shuijingtuo Formation in the Lower Cambrian of the Chengkou Area, Sichuan Basin
-
摘要: 目的 四川盆地下寒武统水井沱组黑色页岩是四川盆地重要的烃源岩和页岩气勘探层位,但目前对该黑色页岩有机质富集机理还存在不同的看法。 方法 通过对川东北城口地区下寒武统水井沱组下部黑色页岩的沉积相与沉积微相分析、环境成因草莓状黄铁矿形态与粒径变化规律研究,结合黑色页岩总有机碳含量、主量元素、微量元素等地球化学数据分析,重建了四川盆地东北部水井沱组沉积期古地理、古环境演化模式,探讨了有机质富集主控因素与形成机制。 结果 水井沱组黑色页岩可以划分出与深水陆棚—斜坡环境有关的五个沉积微相。生产力指标BaXS、P/Ti及陆源碎屑输入指标Ti、Al表明,水井沱组黑色页岩沉积环境处于较低的古生产力水平,陆源碎屑输入较稳定且与TOC没有明显相关性。因此,古海洋初级生产力及陆源碎屑输入不是水井沱组黑色页岩有机质富集的主控因素。氧化还原敏感元素指标U/Th、UEF、MoEF及草莓状黄铁矿研究表明,有机质含量与古水体氧化还原指标呈明显正相关,指示下寒武统水井坨组有机质富集主要受到水体氧化还原条件变化的控制。 结论 基于底水氧化还原条件变化规律、沉积相及沉积充填演化序列等认识,认为寒武纪第二阶—第三阶(529~514 Ma)时期,水井沱组黑色页岩有机质富集受大规模海侵事件导致的底水氧化还原条件波动控制,并提出了有机质富集模式。Abstract: Objective The Lower Cambrian Shuijingtuo Formation black shale is an important source rock and shale gas exploration target in the Sichuan Basin. However, the enrichment mechanism of organic matter in this series of black shale is still unclear. Methods Here, we reported total organic carbon (TOC) contents, sedimentary microfacies, major and trace elements, and pyritic framboid size distributions in the lower part of Shuijingtuo Formation in the Chengkou area, northeastern Sichuan Basin on the Upper Yangtze Platform, providing new evidence for reconstructing the paleogeography, paleoenvironment, and main controlling factors of organic matter enrichment. The results show that the black shale succession in the Shuijingtuo Formation developed five sedimentary microfacies which related to the deep-water shelf slope environment. Productivity index (BaXS,P/Ti)and continental input index Ti, Al indicate that the sedimentary environment of black shale in the Shuijingtuo Formation is at a low level of paleo-productivity, and the continental input is relatively stable and has no obvious correlation with TOC. Therefore, paleo-productivity and continental input are not the main controlling factors of organic matter enrichment in the black shale of the Shuijingtuo Formation. The redox-sensitive element index (U/Th,UEF,MoEF) and pyrite framboid size distributions show that the organic matter content is positively correlated with the redox index, indicating that the organic matter enrichment in Shuijingtuo Formation is mainly controlled by the change of redox conditions of the water column. Conclusions Based on the above understanding, it can be inferred that the organic matter enrichment of the black shale of the Shuijingtuo Formation was controlled by the fluctuation of redox conditions of the bottom water caused by the large-scale transgression event during the stage 2 to stage 3 Cambrian (529-514 Ma), and the organic matter enrichment model was proposed here.
-
Key words:
- Shuijingtuo Formation /
- Lower Cambrian /
- black shale /
- redox conditions /
- organic matter enrichment /
- Sichuan Basin
-
表 1 修齐剖面水井沱组微量元素地球化学指标
Table 1. Trace elements and geochemical index of the Shuijingtuo Formation at Xiuqi section
亚段 样品编号 w(TOC)/% U/Th Corg/P MoEF UEF BaXS P/Ti CIA Ga/Rb Mo/TOC Co×Mn A亚段 XQ67 0.290 0.40 17.77 2.89 4.40 1 349.6 0.24 51.72 0.20 19.90 0.62 XQ74 0.541 0.59 26.89 5.17 5.95 1 893.4 0.26 64.82 0.19 15.62 0.04 XQ85 0.332 1.04 16.05 4.94 8.24 1 677.3 0.30 62.96 0.19 32.79 0.09 B亚段 XQ95 0.895 1.03 40.42 4.86 11.20 511.6 0.29 64.21 0.19 17.65 0.15 XQ101 1.150 0.99 52.53 5.29 11.03 429.4 0.33 52.31 0.20 11.65 0.61 XQ115 1.001 1.07 45.52 6.26 12.48 566.7 0.37 52.15 0.20 14.19 0.70 XQ127 1.161 1.28 60.78 5.06 9.14 881.1 0.33 53.33 0.19 7.97 0.70 XQ131 0.870 0.96 40.38 4.14 6.01 201.5 0.29 62.52 0.19 9.45 0.31 XQ135 1.212 0.85 49.59 7.91 14.49 232.6 0.32 60.09 0.21 17.00 0.54 XQ139 0.909 1.59 42.52 6.09 13.02 514.7 0.30 55.95 0.19 19.02 0.78 XQ145 0.950 1.20 45.29 6.19 13.77 1 100.7 0.31 53.11 0.19 18.32 0.78 XQ149 0.912 1.24 42.81 6.18 8.08 727.2 0.30 53.16 0.20 11.51 0.64 XQ153 0.869 1.11 45.46 6.63 16.13 318.3 0.27 60.00 0.19 24.29 0.63 XQ157 0.826 1.31 37.57 5.50 10.02 1 075.3 0.33 52.49 0.19 14.65 0.76 XQ161 1.460 1.04 68.26 6.91 17.42 1 758.1 0.35 56.12 0.18 13.70 0.75 XQ165 1.427 1.37 64.94 5.38 11.22 501.7 0.32 53.79 0.19 10.02 0.69 XQ167 1.533 1.09 57.03 5.99 11.02 708.3 0.39 55.99 0.18 9.33 0.70 XQ169 1.461 1.23 51.88 8.08 21.22 933.3 0.41 57.60 0.17 18.69 1.12 C亚段 XQ173 0.854 1.62 40.26 3.94 10.34 820.3 0.30 58.98 0.19 17.91 0.28 XQ175 1.030 0.78 66.59 3.71 6.60 1 056.6 0.24 54.44 0.19 8.11 0.72 XQ177 0.969 0.75 31.92 5.51 10.74 637.3 0.44 57.97 0.18 14.66 0.78 XQ179 1.051 1.16 72.73 4.10 7.73 767.6 0.21 54.09 0.19 9.89 0.66 XQ180 1.066 0.82 73.34 3.46 5.88 490.4 0.21 52.33 0.20 7.26 0.70 XQ181 1.051 0.65 68.71 4.47 6.56 676.9 0.20 56.88 0.19 8.75 0.68 表 2 修齐剖面水井沱组主量元素特征表
Table 2. Test results of major elements in the Shuijingtuo Formation shale at Xiuqi section
亚段 样品编号 w(TOC)/% 主量元素/% SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 FeO 烧失量 A亚段 XQ67 0.290 63.20 13.25 4.58 1.75 3.91 2.92 2.55 0.047 0.799 0.193 0.96 6.76 XQ74 0.541 68.49 14.36 2.62 1.61 0.688 2.25 3.15 0.011 0.928 0.238 0.55 5.57 XQ85 0.332 70.22 13.37 3.31 1.36 0.647 2.66 2.68 0.015 0.816 0.245 0.59 4.58 B亚段 XQ95 0.895 67.69 14.27 3.68 1.69 0.528 2.64 3.03 0.018 0.892 0.262 1.55 5.20 XQ101 1.150 64.48 12.29 4.08 2.39 2.92 2.60 2.45 0.044 0.784 0.259 2.34 7.70 XQ115 1.001 61.47 11.51 3.72 2.11 6.27 2.45 2.31 0.055 0.705 0.260 2.02 9.13 XQ127 1.161 55.56 10.23 3.46 2.01 11.42 2.02 2.13 0.061 0.690 0.226 1.73 12.12 XQ131 0.870 66.45 13.86 4.32 2.11 0.746 2.69 2.90 0.025 0.889 0.255 2.33 5.66 XQ135 1.212 63.65 14.38 4.54 2.28 1.18 3.02 2.89 0.033 0.906 0.289 1.93 6.81 XQ139 0.909 63.45 13.44 5.07 2.22 2.19 2.53 2.81 0.046 0.843 0.253 2.44 7.14 XQ145 0.950 62.68 12.78 4.61 2.54 3.32 2.58 2.58 0.054 0.795 0.248 2.40 7.77 XQ149 0.912 63.70 13.15 4.31 2.44 2.81 2.63 2.71 0.045 0.834 0.252 2.14 7.07 XQ153 0.869 63.84 13.23 5.94 2.12 1.11 2.64 2.77 0.036 0.822 0.226 1.97 7.21 XQ157 0.826 61.83 12.21 4.08 2.49 4.65 2.53 2.52 0.060 0.782 0.260 2.33 8.50 XQ161 1.460 59.65 11.61 4.14 2.48 6.24 1.92 2.55 0.052 0.723 0.253 2.38 10.35 XQ165 1.427 63.19 12.89 4.54 2.64 2.78 2.49 2.66 0.045 0.802 0.260 2.31 7.65 XQ167 1.533 61.50 13.12 4.87 2.67 3.20 2.18 2.90 0.043 0.816 0.318 2.52 8.34 XQ169 1.461 57.97 13.01 5.64 3.11 4.32 1.94 2.95 0.055 0.804 0.333 2.76 9.87 C亚段 XQ173 0.854 65.23 14.97 2.85 1.91 1.32 3.07 3.29 0.020 0.836 0.251 1.19 6.15 XQ175 1.030 60.78 12.81 4.64 2.63 4.07 2.38 2.67 0.048 0.774 0.183 2.52 9.01 XQ177 0.969 61.12 13.37 4.86 2.96 3.39 1.94 3.06 0.045 0.812 0.359 2.76 8.06 XQ179 1.051 62.23 13.61 4.27 2.32 3.30 2.56 2.89 0.041 0.818 0.171 1.90 7.72 XQ180 1.066 61.14 13.31 4.49 2.53 3.55 2.82 2.63 0.045 0.825 0.172 1.95 8.38 XQ181 1.051 62.69 14.18 4.59 2.47 2.11 2.44 3.08 0.038 0.892 0.181 1.97 7.29 表 3 不同氧化还原条件下草莓状黄铁矿粒径特征[48]
Table 3. Particle size characteristics of pyrite framboids under different redox conditions[48]
氧化还原条件 平均粒径/μm 粒径特征 沉积特征 氧化环境 无草莓状黄铁矿,自形黄铁矿晶体少 细水平纹层发育 上贫氧环境 极少草莓状黄铁矿,且粒径范围极大,几乎没有粒径<5 μm的分子出现 细水平纹层发育 下贫氧环境 6~10 少数粒径较大,并有少量自形晶黄铁矿出现 细水平纹层发育,出现少量生物扰动 缺氧环境 4~6 数量较多,少数个体较大(>10 μm),且以草莓状黄铁矿为主 可见小潜穴,纹层被生物扰动破坏 硫化环境 3~5 数量丰富,粒径分布很窄,且以草莓状黄铁矿为主 潜穴发育,或块状构造 表 4 水井沱组一段草莓状黄铁矿粒径分布特征
Table 4. Distribution of the framboidal pyrite size in the First member of Shuijingtuo Formation
岩性分段 样品号 数量 平均值 最大值 四分之一分位值 中值 标准差 偏态系数 平均粒径+标准偏差 C亚段 XQ179 154 5.80 13.91 4.58 5.59 1.77 1.52 7.58 XQ177 186 5.69 9.05 3.97 4.83 1.38 0.57 7.07 XQ175 296 5.32 11.82 4.19 5.01 1.58 0.85 6.90 XQ173 253 5.79 15.24 4.18 5.21 1.83 1.30 7.62 B亚段 XQ171 338 5.39 11.07 4.28 5.21 1.56 0.56 6.94 XQ169 311 5.37 10.70 4.21 5.19 1.53 0.46 6.90 XQ167 239 5.14 11.48 4.08 4.96 1.51 0.94 6.65 XQ165 358 4.99 11.11 3.76 4.65 1.59 0.89 6.59 XQ163 321 5.36 11.11 4.21 5.20 1.58 0.81 6.94 XQ161 323 5.62 11.63 4.54 5.64 1.43 0.39 7.05 XQ157 327 5.07 13.87 3.89 4.79 1.56 1.34 6.63 XQ153 351 4.93 9.39 4.03 4.81 1.34 0.58 6.27 XQ149 205 5.68 10.15 4.56 5.44 1.46 0.68 7.14 XQ145 185 5.75 9.66 4.89 5.62 1.29 0.63 7.04 XQ139 233 5.19 13.91 4.06 4.90 1.61 1.46 6.79 XQ135 336 5.47 12.77 4.25 5.26 1.66 1.01 7.13 XQ131 571 4.84 9.67 3.84 4.65 1.35 0.58 6.18 XQ127 315 4.84 9.22 3.83 4.63 1.33 0.62 6.17 XQ115 349 4.69 10.12 3.61 4.48 1.47 0.69 6.17 XQ101 244 5.19 10.03 4.25 5.08 1.38 0.60 6.57 XQ95 147 5.53 13.70 4.30 5.55 1.63 0.95 7.16 -
[1] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12. Zou Caineng, Pan Songqi, Jing Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. [2] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29. Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. [3] 王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质,2014,35(3):425-430. Wang Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling area[J]. Oil & Gas Geology, 2014, 35(3): 425-430. [4] 邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781-1796. Zou Caineng, Zhao Qun, Dong Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796. [5] Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils-insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191. [6] 何庆,高键,董田,等. 鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J]. 沉积学报,2021,39(3):686-703. He Qing, Gao Jian, Dong Tian, et al. Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei province[J]. Acta Sedimentologica Sinica, 2021, 39(3): 686-703. [7] 刘建清,何利,何平,等. 康滇古陆东缘筇竹寺组地球化学特征及意义:以云南省昭通市昭阳区锌厂沟剖面为例[J]. 沉积学报,2021,39(5):1305-1319. Liu Jianqing, He Li, He Ping, et al. Geochemical characteristics and significance of the Qiongzhusi Formation on the eastern margin of the ancient Kangding-Yunnan Land: Taking the Xinchanggou section of Zhaoyang district, Zhaotong city, Yunnan province as an example[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1305-1319. [8] Liu Z X, Yan D T, Du X B, et al. Organic matter accumulation of the Early Cambrian black shales on the flank of Micangshan-Hannan uplift, northern Upper Yangtze Block, South China[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108378. [9] Xiang L, Schoepfer S D, Zhang H, et al. Evolution of primary producers and productivity across the Ediacaran-Cambrian transition[J]. Precambrian Research, 2018, 313: 68-77. [10] Zheng S C, Feng Q L, Tribovillard N, et al. New insight into factors controlling organic matter distribution in Lower Cambrian source rocks: A study from the Qiongzhusi Formation in South China[J]. Journal of Earth Science, 2020, 31(1): 181-194. [11] Canfield D E, Poulton S W, Knoll A H, et al. Ferruginous conditions dominated Later Neoproterozoic deep-water chemistry[J]. Science, 2008, 321(5891): 949-952. [12] Chang H J, Chu X L, Feng L J, et al. Marine redox stratification on the earliest Cambrian (ca. 542-529 Ma) Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 75-85. [13] 邱振,韦恒叶,刘翰林,等. 异常高有机质沉积富集过程与元素地球化学特征[J]. 石油与天然气地质,2021,42(4):931-948. Qiu Zhen, Wei Hengye, Liu Hanlin, et al. Accumulation of sediments with extraordinary high organic matter content: Insight gained through geochemical characterization of indicative elements[J]. Oil & Gas Geology, 2021, 42(4): 931-948. [14] Nie Y, Fu X G, Xu W L, et al. Redox conditions and climate control on organic matter accumulation and depletion during the Toarcian in the Qiangtang Basin, eastern Tethys[J]. International Journal of Earth Sciences, 2020, 109(6): 1977-1990. [15] Wei H Y, Jiang X C. Early Cretaceous ferruginous and its control on the lacustrine organic matter accumulation: Constrained by multiple proxies from the Bayingebi Formation in the Bayingebi Basin, Inner Mongolia, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 178: 162-179. [16] Cheng M, Li C, Jin C S, et al. Evidence for high organic carbon export to the Early Cambrian seafloor[J]. Geochimica et Cosmochimica Acta, 2020, 287: 125-140. [17] 李智武. 中—新生代大巴山前陆盆地—冲断带的形成演化[D]. 成都:成都理工大学,2006:186-202. Li Zhiwu. Meso-Cenozoic evolution of Dabashan Foreland Basin-thrust belt, central China[D]. Chengdu: Chengdu University of Technology, 2006: 186-202. [18] 张国伟,张本仁,肖庆辉,等. 秦岭造山带与大陆动力学[M]. 北京:科学出版社,2001:1-855. Zhang Guowei, Zhang Benren, Xiao Qinghui, et al. Qinling orogenic beit and continental dynamics[M]. Beijing: Science Press, 2001: 1-855. [19] 郭正吾,邓康龄,韩永辉,等. 四川盆地形成与演化[M]. 北京:地质出版社,1996:100-162. Guo Zhengwu, Deng Kangling, Han Yonghui, et al. The formation and development of Sichuan Basin[M]. Beijing: Geological Publish House, 1996: 100-162. [20] 王剑,刘宝珺,潘桂棠. 华南新元古代裂谷盆地演化:Rodinia超大陆解体的前奏[J]. 矿物岩石,2001,21(3):135-145. Wang Jian, Liu Baojun, Pan Guitang. Neoproterozoic rifting history of South China significance to Rodinia breakup[J]. Journal of Mineralogy and Petrology, 2001, 21(3): 135-145. [21] Wang J, Li Z X. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up[J]. Precambrian Research, 2003, 122(1/2/3/4): 141-158. [22] 王剑,潘桂棠. 中国南方古大陆研究进展与问题评述[J]. 沉积学报,2009,27(5):818-825. Wang Jian, Pan Guitang. Neoproterozoic South China palaeocontinents: An overview[J]. Acta Sedimentologica Sinica, 2009, 27(5): 818-825. [23] Zhang J P, Fan T L, Algeo T J, et al. Paleo-marine environments of the Early Cambrian Yangtze Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 66-79. [24] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [25] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109. [26] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225. [27] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927. [28] Wei H Y, Wei X M, Qiu Z, et al. Redox conditions across the G–L boundary in South China: Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440: 1-14. [29] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. [30] Berner R A, Kothavala Z. Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 2001, 301(2): 182-204. [31] Eldrett J S, Ma C, Bergman S C, et al. Origin of limestone-marlstone cycles: Astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous western interior seaway, USA[J]. Earth and Planetary Science Letters, 2015, 423: 98-113. [32] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学,2016,27(2):377-386. Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386. [33] Algeo T J, Kuwahara K, Sano H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 65-83. [34] McGinn A P, Evenson K R, Herring A H, et al. The relationship between leisure, walking, and transportation activity with the natural environment[J]. Health & Place, 2007, 13(3): 588-602. [35] Rimmer S M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4): 373-391. [36] Chen Z P, Cui J P, Ren Z L, et al. Geochemistry, paleoenvironment and mechanism of organic-matter enrichment in the Lower Silurian Longmaxi Formation shale in the Sichuan Basin, China[J]. Acta Geologica Sinica, 2019, 93(3): 505-519. [37] Walker W J, Cronan C S, Patterson H H. A kinetic study of aluminum adsorption by aluminosilicate clay minerals[J]. Geochimica et Cosmochimica Acta, 1988, 52(1): 55-62. [38] Murphy J B. Geochemistry of the Neoproterozoic metasedimentary Gamble Brook Formation, Avalon terrane, Nova Scotia: Evidence for a rifted-arc environment along the west gondwanan margin of rodinia[J]. The Journal of Geology, 2002, 110(4): 407-419. [39] Rowe H D, Loucks R G, Ruppel S C, et al. Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo-TOC constraints on the severity of hydrographic restriction[J]. Chemical Geology, 2008, 257(1/2): 16-25. [40] Algeo T J, Lyons T W. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): PA1016. [41] Mohialdeen I M J, Hakimi M H. Geochemical characterisation of Tithonian-Berriasian chia Gara organic-rich rocks in northern Iraq with an emphasis on organic matter enrichment and the relationship to the bioproductivity and anoxia conditions[J]. Journal of Asian Earth Sciences, 2016, 116: 181-197. [42] 韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88. Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88. [43] Lehmann B, Nägler T F, Holland H D, et al. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology, 2007, 35(5): 403-406. [44] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88. [45] Algeo T J, Ingall E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 130-155. [46] 常晓琳,黄元耕,陈中强,等. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用[J]. 沉积学报,2020,38(1):150-165. Chang Xiaolin, Huang Yuangeng, Chen Zhongqiang, et al. The microscopic analysis of pyrite framboids and application in paleo-oceanography[J]. Acta Sedimentologica Sinica, 2020, 38(1): 150-165. [47] Wignall P B, Newton R, Brookfield M E. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3/4): 183-188. [48] Bond D P G, Wignall P B. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. GSA Bulletin, 2010, 122(7/8): 1265-1279. [49] Wei H Y, Tang W, Gu H, et al. Chemostratigraphy and pyrite morphology across the Wuchiapingian-Changhsingian boundary in the Middle Yangtze Platform, South China[J]. Geological Journal, 2021, 56(12): 6102-6116. [50] Takahashi S, Yamasaki S I, Ogawa K, et al. Redox conditions in the end-early Triassic Panthalassa[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 15-28. [51] Wei H Y, Zhang X, Qiu Z. Millennial-scale ocean redox and δ13C changes across the Permian-Triassic transition at Meishan and implications for the biocrisis[J]. International Journal of Earth Sciences, 2020, 109(5): 1753-1766. [52] Goldberg T, Strauss H, Guo Q J, et al. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 175-193. [53] 卢正伟,唐玄,张同伟,等. 上扬子地区下寒武统牛蹄塘组页岩中黄铁矿特征及其地质意义[J]. 石油实验地质,2021,43(4):599-610. Lu Zhengwei, Tang Xuan, Zhang Tongwei, et al. Existence and geological significance of pyrite in the organic-rich shale of Lower Cambrian Niutitang Formation in Upper Yangtze region[J]. Petroleum Geology and Experiment, 2021, 43(4): 599-610.