高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四川盆地东北部中—晚侏罗世沉积环境与古气候

周敏 李祥辉 王旌羽

周敏, 李祥辉, 王旌羽. 四川盆地东北部中—晚侏罗世沉积环境与古气候[J]. 沉积学报, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079
引用本文: 周敏, 李祥辉, 王旌羽. 四川盆地东北部中—晚侏罗世沉积环境与古气候[J]. 沉积学报, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079
ZHOU Min, LI XiangHui, WANG JingYu. Sedimentary Environments and Paleoclimate of the Middle⁃Late Jurassic in the Northeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079
Citation: ZHOU Min, LI XiangHui, WANG JingYu. Sedimentary Environments and Paleoclimate of the Middle⁃Late Jurassic in the Northeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079

四川盆地东北部中—晚侏罗世沉积环境与古气候

doi: 10.14027/j.issn.1000-0550.2022.079
基金项目: 

国家自然科学基金项目 41672097

详细信息
    作者简介:

    周敏,女,1996年出生,硕士研究生,沉积环境与古气候,E-mail: 2285284871@qq.com

    通讯作者:

    李祥辉,男,教授,E-mail: leeschhui@126.com

  • 中图分类号: P512.2

Sedimentary Environments and Paleoclimate of the Middle⁃Late Jurassic in the Northeastern Sichuan Basin

Funds: 

National Natural Science Foundation of China 41672097

  • 摘要: 目的 侏罗纪是典型的温室气候时期,期间存在着气候长期变化和短期波动,且在陆相盆地有响应。我国同期发育多个大型陆相盆地,但各个盆地中的记录有差异,本文试图对四川盆地东北部沉积环境及古气候变化做较为细致的刻画。 方法 基于该地区中—上侏罗统陆相红层的野外详细观察,开展了显微碎屑组分统计分析,碳—氧同位素分析,二氧化碳浓度重建等研究。 结果 下部岩性以红棕色泥岩为主,向上绿灰、浅灰色长石类砂岩增多;沉积环境单元分为曲流河、湖泊和古土壤;相序上表现为中侏罗统沙溪庙组以低砂泥比的曲流河泥岩为主,常土壤化改造形成古土壤相,上侏罗统遂宁组下部湖泊泥岩和粉砂岩占优,遂宁组上部和蓬莱镇组演变为高砂泥比的曲流河,岩性变粗地层变厚;相对于川西和川中地区,川东北地区沉积环境单元和相序较为单一。依据F/Q和F/L指数,将研究区中—晚侏罗世气候变化分为半干旱—干旱两个半旋回,分别对应下沙溪庙组、上沙溪庙组+遂宁组下部、遂宁组上部+蓬莱镇组。二氧化碳浓度变化指示中侏罗世相对温凉,晚侏罗世早期转为温暖,中—晚期属于高温炎热气候,与全球同期古海洋气候格局相似。 结论 总体而言,四川盆地东北部中—晚侏罗世属于温凉—温暖的干旱—半干旱气候,与四川盆地其他地区相似,但晚侏罗世中—晚期东、西部可能存在高温炎热与半湿润间断的差异。
  • 图  1  万源地区中—上侏罗统沉积特征野外照片

    Figure  1.  Field photographs of main sedimentary features in the Middle⁃Upper Jurassic, Wanyuan area

    图  2  万源地区中—上侏罗统典型砂岩显微照片

    (a) fine lithic arkose, sample LW20⁃54⁃01b, bed 54, lower⁃upper Shaximiao Formation; (b) fine arkose, sample LW20⁃40⁃01b, bed 40, upper⁃lower Shaximiao Formation; (c) fine⁃very fine lithic quartz arenite, sample LW20⁃74⁃01b, bed 74, upper Suining Formation

    Figure  2.  Microphotographs of typical sandstones in the Middle⁃Upper Jurassic, Wanyuan area

    Fig.2

    图  3  万源地区罗文剖面中—上侏罗统砂岩碎屑组分相对含量三角投点

    Figure  3.  Triplot of relative contents in sandstone from the Middle⁃Upper Jurassic, Luowen section, Wanyuan area

    图  4  万源地区罗文剖面中—上侏罗统钙质结核碳、氧同位素散点图

    Figure  4.  Plot of C⁃O isotopes of pedogenic calcretes from theMiddle⁃Upper Jurassic, Luowen section, Wanyuan area

    图  5  万源地区中—上侏罗统综合柱状图

    Thin bar lines at right of lithological log indicate paleosol horizons; Paleosols in the environmental column are the composite of multiple soils and other relevant depositional environment units

    Figure  5.  Comprehensive stratigraphic column of the Middle⁃Upper Jurassic, Wanyuan area

    Fig.5

    表  1  万源地区罗文剖面中—上侏罗统砂岩碎屑颗粒组分统计

    Table  1.   Grain composition and component ratio indices of sandstones from the Middle⁃Upper Jurassic in the Luowen section, Wanyuan area

    样品编号地层QFL合计Q/%F/%L/%F/QL/QF/L岩性
    LW20-01-01b新田沟组197674030464.822.013.20.340.201.68极细—细粒岩屑长石砂岩
    LW20-06-01b下沙溪庙组279381733483.511.45.10.140.062.24细—极细长石石英砂岩
    LW20-22-01b192783630662.725.511.80.410.192.17细粒岩屑长石砂岩
    LW20-28-01b1581084130751.535.213.40.680.262.63细粒岩屑长石砂岩
    LW20-37-01b243492631876.415.48.20.200.111.88细长石石英砂岩
    LW20-40-01b1621212230553.139.77.20.750.145.50细粒长石砂岩
    LW20-43-01b上沙溪庙组185865832956.226.117.60.460.311.48粗粒岩屑长石砂岩
    LW20-54-01b205614431066.119.714.20.300.211.39细粒岩屑长石砂岩
    LW20-60-01b207952032264.329.56.20.460.104.75中—细粒长石砂岩
    LW20-62-01b遂宁组206883733162.226.611.20.430.182.38极细—细粒岩屑长石砂岩
    LW20-64-01b244773535668.521.69.80.320.142.20细—极细岩屑长石砂岩
    LW20-73-01b蓬莱镇组一段274231931686.77.36.00.080.071.21细粒长石石英砂岩
    LW20-74-01b246375433773.011.016.00.150.220.69极细—细粒长石岩屑砂岩
    LW20-74-02b243324431976.210.013.80.130.180.73细—极细岩屑石英砂岩
    LW20-81-01b蓬莱镇组二段166627630454.620.425.00.370.460.82极细—细粒长石岩屑砂岩
    LW20-84-01b176765630857.124.718.20.430.321.36中—细粒岩屑长石砂岩
    注:Q.石英;F.长石;L.岩屑。
    下载: 导出CSV

    表  2  万源地区罗文剖面中上侏罗统钙质古土壤中钙结核的碳氧同位素及大气CO2浓度估算

    Table  2.   C⁃O isotopes of the Middle⁃Upper Jurassic pedogenic calcretes, and pCO2 estimates from Luowen section, Wanyuan area

    组名层号样品编号深度/m年龄/Maδ18Oδ13Ccδ13Csδ13Cscδ13Comδ13Caδ13CrpCO21pCO22pCO23
    上沙溪庙组57-02J2s-011 595.7166.7-10.9-8.6-17.6-17.4-25.5-6.2-26.5626610640
    57-26J2s-021 686.0166.3-11.4-8.9-17.9-17.7-25.5-6.2-26.5575561590
    57-56J2s-03A1 819.6165.7-11.0-10.1-19.1-19.0-24.3-5.1-25.3224202223
    57-56J2s-03B1 819.6165.7-10.9-9.8-18.8-18.6-24.3-5.1-25.3277249270
    57-60J2s-04A1 856.1165.5-10.7-8.6-17.6-17.5-24.3-5.1-25.3459408432
    57-60J2s-04B1 856.1165.5-9.8-9.4-18.3-18.2-24.3-5.1-25.3338303326
    57-70J2s-051 858.6165.5-11.1-9.1-18.1-17.9-24.3-5.1-25.3377337360
    57J2s-06A1 939.7165.1-11.6-7.2-16.2-16.0-24.3-5.1-25.3746653682
    57J2s-06B1 939.7165.1-11.7-7.6-16.6-16.4-24.3-5.1-25.3662582610
    59-02J2s-07A2 018.8164.7-10.4-6.5-15.4-15.3-24.5-5.3-25.5967853885
    59-03J2s-07B2 018.8164.7-10.5-6.2-15.2-15.1-24.5-5.3-25.51 030905939
    59-10J2s-082 056.2164.6-11.1-6.6-15.6-15.5-24.5-5.3-25.5926818849
    59-15J2s-092 077.9164.5-10.4-6.7-15.7-15.5-24.5-5.3-25.5912806838
    59-20J2s-102 085.7164.4-9.7-7.1-16.1-16.0-24.5-5.3-25.5797709738
    遂宁组66LW66-012 716.9157.6-8.6-5.4-14.4-14.3-24.9-5.7-25.91 3611 2311 272
    蓬莱镇组76LW70-012 957.9154.3-8.5-3.7-12.7-12.6-26.5-7.1-27.52 5492 8322 921
    81LW76-023 307.9149.5-8.5-5.4-14.4-14.3-28.5-8.9-29.52 0452 9523 059
    86LW83-043 546.7146.3-8.8-6.3-15.3-15.1-29.2-9.6-30.21 8302 8212 926
    注:第3列样品编号后面的大写字母A和B指对同一件钙质结核的两次取样测试分析;第4列指样品在整个剖面上的采样深度位置;第5列指假定连续沉积前提下依据沉积速率换算的样品层位年龄。中—晚侏罗世年龄换算依据国际2022最新地质年表[49]。换算的厚度依据为:沙溪庙组2 283.1 m,遂宁组438.0 m,蓬莱镇组973.9 m;δ18O、δ13Cc分别为实测氧、碳同位素值;δ13Cs为用公式[47]-8.98‰+δ13Cc校正后的碳同位素值;δ13Csc为用25 ℃时的公式[50]δ13Cc+1 000)/((11.98-0.12*T)/1 000+1)-1 000校正的碳同位素值;δ13Com引自巴伦之海Svalbard的中—晚侏罗世有机碳的碳同位素值[51]δ13Ca为利用同期海洋实测有机碳同位素值和方程[52]δ13Cr= (δ13Com+18.67)/1.1获得的校正有机碳同位素;δ13Cr为利用公式[53]δ13Com-1校正获得的土壤呼吸CO2的碳同位素值;pCO21是参数条件为S(z)=1 500,δ13Ca=-6.5‰,T=25 ℃的pCO2估算值(μL/L);pCO22是参数条件为S(z)=1 500;δ13Cs=第8列;δ13Cr=第12列;δ13Ca=第11列的pCO2估算值(μL/L);pCO23是参数条件为S(z)=1 500,δ13Cs=δ13CscpCO2估算值(μL/L)。
    下载: 导出CSV
  • [1] 胡俊杰,马寅生,王宗秀,等. 地球化学记录揭示的柴达木盆地北缘地区中—晚侏罗世古环境与古气候[J]. 古地理学报,2017,19(3):480-490.

    Hu Junjie, Ma Yinsheng, Wang Zongxiu, et al. Palaeoenvironment and palaeoclimate of the Middle to Late Jurassic revealed by geochemical records in northern margin of Qaidam Basin[J]. Journal of Palaeogeography, 2017, 19(3): 480-490.
    [2] Dera G, Brigaud B, Monna F, et al. Climatic ups and downs in a disturbed Jurassic world[J]. Geology, 2011, 39(3): 215-218.
    [3] Dromart G, Garcia J P, Picard S, et al. Ice age at the Middle-Late Jurassic transition?[J]. Earth and Planetary Science Letters, 2003, 213(3/4): 205-220.
    [4] Cecca F, Garin B M, Marchand D, et al. Paleoclimatic control of biogeographic and sedimentary events in tethyan and peri-tethyan areas during the Oxfordian (Late Jurassic)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(1/2): 10-32.
    [5] Wierzbowski H, Rogov M. Reconstructing the palaeoenvironment of the Middle Russian Sea during the Middle-Late Jurassic transition using stable isotope ratios of cephalopod shells and variations in faunal assemblages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(1/2): 250-264.
    [6] Korte C, Hesselbo S P, Ullmann C V, et al. Jurassic climate mode governed by ocean gateway[J]. Nature Communications, 2015, 6: 10015.
    [7] Mountney N P, Thompson D B. Stratigraphic evolution and preservation of Aeolian dune and damp/wet interdune strata: An example from the Triassic Helsby Sandstone Formation, Cheshire Basin, UK[J]. Sedimentology, 2002, 49(4): 805-833.
    [8] Rodríguez-López J P, Clemmensen L B, Lancaster N, et al. Archean to recent aeolian sand systems and their sedimentary record: Current understanding and future prospects[J]. Sedimentology, 2014, 61(6): 1487-1534.
    [9] 邓胜徽,卢远征,赵怡,等. 中国侏罗纪古气候分区与演变[J]. 地学前缘,2017,24(1):106-142.

    Deng Shenghui, Lu Yuanzheng, Zhao Yi, et al. The Jurassic palaeoclimate regionalization and evolution of China[J]. Earth Science Frontiers, 2017, 24(1): 106-142.
    [10] 苟宗海. 四川龙门山中段前陆盆地沉积相与层序地层划分[J]. 沉积与特提斯地质,2000,20(4):79-88.

    Gou Zonghai. Division of sedimentary facies and sequence stratigraphy of the foreland basin in the Longmen mountain area, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2000, 20(4): 79-88.
    [11] 王永标,徐海军. 四川盆地侏罗纪至早白垩世沉积旋回与构造隆升的关系[J]. 地球科学:中国地质大学学报,2001,26(3):241-246.

    Wang Yongbiao, Xu Haijun. Relations between evolution of sedimentary cycles and tectonic uplift around Sichuan Basin from Jurassic to Early Cretaceous[J]. Earth Science: Journal of China University of Geosciences, 2001, 26(3): 241-246.
    [12] 刘君龙,纪友亮,张克银,等. 川西前陆盆地侏罗系沉积体系变迁及演化模式[J]. 石油学报,2016,37(6):743-756.

    Liu Junlong, Ji Youliang, Zhang Keyin, et al. Jurassic sedimentary system transition and evolution model in western Sichuan Foreland Basin[J]. Acta Petrolei Sinica, 2016, 37(6): 743-756.
    [13] 李军,黄成敏,文星跃,等. 四川盆地中生代古气候变化:来自深时古土壤证据[J]. 沉积学报,2021,39(5):1157-1170.

    Li Jun, Huang Chengmin, Wen Xingyue, et al. Mesozoic paleoclimate reconstruction in Sichuan Basin, China: Evidence from deep-time paleosols[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1157-1170.
    [14] 徐炳高,黎从军,赵泽江. 四川中江地区沙溪庙组沉积微相研究及有利含气相带预测[J]. 石油实验地质,1998,20(4):340-345.

    Xu Binggao, Li Congjun, Zhao Zejiang. A study of sedimentary microfacies of Shaximiao Formation and forecasting of favourable gas-bearing zone in Zhongjiang area, Sichuan province[J]. Experimental Petroleum Geology, 1998, 20(4): 340-345.
    [15] 赵永刚,雷卞军,杨跃明,等. 川西邛崃县白马庙气田上侏罗统蓬莱镇组沉积相及砂体展布研究[J]. 中国地质,2004,31(3):284-288.

    Zhao Yonggang, Lei Bianjun, Yang Yueming, et al. Sedimentary facies and sandbody distribution of the Upper Jurassic Penglaizhen Formation in the Baimamiao gas field, Qionglai county, western Sichuan[J]. Geology in China, 2004, 31(3): 284-288.
    [16] 高红灿,郑荣才,柯光明,等. 川西上侏罗统遂宁组沉积相特征[J]. 古地理学报,2006,8(4):467-476.

    Gao Hongcan, Zheng Rongcai, Ke Guangming, et al. Characteristics of sedimentary facies of the Suining Formation of Upper Jurassic in western Sichuan province[J]. Journal of Palaeogeography, 2006, 8(4): 467-476.
    [17] 何政权. 四川盆地中西部中侏罗统沉积相带展布及天然气勘探选区[J]. 四川地质学报,2009,29(2):127-131.

    He Zhengquan. Distribution of the Middle Jurassic sedimentary facies and gas exploration targets in central and west Sichuan[J]. Acta Geologica Sichuan, 2009, 29(2): 127-131.
    [18] 王大洋,王峻. 川西前陆盆地中侏罗统沙溪庙组沉积相及平面展布特征研究[J]. 四川地质学报,2010,30(3):255-259.

    Wang Dayang, Wang Jun. Sedimentary facies and its distribution of the Middle Jurrasic Shaximiao Formation in the west Sichuan Foreland Basin[J]. Acta Geologica Sichuan, 2010, 30(3): 255-259.
    [19] 黄滢竹,龚文平,张方. 成都凹陷沙溪庙组下段沉积相研究[J]. 石油天然气学报(江汉石油学院学报),2014,36(12):56-59.

    Huang Yingzhu, Gong Wenping, Zhang Fang. On the sedimentary facies of lower Shaximiao Formation in Chengdu Sag[J]. Journal of Oil and Gas Technology, 2014, 36(12): 56-59.
    [20] Zhang X J, Fu M Y, Deng H C, et al. River channel pattern controls on the quality of sandstone reservoirs: A case study from the Jurassic Shaximiao Formation of western Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108925.
    [21] 王全伟,阚泽忠,刘啸虎,等. 四川中生代陆相盆地孢粉组合所反映的古植被与古气候特征[J]. 四川地质学报,2008,28(2):89-95.

    Wang Quanwei, Kan Zezhong, Liu Xiaohu, et al. The Mesozoic sporopollen assemblage in the Sichuan Basin and its significance to paleovegetation and paleoclimate[J]. Acta Geologica Sichuan, 2008, 28(2): 89-95.
    [22] 王全伟,梁斌,阚泽忠. 自贡沙溪庙组地球化学特征及其对物源区和古风化的指示[J]. 沉积与特提斯地质,2007,27(4):17-21.

    Wang Quanwei, Liang Bin, Kan Zezhong. Geochemistry and implications for the source areas and weathering in the Shaximiao Formation, Zigong, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(4): 17-21.
    [23] 曹珂,李祥辉,王成善,等. 四川广元地区中侏罗世—早白垩世粘土矿物与古气候[J]. 矿物岩石,2010,30(1):41-46.

    Cao Ke, Li Xianghui, Wang Chengshan, et al. Clay minerals of the Middle Jurassic—Lower Cretaceous in the Guangyuan area, northern Sichuan: Implications to paleoclimate[J]. Journal of Mineralogy and Petrology, 2010, 30(1): 41-46.
    [24] 周勇,李祥辉,孙勇. 四川射洪县明星镇上侏罗统蓬莱镇组岩相及古气候意义[J]. 四川地质学报,2011,31(2):142-144.

    Zhou Yong, Li Xianghui, Sun Yong. Sedimentary facies and its paleoclimate significance for the Upper Jurassic Penglaizhen Formation in Mingzhu town, Shehong, Sichuan[J]. Acta Geologica Sichuan, 2011, 31(2): 142-144.
    [25] 钱利军,陈洪德,林良彪,等. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J]. 沉积学报,2012,30(6):1061-1071.

    Qian Lijun, Chen Hongde, Lin Liangbiao, et al. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1061-1071.
    [26] Zhang L, Wang Y D, Cui Y M, et al. First fossil foliage record in the red beds from the Upper Jurassic in the Sichuan Basin, southern China[J]. Geological Journal, 2022, 57(4): 1628-1637.
    [27] 文华国,郑荣才,叶泰然,等. 米仓山—大巴山前陆盆地下沙溪庙组高分辨率层序地层学特征[J]. 矿物岩石,2005,25(1):83-90.

    Wen Huaguo, Zheng Rongcai, Ye Tairan, et al. High resolution sequence stratigraphy of the lower Shaximiao Formation in the foreland basin of Micang-Daba Mountain[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 83-90.
    [28] Zhang H L, Zhong Y, Yang W G. Paleoclimate characteristics of the Middle Jurassic Xintiangou stage in Yunyang area, northeast Sichuan Basin, China[J]. Doklady Earth Sciences, 2021, 501(2): 1096-1100.
    [29] 孟繁松. 三峡库区中侏罗世植物化石及所指示的气候环境[J]. 华南地质与矿产,1999,15(3):19-26.

    Meng Fansong. Middle Jurassic fossil plants in the Yangtze gorges area of China and their paleo-climatic environment[J]. Geology and Mineral Resources of South China, 1999, 15(3): 19-26.
    [30] 孟繁松,李旭兵. 三峡库区川东—鄂西早—中侏罗世地层的精细对比及沉积环境变化[J]. 华南地质与矿产,2004,20(3):59-66.

    Meng Fansong, Li Xubing. Correlation of the Early-Middle Jurassic strata in the Three Gorges area and discussion of sedimentary environments[J]. Geology and Mineral Resources of South China, 2004, 20(3): 59-66.
    [31] 黄其胜. 四川盆地北缘达县、开县一带早侏罗世珍珠冲植物群及其古环境[J]. 地球科学:中国地质大学学报,2001,26(3):221-228.

    Huang Qisheng. Early Jurassic flora and paleoenvironment in Daxian and Kaixian counties, north border of Sichuan Basin, China[J]. Earth Science: Journal of China University of Geosciences, 2001, 26(3): 221-228.
    [32] 王永栋,付碧宏,谢小平,等. 四川盆地陆相三叠系与侏罗系[M]. 合肥:中国科学技术大学出版社,2010:1-394.

    Wang Yongdong, Fu Bihong, Xie Xiaoping, et al. The terrestrial Triassic and Jurassic Systems in the Sichuan Basin, China[M]. Hefei: Press of University of Science and Technology of China, 2010: 1-394.
    [33] 张锋,胡旭峰,王荀仟,等. 重庆綦江中侏罗世木化石群的发现及其科学意义[J]. 古生物学报,2015,54(2):261-266.[

    Zhang Feng, Hu Xufeng, Wang Xunqian, et al. The discovery of Middle Jurassic petrified wood from Qijiang in Chongqing and its scientific significances[J]. Acta Palaeontologica Sinica, 2015, 54(2): 261-266.
    [34] 张锋,王丰平,李伟,等. 重庆綦江古剑山上侏罗统蓬莱镇组木化石群的发现及其科学意义[J]. 古生物学报,2016,55(2):207-213.

    Zhang Feng, Wang Fengping, Li Wei, et al. Discovery of Late Jurassic petrified wood from the Penglaizhen Formation of Qijiang, southern Chongqing and its scientific significance[J]. Acta Palaeontologica Sinica, 2016, 55(2): 207-213.
    [35] Zhou Y X, Dai H, Yu H D, et al. Zircon geochronology of the new dinosaur fauna in the Middle Jurassic lower Shaximiao Formation in Chongqing, SW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 592: 110894.
    [36] 董树文,胡健民,施炜,等. 大巴山侏罗纪叠加褶皱与侏罗纪前陆[J]. 地球学报,2006,27(5):403-410.

    Dong Shuwen, Hu Jianmin, Shi Wei, et al. Jurassic superposed folding and Jurassic foreland in the Daba mountain, central China[J]. Acta Geoscientica Sinica, 2006, 27(5): 403-410.
    [37] 刘树根,李智武,刘顺,等. 大巴山前陆盆地—冲断带的形成演化[M]. 北京:地质出版社,2006:1-248.

    Liu Shugen, Li Zhiwu, Liu Shun, et al. Formation and evolution of Dabashan Foreland Basin and fold-and-thrust belt, Sichuan, China[M]. Beijing: Geological Publishing House, 2006: 1-248.
    [38] 董树文,施炜,张岳桥,等. 大巴山晚中生代陆内造山构造应力场[J]. 地球学报,2010,31(6):769-780.

    Dong Shuwen, Shi Wei, Zhang Yueqiao, et al. The tectonic stress field in the Dabashan orogen resulting from Late Mesozoic intra-continental orogeny[J]. Acta Geoscientica Sinica, 2010, 31(6): 769-780.
    [39] 郭正吾,邓康龄,韩永辉. 四川盆地形成与演化[M]. 北京:地质出版社,1996:1-200.

    Guo Zhengwu, Deng Kangling, Han Yonghui. The formation and development of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996: 1-200.
    [40] 刘树根,李智武,孙玮,等. 四川含油气叠合盆地基本特征[J]. 地质科学,2011,46(1):233-257.

    Liu Shugen, Li Zhiwu, Sun Wei, et al. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(1): 233-257.
    [41] Liu S F, Steel R, Zhang G W. Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block, eastern China: Record of continent-continent collision[J]. Journal of Asian Earth Sciences, 2005, 25(1): 9-27.
    [42] 四川省地质矿产局. 四川省岩石地层[M]. 武汉:中国地质大学出版社,1997:1-388.

    Sichuan Bureau of Geology and Mineral Resources. Stratigraphy of Sichuan province[M]. Wuhan: China University of Geoscience Press, 1997: 1-388.
    [43] 黄成敏,王成善. 晚第三纪以前形成古土壤的鉴别、分类及其在古环境研究中的应用[J]. 地球科学进展,2006,21(9):911-917.

    Huang Chengmin, Wang Chengshan. Identification, classification and application in paleoenvironment research of pre-Neogene paleosols[J]. Advances in Earth Science, 2006, 21(9): 911-917.
    [44] 李祥辉,陈斯盾,曹珂,等. 浙闽地区白垩纪中期古土壤类型与古气候[J]. 地学前缘,2009,16(5):63-70.

    Li Xianghui, Chen Sidun, Cao Ke, et al. Paleosols of the mid-Cretaceous: A report from Zhejiang and Fujian, SE China[J]. Earth Science Frontiers, 2009, 16(5): 63-70.
    [45] 王成善,李祥辉. 沉积盆地分析原理与方法[M]. 北京:高等教育出版社,2003:1-378.

    Wang Chengshan, Li Xianghui. Sedimentary basin: From principles to analyses[M]. Beijing: Higher Education Press, 2003: 1-378.
    [46] Mikesell L R, Schaetzl R J, Velbel M A. Hornblende etching and quartz/feldspar ratios as weathering and soil development indicators in some Michigan soils[J]. Quaternary Research, 2004, 62(2): 162-171.
    [47] Ekart D D, Cerling T E, Montañez I P, et al. A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide[J]. American Journal of Science, 1999, 299(10): 805-827.
    [48] Breecker D O, Sharp Z D, McFadden L D. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA[J]. GSA Bulletin, 2009, 121(3/4): 630-640.
    [49] Cohen K M, Finney S C, Gibbard P L, et al. The ICS international chronostratigraphic chart[J]. Episodes, 2013, 36(3): 199-204.
    [50] Romanek C S, Grossman E L, Morse J W. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 419-430.
    [51] Koevoets M J, Abay T B, Hammer Ø, et al. High-resolution organic carbon-isotope stratigraphy of the Middle Jurassic-Lower Cretaceous Agardhfjellet Formation of central Spitsbergen, Svalbard[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 266-274.
    [52] Arens N C, Jahren A H, Amundson R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?[J]. Paleobiology, 2000, 26(1): 137-164.
    [53] Breecker D O, Retallack G J. Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 406: 1-8.
    [54] 罗啸泉. 成都市洛带地区沙溪庙组沉积相及储集条件分析[J]. 四川地质学报,2005,25(1):4-8.

    Luo Xiaoquan. Sedimentary facies and reservoir conditions of the Shaximiao Formation in Luodai region, Chengdu[J]. Acta Geologica Sichuan, 2005, 25(1): 4-8.
    [55] 彭玲,左磊. 四川省蒲江县石桥镇侏罗系沙溪庙组沉积相及岩相古地理研究[J]. 内蒙古石油化工,2010,36(8):189-191.

    Peng Ling, Zuo Lei. Research on sedimentary facies lithofacies palaeogeographic of Shaximiao Formation in Pujiang section of Sichuan Basin[J]. Inner Mongolia Petrochemical Industry, 2010, 36(8): 189-191.
    [56] 谭万仓,侯明才,董桂玉,等. 川西前陆盆地中侏罗统沙溪庙组沉积体系研究[J]. 东华理工大学学报(自然科学版),2008,31(4):336-343.

    Tan Wancang, Hou Mingcai, Dong Guiyu, et al. Research on depositional system of Middle Jurassic Shaximiao Formation in western Sichuan Foreland Basin[J]. Journal of East China Institute of Technology, 2008, 31(4): 336-343.
    [57] 徐世球,佘继完. 四川省剑门关一带晚侏罗世沉积体系与古环境演化[J]. 地球科学:中国地质大学学报,2001,26(3):235-240.

    Xu Shiqiu, She Jiwan. Depositional system and paleoenvironmental evolution in Late Jurassic in Jianmenguan area, Sichuan province, China[J]. Earth Science: Journal of China University of Geosciences, 2001, 26(3): 235-240.
    [58] 刘蜀敏,唐雪萍,马波,等. 川西白马庙气田蓬莱镇组河道识别研究[J]. 天然气勘探与开发,2006,29(3):33-36.

    Liu Shumin, Tang Xueping, Ma Bo, et al. Identification of fluvial channel in Penglaizhen Formation, Baimamiao gasfield, west Sichuan[J]. Natural Gas Exploration & Development, 2006, 29(3): 33-36.
    [59] 陈兆荣,侯明才,董桂玉,等. 川西前陆盆地上侏罗统蓬莱镇组沉积特征[J]. 东华理工大学学报(自然科学版),2008,31(4):325-331.

    Chen Zhaorong, Hou Mingcai, Dong Guiyu, et al. The characteristics of sedimentary facies at Penglai Town Formation of Upper Jurassic in western Sichuan Foreland Basin[J]. Journal of East China Institute of Technology, 2008, 31(4): 325-331.
    [60] Mack G H, James W C. Paleoclimate and the global distribution of paleosols[J]. The Journal of Geology, 1994, 102(3): 360-366.
    [61] Mack G H, James W C, Monger H C. Classification of paleosols[J]. GSA Bulletin, 1993, 105(2): 129-136.
    [62] 梁斌,王全伟,阚泽忠. 四川盆地中侏罗统沙溪庙组钙质结核的碳、氧同位素特征[J]. 矿物岩石,2007,27(6):54-58.

    Liang Bin, Wang Quanwei, Kan Zezhong. Carbon and oxygen isotopic compositions of carbonate nodule in the Shaximiao Formation of the Middle Jurassic, Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2007, 27(6): 54-58.
    [63] 李小平,马继跃,朱兵,等. 四川盆地西南缘中侏罗统沙溪庙组沉积地球化学特征及其意义[J]. 四川地质学报,2019,39(3):355-360,378.

    Li Xiaoping, Ma Jiyue, Zhu Bing, et al. Sedimentary geochemistry and its significances of the Middle Jurassic Shaximiao Formation on the southwestern margin of the Sichuan Basin[J]. Acta Geologica Sichuan, 2019, 39(3): 355-360, 378.
  • [1] 庄其天, 何宏林, 魏荣珠, 王忠梅, 石峰, 闫纪元.  山西地堑系太原盆地晚新生代沉积环境演化及物源分析 . 沉积学报, 2024, 42(2): 486-501. doi: 10.14027/j.issn.1000-0550.2022.064
    [2] 王琴, 金鑫, 陈俞超, 张云望, 李滨兵, 杜怡星, 芦刚, 时志强.  川西北地区晚三叠世须家河组初始成煤期古气候重建与成煤机制 . 沉积学报, 2024, (): -. doi: 10.14027/j.issn.1000-0550.2024.064
    [3] 陈俞超, 金鑫, 杜怡星, 张云望, 李滨兵, 时志强.  四川盆地须家河组诺利—瑞替期之交气候变迁及其驱动机制 . 沉积学报, 2024, 42(4): 1212-1228. doi: 10.14027/j.issn.1000-0550.2022.147
    [4] 刘棠煊, 陈雷, 白森, 张金武, 乔崇, 程辉, 谭秀成, 秦何星.  沉积环境对页岩储层弹性特征的影响——以川南自贡地区龙马溪组页岩为例 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.087
    [5] 郑伟, 许欣, 齐永安, 邢智峰, 刘云龙, 李婉颖, 吴盼盼, 张湘赟.  古环境、古气候分析对P⁃T之交灭绝事件的启示 . 沉积学报, 2023, 41(2): 392-408. doi: 10.14027/j.issn.1000-0550.2021.122
    [6] 李军, 黄成敏, 文星跃, 张茂超.  四川盆地中生代古气候变化:来自深时古土壤证据 . 沉积学报, 2021, 39(5): 1157-1170. doi: 10.14027/j.issn.1000-0550.2020.058
    [7] 顾志翔, 何幼斌, 彭勇民, 罗进雄, 刘小帆, 张锦, 聂鸿宇.  四川盆地下寒武统膏盐岩“多潟湖”沉积模式 . 沉积学报, 2019, 37(4): 834-846. doi: 10.14027/j.issn.1000-0550.2018.188
    [8] 陈留勤, 李鹏程, 郭福生, 刘鑫, 李馨敏.  粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义 . 沉积学报, 2019, 37(1): 17-29. doi: 10.14027/j.issn.1000-0550.2018.118
    [9] 陈留勤, 刘鑫, 李鹏程.  古土壤:沉积环境和古气候变化的灵敏指针 . 沉积学报, 2018, 36(3): 510-520. doi: 10.14027/j.issn.1000-0550.2018.054
    [10] 王尹, 李祥辉, 周勇, 刘玲.  南雄盆地晚白垩世—古新世陆源沉积组份变化的古气候指示 . 沉积学报, 2015, 33(1): 116-123. doi: 10.14027/j.cnki.cjxb.2015.01.012
    [11] 四川盆地东南部早三叠世地震事件沉积及其地质意义 . 沉积学报, 2012, 30(3): 477-489.
    [12] 谭秀成.  陆表海碳酸盐岩台地沉积期微地貌恢复方法研究——以四川盆地磨溪气田嘉二2亚段A层为例 . 沉积学报, 2011, 29(3): 486-494.
    [13] 徐兆辉.  古气候恢复及其对沉积的控制作用——以四川盆地上三叠统须家河组为例 . 沉积学报, 2011, 29(2): 235-244.
    [14] 张 泓.  祁连山东段宝积山—红会煤盆地沉积环境与聚煤规律 . 沉积学报, 2009, 27(4): 622-631.
    [15] 曾联波, 金之钧, 张明利, 汤良杰, 由福报, 雷兵足.  柴达木侏罗纪盆地性质及其演化特征 . 沉积学报, 2002, 20(2): 288-292.
    [16] 杨建业, 任德贻, 邵龙义.  沉积有机相在陆相层序地层格架中的分布特征——以吐哈盆地台北凹陷及准噶尔盆地南缘中侏罗世煤系为例 . 沉积学报, 2000, 18(4): 585-589.
    [17] 薛良清, 李文厚, 宋立珩.  西北地区侏罗纪原始沉积区恢复 . 沉积学报, 2000, 18(4): 539-543,566.
    [18] 赵孟为, Hans Ahrendt, Klaus Wem mer.  K-Ar测年法在确定沉积岩成岩时代中的应用——以鄂尔多斯盆地为例 . 沉积学报, 1996, 14(3): 11-21.
    [19] 吉利明.  甘肃民和盆地早白垩世孢粉植物群的古气候环境和地理分区位置 . 沉积学报, 1994, 12(2): 133-142.
    [20] 费富安.  对苏北含油盆地下第三系古环境和古气候的探讨 . 沉积学报, 1988, 6(1): 21-28.
  • 加载中
图(5) / 表 (2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  88
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-06-23
  • 录用日期:  2022-09-14
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2024-06-10

目录

    四川盆地东北部中—晚侏罗世沉积环境与古气候

    doi: 10.14027/j.issn.1000-0550.2022.079
      基金项目:

      国家自然科学基金项目 41672097

      作者简介:

      周敏,女,1996年出生,硕士研究生,沉积环境与古气候,E-mail: 2285284871@qq.com

      通讯作者: 李祥辉,男,教授,E-mail: leeschhui@126.com
    • 中图分类号: P512.2

    摘要: 目的 侏罗纪是典型的温室气候时期,期间存在着气候长期变化和短期波动,且在陆相盆地有响应。我国同期发育多个大型陆相盆地,但各个盆地中的记录有差异,本文试图对四川盆地东北部沉积环境及古气候变化做较为细致的刻画。 方法 基于该地区中—上侏罗统陆相红层的野外详细观察,开展了显微碎屑组分统计分析,碳—氧同位素分析,二氧化碳浓度重建等研究。 结果 下部岩性以红棕色泥岩为主,向上绿灰、浅灰色长石类砂岩增多;沉积环境单元分为曲流河、湖泊和古土壤;相序上表现为中侏罗统沙溪庙组以低砂泥比的曲流河泥岩为主,常土壤化改造形成古土壤相,上侏罗统遂宁组下部湖泊泥岩和粉砂岩占优,遂宁组上部和蓬莱镇组演变为高砂泥比的曲流河,岩性变粗地层变厚;相对于川西和川中地区,川东北地区沉积环境单元和相序较为单一。依据F/Q和F/L指数,将研究区中—晚侏罗世气候变化分为半干旱—干旱两个半旋回,分别对应下沙溪庙组、上沙溪庙组+遂宁组下部、遂宁组上部+蓬莱镇组。二氧化碳浓度变化指示中侏罗世相对温凉,晚侏罗世早期转为温暖,中—晚期属于高温炎热气候,与全球同期古海洋气候格局相似。 结论 总体而言,四川盆地东北部中—晚侏罗世属于温凉—温暖的干旱—半干旱气候,与四川盆地其他地区相似,但晚侏罗世中—晚期东、西部可能存在高温炎热与半湿润间断的差异。

    English Abstract

    周敏, 李祥辉, 王旌羽. 四川盆地东北部中—晚侏罗世沉积环境与古气候[J]. 沉积学报, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079
    引用本文: 周敏, 李祥辉, 王旌羽. 四川盆地东北部中—晚侏罗世沉积环境与古气候[J]. 沉积学报, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079
    ZHOU Min, LI XiangHui, WANG JingYu. Sedimentary Environments and Paleoclimate of the Middle⁃Late Jurassic in the Northeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079
    Citation: ZHOU Min, LI XiangHui, WANG JingYu. Sedimentary Environments and Paleoclimate of the Middle⁃Late Jurassic in the Northeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079
      • 虽然侏罗纪是显生宙时期温室气候代表时段之一,但近年来许多研究成果表明这一时期曾多次发生气候波动,传统的“温室”气候模式受到挑战[12]。例如,北方域高纬度表层海洋在中—晚侏罗世之交出现了大范围的气温骤降[26],南非、巴西东部、美国西部等地区自中侏罗世中/晚期开始发育并保存了较为典型的风成沉积体系,指示干热气候条件[78]。由此,侏罗纪的波动气候存在着广阔的探索前景,其细节亟需深入研究。

        研究发现,处于陆地环境的中国大陆在侏罗纪时期存在着气候分时、分区和古地理演变,并依据植物群划分为早侏罗世早—中期、晚期、中侏罗世早、晚期、晚侏罗世五个气候变化阶段[9],表明此时期陆地环境也可能存在类似的波动气候。然而,这种气候变化在中国乃至东亚相关盆地是否一致,中国南方是否准确对应记录,各个典型沉积盆地在时间和空间上是否匹配等问题仍然未得到充分论证,多数沉积盆地缺少精细和系统的刻画。

        四川盆地(川滇盆地)是晚三叠世以来中国乃至东亚最大的陆相盆地之一,记录了丰富的晚三叠世—白垩纪陆地沉积环境及气候演变信息,有较好的沉积地质基础及相关成果可兹借鉴。因油气勘探需要,前人在川西、川中地区开展了较为深入的侏罗系沉积相研究并涉及古气候领域[1013]。相应地,中—上侏罗统业已有较为详尽的岩相研究成果[1420],古气候方面获得了一些初步认识[13,2126]。这为开展四川盆地中生代演化深入研究提供了基础背景,也为中国和东亚同期环境演变和古气候重建提供了参考。相对而言,川东地区的侏罗系研究十分薄弱,实例甚少[2728]。另一方面,由于使用的材料和方法不一,采集的样品数量差异,过去研究的剖面集中在某些层段或局部地区,相关成果总体来说还较为粗略,存在连续性和系统性不足甚至认识矛盾之处。

        四川盆地东北部宣汉—万源地区发育良好的侏罗系,毗邻地区生物和年代地层有较好的研究基础[2936]。由此,本文对万源市罗文一带出露良好的中—上侏罗统进行了详细野外观察、剖面测制,通过薄片微相分析、碎屑组分统计、碳氧同位素测试,识别区分了不同的沉积相类型,分析了古气候特征及变化,以期为解析四川盆地中—晚侏罗世沉积环境与古地理变迁、深入刻画其时古气候演变过程提供参考和支持。

      • 四川盆地位于上扬子板块,东北部位于上扬子板块北缘、秦岭造山带南侧,区域构造上属于米仓山—大巴山前缘冲断推覆带与川东弧形褶皱带叠加区[3638]。该区自前震旦系基底形成后,先后经历了晋宁运动、加里东运动、海西运动、印支运动、燕山运动和喜山运动多期构造阶段的叠加。虽然不同构造运动叠加使该地区构造变形十分复杂,但总体可分为三个阶段,即太古代—元古代晋宁运动基底形成阶段、晋宁运动—中三叠世末期的被动大陆/克拉通边缘阶段及晚三叠世—新生代陆内造山阶段[37,3940]。四川盆地东北部宣汉—万源地区大地构造位置上处于大巴山南缘地带,主要受米仓山—大巴山推覆体控制,被视为“川西前陆盆地”北东段的次级构造单元“米仓山—大巴山前陆盆地”[27,37,39,41]

        四川盆地是中国最具代表性的陆相沉积盆地之一,中生代地层发育齐全、分布广泛、出露良好,主要为一套广布的红色碎屑沉积。盆地中陆相地层一般划分为上三叠统须家河组,侏罗系自流井组和/或白田坝组、新田沟组、(上、下)沙溪庙组、遂宁组、蓬莱镇组,白垩系川西地区天马山组、夹关组和灌口组或川北—川东地区下白垩统区苍溪组、白龙组、七曲寺组。本次研究层位集中在中侏罗统的上、下沙溪庙组及上侏罗统的遂宁组和蓬莱镇组,中、上侏罗统分别与邻区云南兰坪—思茅盆地的和平乡组及坝驻路组大致相当,或与楚雄盆地的张河组及蛇店组—妥店组可以粗略对比[42]

        研究剖面位于四川盆地东北部万源市南部的罗文镇,与宣汉县毛坝镇接壤。该剖面始于侏罗系—白垩系背斜核部北翼,止于曾家乡向斜南翼。剖面起点的坐标为31.67° N,107.80° E,实测斜距约6 000 m,真厚度3 638.6 m。这些地层露头良好,出露齐全。其中,中侏罗统沙溪庙组以红色泥岩为主夹砂岩,上侏罗统遂宁组和蓬莱镇组则主要为砂岩夹泥岩。

      • 在实测剖面基础上,重点观察地层颜色、厚度、岩性、沉积构造、砂体产出形式等,这些信息用于沉积相解释和古气候分析。其中,砂岩中的层理类型、砂体形态及展布是进行沉积环境解释的主要依据。野外观察特别注意气候指示的沉积构造辨识与分析,如泥裂、植物根迹、古土壤。古土壤辨识是岩相和古气候分析重要的一环,其识别依据主要参考黄成敏等[43]和李祥辉等[44],涉及去层化、土壤成层化、色斑、遗迹化石、有机质含量等。作为干旱型的钙质古土壤(calcisol)其在B层中以发育钙质结核为标识,伴随植物根迹、生物潜穴出现、淋滤构造、收缩面(slickenside)等识别证据。

      • 通过显微镜下碎屑颗粒成分统计,获取岩石组分、结构等信息,为岩相解释和古气候分析服务。碎屑组分的含量统计采用Gazzi-Dickinson计点法,其统计原则参见王成善和李祥辉[45]主编的《沉积盆地分析原理与方法》。重点对砂岩中直径62.5 μm以上的石英(Q)、长石(F)、岩屑(L)进行了颗粒数统计,单件样品统计300粒以上(表1)。与此同时,开展三种碎屑指数,即长石指数(F/Q)、岩屑指数(L/Q)和气候(F/L)指数的计算,以反映气候特征[4546]

        表 1  万源地区罗文剖面中—上侏罗统砂岩碎屑颗粒组分统计

        Table 1.  Grain composition and component ratio indices of sandstones from the Middle⁃Upper Jurassic in the Luowen section, Wanyuan area

        样品编号地层QFL合计Q/%F/%L/%F/QL/QF/L岩性
        LW20-01-01b新田沟组197674030464.822.013.20.340.201.68极细—细粒岩屑长石砂岩
        LW20-06-01b下沙溪庙组279381733483.511.45.10.140.062.24细—极细长石石英砂岩
        LW20-22-01b192783630662.725.511.80.410.192.17细粒岩屑长石砂岩
        LW20-28-01b1581084130751.535.213.40.680.262.63细粒岩屑长石砂岩
        LW20-37-01b243492631876.415.48.20.200.111.88细长石石英砂岩
        LW20-40-01b1621212230553.139.77.20.750.145.50细粒长石砂岩
        LW20-43-01b上沙溪庙组185865832956.226.117.60.460.311.48粗粒岩屑长石砂岩
        LW20-54-01b205614431066.119.714.20.300.211.39细粒岩屑长石砂岩
        LW20-60-01b207952032264.329.56.20.460.104.75中—细粒长石砂岩
        LW20-62-01b遂宁组206883733162.226.611.20.430.182.38极细—细粒岩屑长石砂岩
        LW20-64-01b244773535668.521.69.80.320.142.20细—极细岩屑长石砂岩
        LW20-73-01b蓬莱镇组一段274231931686.77.36.00.080.071.21细粒长石石英砂岩
        LW20-74-01b246375433773.011.016.00.150.220.69极细—细粒长石岩屑砂岩
        LW20-74-02b243324431976.210.013.80.130.180.73细—极细岩屑石英砂岩
        LW20-81-01b蓬莱镇组二段166627630454.620.425.00.370.460.82极细—细粒长石岩屑砂岩
        LW20-84-01b176765630857.124.718.20.430.321.36中—细粒岩屑长石砂岩
        注:Q.石英;F.长石;L.岩屑。
      • 分析钙质古土壤中钙质结核的碳、氧同位素,用于古土壤相的论证和古大气二氧化碳(CO2)浓度估算。分析程序为:首先破开钙质结核样品,选择均一的新鲜深色部位用牙钻钻取粉末。钻取粉末之前需要薄片观察,排除有碳酸盐岩碎屑颗粒的样品,并在钻样过程中特别注意避开裂缝和晶洞充填的亮晶方解石。碳、氧同位素分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成。实验仪器为Finnigan公司的Delta Plus XP连续流质谱仪。碳、氧同位素的结果以δ13C和δ18O同位素比值PDB标准化表示,精度高于0.2‰。

      • 估算CO2参照改进后的公式[47]Ca=S(z)δ13Cs-1.0044 δ13Cr-4.4)/(δ13Ca-δ13Cs)。其中,Ca代表大气CO2浓度(μL/L),S(z)代表土壤呼吸的CO2浓度(μL/L),δ13Csδ13Crδ13Ca分别代表成壤碳酸盐、土壤呼吸产生的CO2、古大气中CO2的碳同位素组成。对于古土壤呼吸浓度S(z)取值,根据古土壤的颜色我们采用2 000 μL/L[48]。其中δ13Csδ13Crδ13Ca我们进行了多种校正,校正方法、公式和参数参见Ekart et al.[47]和Breecker et al.[48]表2)。

        表 2  万源地区罗文剖面中上侏罗统钙质古土壤中钙结核的碳氧同位素及大气CO2浓度估算

        Table 2.  C⁃O isotopes of the Middle⁃Upper Jurassic pedogenic calcretes, and pCO2 estimates from Luowen section, Wanyuan area

        组名层号样品编号深度/m年龄/Maδ18Oδ13Ccδ13Csδ13Cscδ13Comδ13Caδ13CrpCO21pCO22pCO23
        上沙溪庙组57-02J2s-011 595.7166.7-10.9-8.6-17.6-17.4-25.5-6.2-26.5626610640
        57-26J2s-021 686.0166.3-11.4-8.9-17.9-17.7-25.5-6.2-26.5575561590
        57-56J2s-03A1 819.6165.7-11.0-10.1-19.1-19.0-24.3-5.1-25.3224202223
        57-56J2s-03B1 819.6165.7-10.9-9.8-18.8-18.6-24.3-5.1-25.3277249270
        57-60J2s-04A1 856.1165.5-10.7-8.6-17.6-17.5-24.3-5.1-25.3459408432
        57-60J2s-04B1 856.1165.5-9.8-9.4-18.3-18.2-24.3-5.1-25.3338303326
        57-70J2s-051 858.6165.5-11.1-9.1-18.1-17.9-24.3-5.1-25.3377337360
        57J2s-06A1 939.7165.1-11.6-7.2-16.2-16.0-24.3-5.1-25.3746653682
        57J2s-06B1 939.7165.1-11.7-7.6-16.6-16.4-24.3-5.1-25.3662582610
        59-02J2s-07A2 018.8164.7-10.4-6.5-15.4-15.3-24.5-5.3-25.5967853885
        59-03J2s-07B2 018.8164.7-10.5-6.2-15.2-15.1-24.5-5.3-25.51 030905939
        59-10J2s-082 056.2164.6-11.1-6.6-15.6-15.5-24.5-5.3-25.5926818849
        59-15J2s-092 077.9164.5-10.4-6.7-15.7-15.5-24.5-5.3-25.5912806838
        59-20J2s-102 085.7164.4-9.7-7.1-16.1-16.0-24.5-5.3-25.5797709738
        遂宁组66LW66-012 716.9157.6-8.6-5.4-14.4-14.3-24.9-5.7-25.91 3611 2311 272
        蓬莱镇组76LW70-012 957.9154.3-8.5-3.7-12.7-12.6-26.5-7.1-27.52 5492 8322 921
        81LW76-023 307.9149.5-8.5-5.4-14.4-14.3-28.5-8.9-29.52 0452 9523 059
        86LW83-043 546.7146.3-8.8-6.3-15.3-15.1-29.2-9.6-30.21 8302 8212 926
        注:第3列样品编号后面的大写字母A和B指对同一件钙质结核的两次取样测试分析;第4列指样品在整个剖面上的采样深度位置;第5列指假定连续沉积前提下依据沉积速率换算的样品层位年龄。中—晚侏罗世年龄换算依据国际2022最新地质年表[49]。换算的厚度依据为:沙溪庙组2 283.1 m,遂宁组438.0 m,蓬莱镇组973.9 m;δ18O、δ13Cc分别为实测氧、碳同位素值;δ13Cs为用公式[47]-8.98‰+δ13Cc校正后的碳同位素值;δ13Csc为用25 ℃时的公式[50]δ13Cc+1 000)/((11.98-0.12*T)/1 000+1)-1 000校正的碳同位素值;δ13Com引自巴伦之海Svalbard的中—晚侏罗世有机碳的碳同位素值[51]δ13Ca为利用同期海洋实测有机碳同位素值和方程[52]δ13Cr= (δ13Com+18.67)/1.1获得的校正有机碳同位素;δ13Cr为利用公式[53]δ13Com-1校正获得的土壤呼吸CO2的碳同位素值;pCO21是参数条件为S(z)=1 500,δ13Ca=-6.5‰,T=25 ℃的pCO2估算值(μL/L);pCO22是参数条件为S(z)=1 500;δ13Cs=第8列;δ13Cr=第12列;δ13Ca=第11列的pCO2估算值(μL/L);pCO23是参数条件为S(z)=1 500,δ13Cs=δ13CscpCO2估算值(μL/L)。
      • 野外岩性观察和薄片鉴定显示,研究区中—上侏罗统岩性主要为粉砂质泥岩和砂岩两大类,可见少量粉砂岩。根据组成差异,砂岩可进一步区分五种类型,兹将岩性组成和特征总结如下。

        泥岩 泥岩通常呈现红棕色、紫红色,可含多少不等的粉砂。后期古土壤化(见第3.2节)泥岩中常见根迹、虫管(图1g)、色斑、泥裂(图1a,g)。这种岩性广泛分布于中侏罗统沙溪庙组,比例超过70%,在上侏罗统遂宁组中介于50%~60%,蓬莱镇组减少到20%以下。

        图  1  万源地区中—上侏罗统沉积特征野外照片

        Figure 1.  Field photographs of main sedimentary features in the Middle⁃Upper Jurassic, Wanyuan area

        粉砂岩 颜色大多与泥岩相似,粉砂级结构清楚,薄层或少量中层状产出,可见(爬升)砂纹层理(图1b)。在研究剖面上各层位总体含量不高,介于5%~10%。

        砂岩 岩性以细粒—极细粒结构为主,见少量中粒结构和粗粒结构(表1图2),碎屑颗粒次棱角—次圆状,填隙物泥质为主,一般少于8%(图2);砂岩绿灰、浅灰色,多中—厚层状,槽状和板状斜层理可见(图1d,e)。根据碎屑组分的相对含量,砂岩分为五种类型(图3)。

        图  2  万源地区中—上侏罗统典型砂岩显微照片

        Figure 2.  Microphotographs of typical sandstones in the Middle⁃Upper Jurassic, Wanyuan area

        图  3  万源地区罗文剖面中—上侏罗统砂岩碎屑组分相对含量三角投点

        Figure 3.  Triplot of relative contents in sandstone from the Middle⁃Upper Jurassic, Luowen section, Wanyuan area

        长石岩屑砂岩 长石相对含量介于11%~21%,石英介于55%~73%,岩屑介于16%~25%(表1图3)。手标本呈绿灰色(风化面黄绿色),在研究剖面上分布较少,见于上侏罗统蓬莱镇组中第74和81层。

        长石砂岩 长石占30%~40%,石英介于53%~64%,岩屑介于6%~8%(表1图2b)。该岩性野外呈现浅灰色,剖面上较少,见于中侏罗统沙溪庙组第40和60层。

        岩屑长石砂岩 长石介于20%~35%,石英介于51%~69%,岩屑介于10%~18%(表1图2a)。此类砂岩野外多绿灰色,在剖面上中—上侏罗统均有分布,是研究区最为常见的一种岩性。

        长石石英砂岩 长石介于15%~22%,石英介于76%~84%,岩屑占5%~8%(表1图3)。野外此类岩石浅灰色(风化面绿灰色),分布较少,仅在中侏罗统下沙溪庙组第6和37层出现。

        岩屑石英砂岩 长石约10%,石英约76%,岩屑约14%(表1图2c)。所采集的样品仅出现在晚侏罗世蓬莱镇组一段第74层,岩石呈灰褐色(风化面黄灰色),剖面上十分罕见。

        此外,在蓬莱镇组的一段和二段底部均见(含)泥砾中粒砂岩(图1c)。

      • 通过野外详细观察解剖及显微分析,将研究区的中—上侏罗统解释为河流、湖泊和古土壤三种主要的沉积环境单元。

      • 河流相在研究区中—上侏罗统占绝对优势,由中—细粒陆源碎屑岩构成,发育各种中—低流体条件下形成的层理,表现为曲流河特性。根据岩石组成、结构、剖面变化、砂体特征等,河流环境可划分为河道、天然堤、洪泛平原和水道间四个次级沉积环境单元。

        河道 由心滩+边滩构成。心滩岩性主要为中、细粒砂岩,发育大型板状及槽状斜层理(图1d,e),冲刷面发育,垂向上斜层理交叉叠置,砂体(长)透镜状,侧向变化较快。边滩的沉积稍复杂,泥岩、粉砂岩和砂岩不同程度发育,波痕和砂纹层理可见,泥岩或粉砂岩都可呈小型透镜体出现。河道砂岩亚相是上侏罗统的主要次级岩相类型。

        天然堤 包括狭义的堤岸+决口扇两个次级单元。堤岸沉积主要由绿灰色细砂岩、棕红色粉砂岩、泥岩组成,单个堤岸亚相下部砂、泥岩互层,发育低流态斜层理,上部变细,粉砂岩和泥岩为主,可发育(爬升)砂纹层理(图1b)和水平层理。该亚相在沙溪庙组和遂宁组中较为常见。决口扇沉积虽然岩性组成和沉积构造与堤岸有些相似,但砂体形态有差别。一个重要的识别特征是粉砂岩和泥岩与下伏堤岸或洪泛平原的沉积呈一定交角(图1f),与三角洲前缘砂体相比高度较低、交角较小。此环境次级单元在沙溪庙组和遂宁组可见。

        洪泛平原 岩性基本为棕红色泥质粉砂岩和泥岩,偶夹绿灰色薄层细砂岩,沉积厚度较大且连续,局部见砂纹层理和水平层理。该环境单元沉积广泛分布于沙溪庙组和遂宁组。

        水道间 岩性与洪泛平原相同,但产出形态和规模不同,呈薄透镜状,侧向延伸范围局限,常夹持于河道砂体之间,有时可能为池塘或牛轭湖。该亚相多见于蓬莱镇组。

      • 岩性以棕红色泥岩和粉砂岩为主,夹少量薄层灰黄色极细砂岩,可见水平层理、砂纹层理。与洪泛平原的差别是后者泥岩中出现宽大的泥裂(图1a)。鉴于缺少深灰、暗色细粒沉积及相关深水化石证据,推测湖泊规模不大,水体较浅,多属于滨浅湖甚至水塘。区内湖泊相不甚发育,仅见于遂宁组下部。该剖面上沙溪庙组的上部发现了一层含双壳的泥岩,应属于湖泊记录。

      • 古土壤长期以来在沉积环境单元分类中被忽略,可能的原因有两点:一是未被识别,二是认为不属于沉积环境类型,系表生成岩改造产物。我们认为,土壤化不是成岩产物。因为在土壤化期间不仅对先期沉积物进行改造,而且发生了强烈的同生生物和(化学)沉积作用。重要的是它并未经过埋藏阶段,先期沉积并未成岩。基于此,现代土壤被视为土壤环境。此外,古土壤作为同生沉积作用的产物与上、下岩层的形成几乎是同时的,在地质尺度上难以分辨。深时时期的古土壤结构在理论上包括O和A~E六层,但是大部分O~A两层难以保存,且在沉积岩区的多套古土壤中也见不到C~E层,绝大多数保存下来的是B层。

        此次观测到的侏罗系古土壤基本上发育含有钙质结核的Bk层(k代表一种土质类型)。根据土壤层中发现的植物根迹、虫管、收缩滑擦面、淋滤构造、成壤碳酸盐岩(钙质结核)等记录(图1g,h),认为研究区主要属于钙质古土壤类型。这些钙质古土壤在中—上侏罗统中均有出现,其中沙溪庙组最为丰富,系对洪泛平原泥岩改造的结果。

      • 对实测剖面中24件砂岩样品进行了薄片观察,并选取了其中的16件样品进行碎屑组分统计分析,结果显示,长石指数F/Q值介于0.13~0.75,岩屑指数L/Q值介于0.06~0.46,气候指数F/L值大多大于1,主体介于1.0~3.0,少数达5.5(表1)。

      • 野外观察表明,这些土壤中的钙质结核质地坚硬,固结强度大。显微薄片显示,钙质结核大部分为微晶方解石组成,泥质含量较高,介于10%~20%,极少含有石英、岩屑和长石碎屑(<0.1%),未见碳酸盐岩碎屑组分。部分钙质结核样品中含少量裂缝和晶洞亮晶方解石,牙钻粉末取样已避开亮晶方解石。阴极发光结果都呈现均一弱光或暗棕红色或弱橙色光,表现为同期方解石沉淀。碳—氧同位素散点图(图4)指示二者的相关性甚小,表明各自独立。上述四个方面的特征说明这些成壤碳酸盐岩未经成岩改造或者改造甚微,所测碳同位素比值可以用于钙质古土壤的判别依据并进行pCO2估算。

        图  4  万源地区罗文剖面中—上侏罗统钙质结核碳、氧同位素散点图

        Figure 4.  Plot of C⁃O isotopes of pedogenic calcretes from theMiddle⁃Upper Jurassic, Luowen section, Wanyuan area

        对沙溪庙组14件、遂宁组1件、蓬莱镇组3件样品测试结果显示:δ18O最大值为-8.48‰,最小值为-11.70‰,平均值为-10.32‰;δ13C最大值为-3.71‰,最小值为-10.15‰,平均值为-7.41‰(图4)。这些碳同位素比值范围证实样品属于成壤碳酸盐岩。

      • 如上,研究剖面的钙质结核样品少有成岩印记,可以进行pCO2估算。估算的pCO2结果为:沙溪庙组270~940 μL/L,平均值为600 μL/L,约为工业化革命前280 μL/L的2.5倍;遂宁组1件样品为1 272 μL/L;蓬莱镇组介于2 920~3 060 μL/L,相差甚小(表2),是工业化革命前的8~10倍。

      • 从沉积环境解释来看,研究区中—上侏罗统最基本和主要的环境单元是曲流河,次为古土壤,湖泊仅限于遂宁组下部。另一方面,沉积相在时间演化序列上呈现一定规律,相序总体表现由古土壤、低砂泥比的曲流河演变为砂泥比高的曲流河,向上岩性变粗岩层变厚(图5),具体表现如下。

        图  5  万源地区中—上侏罗统综合柱状图

        Figure 5.  Comprehensive stratigraphic column of the Middle⁃Upper Jurassic, Wanyuan area

        中侏罗世时期,川东北沙溪庙组总体上为一套泥岩为主的曲流河相,以红棕色、紫红色洪泛平原粉砂质泥岩+粉砂岩为特征,间夹绿灰、黄绿色河道(心滩+边滩)砂岩+泥岩、少量水道间泥岩、决口扇粉砂岩+泥岩,砂质沉积总体上少于20%(图5)。此期的沉积环境另一个特色是大量的洪泛平原泥岩因暴露而发生土壤化,且多有淋滤作用和生物作用,形成大量钙质结核(图5)。同时期西部成都—蒲江一线以砂质河流及三角洲砂岩相为主[28,5455]或为辫状河—曲流河三角洲砂岩相组合[17,19],在川西凹陷识别出冲积扇、河流、扇三角洲、三角洲和湖泊相多种沉积相类型[14,18,56]。由此,川东(北)地区此期以细粒洪泛平原和古土壤为主,与川西和川中地区的多种岩相组合明显不同。

        晚侏罗世阶段,沉积相的演化可以分为两个时期(图5)。初期为湖泊泥岩相阶段,即在遂宁组下部表现为棕红色的泥岩、粉砂岩,偶夹细粒砂岩。之后的沉积阶段包含遂宁组的中上部和蓬莱镇组的全部,主体为曲流河砂岩夹泥岩,显示曲流河之河道(心滩)砂岩占优势,砂泥岩比超过3∶1,可含边滩砂—泥岩、洪泛平原和水道间泥岩+粉砂岩亚相(图5)。另一个重要变化是此期古土壤大幅度减少。

        在川西地区,遂宁组被认为是湖湾分隔的曲流河+三角洲沉积体系为特征[16]。这些岩相组合特征与本区下部只存在湖泊相、上部为河流体系(决口扇+堤岸+河道)也存在明显差别。

        蓬莱镇组在川西、川中大部地区沉积相被识别为湖成三角洲和湖泊相[12,15,24]、冲积扇和曲流河相[12,24,59]。在广元同期的地层为莲花山组,沉积环境属于辫状河及冲积扇[57]。显然,川西凹陷的岩相较川东同期岩相更为复杂多变。

        上述川西凹陷、川中地区和川东北一带沉积环境/岩相的较大差异,可能是古地理和盆地位置的不同引起,即川西一带可能在此时处于盆地中心,是汇水集聚地,且距物源区近,因此湖泊和三角洲发育;川东(北)则可能远离盆地/沉降中心,属于汇水盆地的过渡和输送地段。

      • 前述结果显示F/Q指数普遍大于0.2,且有近一半样品大于0.4;同样,F/L比值大于1.0的占80%以上,大于2.0的占50%以上(表1图5)。这些指数特征表明,川东北地区中—晚侏罗世普遍干燥,使得长石碎屑组分得以保存下来。钙质古土壤是一种典型的干旱型土壤类型,通常指示干旱—半干旱气候[6061]。研究区中侏罗世钙质古土壤极其发育(图5),说明这一时期气候属于干旱—半干旱气候。我们以F/Q指数0.4、F/L比值2.0为界线,将万源地区的古气候分为半干旱—干旱两个半旋回,分别对应下沙溪庙组、上沙溪庙组+遂宁组下部、遂宁组上部+蓬莱镇组(图5)。

        pCO2估算结果显示,中侏罗世一般低于940 μL/L,平均值约600 μL/L,晚侏罗世在遂宁组和蓬莱镇组逐渐分别上升超过1 000 μL/L和3 000 μL/L,是工业化革命前约280 μL/L的3~10倍。众所周知,CO2是一种温室气体,其浓度直接与气候冷暖有关。因此,推测中侏罗世虽然处于干旱—半干旱气候状态,但相对温凉;晚侏罗世早期则转变为温暖气候,中—晚期则可能属于高温炎热温室气候。这一pCO2变化指示的增温趋势与全球古海洋变化格局基本一致,且特别趋同于海洋双壳氧同位素指示的古海水温度大幅度增加的模型[2]。梁斌等[62]对采自四川广元、大足和自贡的上沙溪庙组钙结核样品分析估算的pCO2为1 400~2 800 μL/L,远大于本文的结果。原因是其采用的S(z)采用的是大值10 000 μL/L,而其钙结核的δ13C值与本次分析结果相近。

        关于四川盆地其他地区中侏罗世的古气候,目前较多利用全岩地球化学来进行研究。如李小平等[63]对四川西南一带的沙溪庙组元素地球化学分析后提出了温暖潮湿的观点;钱利军等[25]对成都—安县一带的沙溪庙组湖相沉积的微量元素和稀土分析后指出总体属于温暖干旱气候条件,存在局部转凉的间断;王全伟等[2122]对自贡泥岩样品的元素地球化学分析后认为沙溪庙组沉积期以干旱温凉为主,并伴有温带潮湿气候。此外,木化石群[34]、黏土矿物[23]、古土壤[13]也证实该阶段以干旱气候为主,或含有干冷[23]或潮湿特征[13]。由此可见,四川盆地东、西部在中侏罗世的气候总体一致,以(半)干旱温凉为主,存在部分潮湿间断的可能原因是使用的材料差别和样品分辨率的不同。

        相对于早—中侏罗世而言,四川盆地晚侏罗世的古气候研究成果较少。重庆綦江蓬莱镇组松柏类植物群显示,与中侏罗世相比晚侏罗世气候并未发生根本性变化,一直保持干旱—半干旱气候[34]。川中射洪地区的沉积特征也显示了半干旱特征[24]。这些结果与本文气候认识基本相同。近期利用古土壤参数指示晚侏罗世转变为干旱—半湿润气候[13]。对于半湿润气候的差异认识,可能是古土壤参数定量估算引起,即原文献对古土壤Bk层之上消失的富有机质古土壤A~O层存在的判别和厚度估算是关键,可能存在一定的偏差。

        上述区域气候特征记录和气候指示表明,四川盆地中侏罗世沙溪庙组沉积期的气候总体上一致,属于干旱—半干旱温凉气候;晚侏罗世(遂宁组+蓬莱镇组沉积期)的气候在前期基础上继续保持干旱—半干旱状态,可能存在西部半湿润间断和东部炎热的差别。关于半湿润气候间断[13]及本文炎热气候的差异推测有待于进一步论证。

      • (1) 研究剖面的沉积环境以曲流河占绝对优势,含少量湖泊单元,在沙溪庙组的洪泛平原泥岩基础上发育大量古土壤。沉积环境及其沉积记录在时间演化序列上由下向上表现为由低砂泥比演变为以高砂泥比的曲流河,向上变粗变厚。中侏罗世沙溪庙组是一套以棕红色、紫红色洪泛平原泥岩为特征的曲流河相,常古土壤化,砂泥比低,小于1∶5~1∶10;晚侏罗世阶段,沉积初期(遂宁组下部)为湖泊泥岩相,之后遂宁组的中上部和蓬莱镇组表现为曲流河砂岩夹泥岩,砂泥比较高,一般大于2∶1~3∶1,古土壤化明显减弱。与四川盆地其他地区相比,川东北地区的岩相相对单一,可能与岩相古地理/盆地位置相关。

        (2) 基于F/Q和F/L指数将研究区的中—晚侏罗世分为半干旱—干旱两个半旋回,分别对应下沙溪庙组、上沙溪庙组+遂宁组下部、遂宁组上部+蓬莱镇组。依据pCO2估值推测中侏罗世沙溪庙组相对温凉,晚侏罗世早期遂宁组属于温暖气候,中—晚期蓬莱镇组沉积阶段可能属于高温炎热温室气候,与全球古海洋气候变化格局一致。对比四川盆地其他地区的气候指针指示,东、西部的气候总体上一致,属于干旱—半干旱气候,但蓬莱镇组沉积时期在川西可能有半湿润间断。

    参考文献 (63)

    目录

      /

      返回文章
      返回