-
陆源碎屑的输入可能对水体中有机质产生稀释作用,是影响有机质富集的重要因素[41⁃42]。沉积物中的元素Al、Zr、Ti主要来自陆源碎屑,由于不易遭受成岩作用以及风化作用的影响,常被用于指示海相沉积岩中的陆源输入情况,Al、Zr与Ti含量可以作为陆源输入的重要指标[43]。
接龙剖面中陆源输入指标Al、Zr、Ti在五峰组变化幅度比较大,在中部出现明显波动(图5),表明陆源物质输入在五峰组沉积时期供给变化比较大,这可能是奥陶世晚期频繁的构造运动造成的[31⁃32]。随后,进入观音桥组沉积时期,陆源输入指标Al、Zr、Ti含量出现明显的下降,可能是由于全球冰期造成海平面的下降,从而使剖面点远离古隆起剥蚀区,导致了陆源碎屑在这一时期输入减少。之后,Al、Zr、Ti含量在龙马溪组底部快速提升,表明在冰期结束后,海平面上升,陆源碎屑供给开始恢复到五峰组沉积时期。以上这些陆源输入指标的变化特征也可以在QQ1井观察到(图6)。
图 6 QQ1井陆源输入指标、氧化还原指标和古生产力指标垂向变化特征[28]
-
微量元素V、Ni、Cr等是氧化还原敏感性元素,前人利用相关元素在不同地区都进行过相关时期水体氧化还原条件研究。采用V/Cr与V/(V+Ni)作为氧化还原性的替代指标。通常V/Cr>4.25指示强烈缺氧环境,2<V/Cr<4.25指示贫氧环境,V/Cr<2指示氧化环境[44]。V/(V+Ni)<0.46为氧化环境,0.46~0.57为弱氧化环境,0.57~0.83为缺氧环境,0.83~1为静海环境[45]。
根据元素分析结果(表1),接龙剖面五峰组V/(V+Ni)比值介于0.72~0.93,平均为0.85,五峰组V/Cr比值介于1.69~7.18,平均为3.75,指示一个缺氧的环境。观音桥组V/Cr比值介于1.81~3.30,平均为2.57,V/(V+Ni)比值介于0.35~0.69,平均为0.51,指示一个弱氧化的环境。龙马溪组V/Cr比值介于2.50~7.41,平均为4.60,V/(V+Ni)比值介于0.73~0.93,平均为0.86,指示一个还原的环境。
表 1 接龙剖面与QQ1井氧化还原性指标对比表[28]
剖面名称 五峰组 观音桥组 龙马溪组 V/Cr 平均 V/Cr 平均 V/Cr 平均 接龙剖面 1.69~7.18 3.75 1.81~3.30 2.57 2.50~7.41 4.60 QQ1井 0.99~5.14 2.48 — — 2.00~8.07 3.79 V/(V+Ni) 平均 V/(V+Ni) 平均 V/(V+Ni) 平均 接龙剖面 0.72~0.93 0.85 0.35~0.69 0.51 0.73~0.93 0.86 QQ1井 0.69~0.73 0.71 — — 0.62~0.80 0.70 缺氧环境 弱氧化环境 还原环境 除此之外,在纵向上,接龙剖面五峰组—龙马溪组水体的氧化还原条件(图5)表现也有所不同。在五峰组沉积时期V/Cr、V/(V+Ni)比值变化较大,指示氧化还原以缺氧环境为主,偶尔有富氧的环境存在,在五峰组顶部V/Cr、V/(V+Ni)比值有所减小,在观音桥组时期减至最小,指示弱氧化环境。这可能是受赫南特冰期的影响,全球的海平面下降,导致底部水体氧含量有所增加。随后,在龙马溪组底部,V/Cr、V/(V+Ni)比值开始增大,接着趋于稳定,这表明水体的还原程度在这一时期有所增加。这可能是由于早志留世全球冰期的结束,全球海平面开始上升,水体加深造成的。
另外,水体的氧化还原环境除了在同一个剖面的不同层位上存在差异,在不同剖面之间也有变化。位于川东沉降边缘的QQ1井在五峰组—龙马溪组氧化还原指标V/Cr、V/(V+Ni)在相同层位的变化特征与接龙剖面表现出一致性(图6),但是在相同层位的V/Cr、V/(V+Ni)数值明显低于位于川东沉降中心的接龙剖面(表1)。这可能是因为不同的剖面位置,其沉积水体的深度不同导致氧化还原性有所差异。水体越深,还原性越强[28]。这说明水体深度和沉积位置也是影响氧化还原条件重要因素。
-
海洋生产力是海洋生态系统的基础,是影响有机质富集的主要因素之一[45],可以用来指示古生产力的地球化学指标是P元素[46⁃47]。另外,在判别古生产力水平时通常用P/Al或P/Ti去除来自陆源碎屑的影响,其值更能代表古海洋的初级生产力[21]。
现代海洋研究证实,海底沉积物中Ba的积累速率与生物生产力具有正相关性[45]。虽然非生物Ba在海洋中含量非常少,为了排除这类Ba影响,采用在学术界广泛被采用的古生产力指标生物钡Ba(xs)计算方式[48]。
Ba(xs)=Bay-Aly(Ba/Al)pass (1) 式中:Bay,Aly为样品测试值;(Ba/Al)pass为后太古宙澳大利亚页岩中两元素的比值,取值为0.007 7[39]。
接龙剖面古生产力指标Ba(xs)、P/Al在五峰组底部表现为较高值(图5),随后在五峰组中上部有所下降,指示古生产力的下降。总体来看,五峰组Ba(xs)、P/Al变化范围最大,这可能是由于五峰组沉积时期强烈的环境变化以及火山活动导致深水相的腕足、浮游笔石受到重创[33⁃34],从而古生产力逐渐下降。另外,我们观察到观音桥组的古生产力指标Ba(xs)、P/Al出现较大的差距,P/Al比值在观音桥组出现最大值,指示较高的生产力,这与QQ1井分析结果以及生物大灭绝的地质背景相悖[37]。考虑到在镜下观察到了海百合碎片,而生物体中的Ba、P可能对这一指标有影响[46],故在之后的有机质富集的主控因素分析中,剔除观音桥的两个样品,这里仅做展示。Ba(xs)、P/Al值在龙马溪组早期逐渐增大,指示古生产力水平的恢复。这可能是在赫南特冰期结束后,气温回暖,生物复苏导致的古生产力水平的提高,从QQ1井的古生产力指标中(图6)也能够非常明显地观察到。
接龙剖面和QQ1井的古生产力判断指标Ba(xs)、P/Al(×10-4)具体值见表2。接龙剖面五峰组Ba(xs)含量介于(677.0~1 908.0)×10-6,平均为1 073.1×10-6;五峰组P/Al值介于(81.4~160.4)×10-4,平均为116.3×10-4。龙马溪组Ba(xs)含量介于(1 427.9~2 255.0)×10-6,平均为1 741.6×10-6;龙马溪组P/Al值介于(99.2~141.6)×10-4,平均为119.7×10-4。表明接龙剖面五峰组和龙马溪组都具有良好的古生产力条件,但是接龙剖面相关指标明显高于沉降周缘的QQ1井,说明接龙剖面古生产力比QQ1井高。考虑到五峰组—龙马组沉积时期大量的火山活动,而火山灰为笔石以及浮游生物提供大量的营养物质[33⁃34],促进古生产力的增长,我们认为这可能是因为接龙剖面更靠近川中古陆,有更多的营养物质使得生物在此繁衍,导致接龙剖面的古生产力比QQ1井高。这与野外接龙剖面观察到火山灰夹层,而在QQ1井没有发育火山灰这一现象相符。
表 2 接龙剖面与QQ1井古生产力对比表[28]
剖面名称 五峰组 观音桥组 龙马溪组 P/Al/×10-4 平均 P/Al/×10-4 平均 P/Al/×10-4 平均 接龙剖面 81.4~160.4 116.3 103.9~124.4 114.0 99.2~141.6 119.7 QQ1井 32.7~140.0 77.2 — — 83.0~106.8 93.9 Ba(xs)/×10-6 平均 Ba(xs)/×10-6 平均 Ba(xs)/×10-6 平均 接龙剖面 677.0~1 908.0 1 073.1 786.0~1 107.0 946.5 1 427.9~2 255.0 1 741.6 QQ1井 494.0 ~777.0 637.5 — — 746.0~1 139.0 987.0
Sedimentary Environment and Controlling Factors of Organic Matter Accumulation in Wufeng Formation-Longmaxi Formation: A case study of Jielong section in eastern Chongqing
-
摘要: 目的 研究渝东地区五峰组—龙马溪组黑色页岩的沉积环境及有机质主控因素。 方法 选取重庆市武隆区接龙剖面开展系统研究,通过实测观察、连续采样及相关地球化学分析,获得了剖面总有机碳(TOC)、主量元素、微量元素垂向变化特征。在此基础上,横向对比QQ1井,探讨研究区五峰组—龙马溪组古环境演化并进行TOC富集因素分析。 结果 Al、Zr、Ti陆源输入指标在五峰组沉积时期供给变化比较大,进入观音桥组沉积时期有所下降,在龙马溪组底部快速提升。V/Cr、V/(V+Ni)氧化还原指标显示,五峰组为缺氧环境、观音桥组为弱氧环境、龙马溪组为还原环境。页岩古生产力指标P/Al值和Ba(xs)含量指示了五峰组—龙马溪组均具有相对高的生产力。其中,龙马溪组最高,五峰组次之。根据TOC与陆源输入指标Al、Zr和古生产力指标P/Al、Ba(xs)及氧化还原指标V/Cr、V/(V+Ni)进行相关性分析,并对比QQ1井,发现渝东地区五峰组—龙马溪组页岩的TOC主控因素为水体的氧化还原性。并且这种氧化还原性受控于水体深度,具体表现为位于沉降中心深水陆棚区的接龙剖面还原性明显高于位于沉降周缘浅水陆棚区的QQ1井,导致接龙剖面TOC明显高于QQ1井。 结论 虽然五峰组—龙马溪组富有机质层段均形成于缺氧环境,但是两组页岩形成的沉积环境却不同。五峰组页岩沉积于流通性极差的强滞留水体环境,而龙马溪组则主要为静海相的缺氧环境。Abstract: Objective The Jielong section in the Wulong district of Chongqing was selected for field observations in this study of the sedimentary environment and factors influencing the accumulation of organic matter in the black shale of the Wufeng Formation-Longmaxi Formation in eastern Chongqing. Methods Continuous field sampling was carried out to obtain material for geochemical analysis. The variation in element content of the shale was compared with that from well QQ1 in eastern Chongqing. The paleoenvironmental evolution and TOC enrichment factors affecting the Wufeng Formation-Longmaxi Formation were analyzed in eastern Sichuan. Results The results show that terrigenous input indexes Al,Zr,and Ti increased in Wufeng Formation,and then it decreased in Guanyinqiao Formation,and finally it increased rapidly in lower Longmaxi Formation. The V/Cr and V/(V+Ni) redox indices show that the Wufeng Formation developed in an anoxic environment,Guanyinqiao developed in a weak oxygen environment,and the Longmaxi Formation developed in a reducing environment. The P/Al and Ba(XS) content analyses indicated highest productivity in the Longmaxi Formation,and lowest in Guanyinqiao. Analysis of the correlation between TOC and P/Al-Ba(XS),and between TOC and V/Cr-V/(V+Ni),then comparison with well QQ1,indicated that the main influence on TOC content in the Wufeng Formation-Longmaxi Formation was the redox reducibility of the body of water. In addition,the lessening of oxidation depended on water depth: specifically,in the Jielong section located in the deepwater shelf area,in the center of subsidence the reducibility was significantly greater than at the well QQ1 site located in the shallow-water shelf area surrounding the subsidence. This resulted in a significantly higher TOC content in the Jielong section than at well QQ1. Conclusions Although the organic-rich strata of the Wufeng Formation-Longmaxi Formation shales were both formed in anoxic conditions,their sedimentary environments differed considerably. The Wufeng Formation shale was formed in a strongly retained water environment with extremely poor organic fluidity; the sedimentary environment of the Longmaxi Formation was mainly anoxic.
-
Key words:
- Wufeng Formation /
- Longmaxi Formation /
- black shale /
- geochemistry
-
图 1 四川盆地五峰组—龙马溪组泥页岩分布及剖面位置[29]
图 2 接龙剖面五峰组—龙马溪组综合柱状图
(a) upper part of Longmaxi Formation, gray silty mudstone and argillaceous siltstone; (b) bottom of Longmaxi Formation, medium⁃thin black shale; (c) parallel conformal contact between Silurian and Ordovician; (d) parallel unconformity between Wufeng and Linxiang Formations, with 4⁃6 cm interlayer of volcanic bentonite
图 3 接龙剖面五峰组—龙马溪组黑色页岩典型照片
(a) Wufeng Formation, black shale, orthogonal polarized light, radiolarian stratified distribution; (b) Guanyinqiao Formation, gray⁃black marl, orthogonal polarized light, crinoid fragments; (c) YjL⁃6, Wufeng Formation, cellular pyrite; (d) YJL⁃31, Longmaxi Formation, strawberry pyrite
图 6 QQ1井陆源输入指标、氧化还原指标和古生产力指标垂向变化特征[28]
图 8 五峰组—龙马溪组有机质富集模式(据文献[28])
(a) Wufeng Formation period; (b) Guanyinqiao period; (c) Longmaxi Formation period
表 1 接龙剖面与QQ1井氧化还原性指标对比表[28]
剖面名称 五峰组 观音桥组 龙马溪组 V/Cr 平均 V/Cr 平均 V/Cr 平均 接龙剖面 1.69~7.18 3.75 1.81~3.30 2.57 2.50~7.41 4.60 QQ1井 0.99~5.14 2.48 — — 2.00~8.07 3.79 V/(V+Ni) 平均 V/(V+Ni) 平均 V/(V+Ni) 平均 接龙剖面 0.72~0.93 0.85 0.35~0.69 0.51 0.73~0.93 0.86 QQ1井 0.69~0.73 0.71 — — 0.62~0.80 0.70 缺氧环境 弱氧化环境 还原环境 表 2 接龙剖面与QQ1井古生产力对比表[28]
剖面名称 五峰组 观音桥组 龙马溪组 P/Al/×10-4 平均 P/Al/×10-4 平均 P/Al/×10-4 平均 接龙剖面 81.4~160.4 116.3 103.9~124.4 114.0 99.2~141.6 119.7 QQ1井 32.7~140.0 77.2 — — 83.0~106.8 93.9 Ba(xs)/×10-6 平均 Ba(xs)/×10-6 平均 Ba(xs)/×10-6 平均 接龙剖面 677.0~1 908.0 1 073.1 786.0~1 107.0 946.5 1 427.9~2 255.0 1 741.6 QQ1井 494.0 ~777.0 637.5 — — 746.0~1 139.0 987.0 -
[1] 谢忱,张金川,李玉喜,等. 渝东南渝科1井下寒武统富有机质页岩发育特征与含气量[J]. 石油与天然气地质,2013,34(1):11-15. Xie Chen, Zhang Jinchuan, Li Yuxi, et al. Characteristics and gas content of the Lower Cambrian dark shale in well Yuke 1, southeast Chongqing[J]. Oil & Gas Geology, 2013, 34(1): 11-15. [2] 李玉喜,乔德武,姜文利,等. 页岩气含气量和页岩气地质评价综述[J]. 地质通报,2011,30(2/3):308-317. Li Yuxi, Qiao Dewu, Jiang Wenli, et al. Gas content of gas-bearing shale and its geological evaluation summary[J]. Geological Bulletin of China, 2011, 30(2/3): 308-317. [3] Passey Q R, Bohacs K M, Esch W L, et al. From oil-prone source rock to gas-producing shale reservoir-geologic and petrophysical characterization of unconventional shale-gas reservoirs[C]//International oil and gas conference and exhibition in China. Beijing, China: SPE, 2010. [4] Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64(8): 1179-1209. [5] Pedersen T F, Calvert S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466. [6] 张水昌,张宝民,边立曾,等. 中国海相烃源岩发育控制因素[J]. 地学前缘,2005,12(3):39-48. Zhang Shuichang, Zhang Baomin, Bian Lizeng, et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48. [7] 李双建,肖开华,沃玉进,等. 南方海相上奥陶统:下志留统优质烃源岩发育的控制因素[J]. 沉积学报,2008,26(5):872-880. Li Shuangjian, Xiao Kaihua, Yujin Wo, et al. Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China[J]. Acta Sedimentologica Sinica, 2008, 26(5): 872-880. [8] 常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99. Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99. [9] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405-414. Xiong Xiaohui, Xiao Jiafei. Geochemical indicators of sedimentary environments: A Summary[J]. Earth and Environment, 2011, 39(3): 405-414. [10] Tribovillard N, Algeo T J, Lyons T W, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32. [11] Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4): 373-391. [12] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318 [13] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发,2015,42(6):689-701. Zou Caineng, Dong Dazhong, Wang Yuman, et al. Shale gas in China: Characteristics, challenges and prospects (Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. [14] 杨平,汪正江,余谦,等. 四川盆地西南缘五峰—龙马溪组页岩气资源潜力分析[J]. 中国地质,2019,46(3):601-614. Yang Ping, Wang Zhengjiang, Yu Qian, et al. An resources potential analysis of Wufeng-Longmaxi Formation shale gas in the southwestern margin of Sichuan Basin[J]. Geology in China, 2019, 46(3): 601-614. [15] 牟传龙,葛祥英,周恳恳,等. 川西南晚奥陶世五峰期岩相古地理[J]. 中国地质,2015,42(1):192-198. Mou Chuanlong, Ge Xiangying, Zhou Kenken, et al. Lithofacies palaeogeography in Late Ordovician Wufeng age in southwestern Sichuan[J]. Geology in China, 2015, 42(1): 192-198. [16] 何龙. 四川盆地东南缘五峰组—龙马溪组页岩有机质富集机制及沉积环境演化[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所),2020. [17] 郭秀梅,王剑,杨宇宁,等. 渝东北地区五峰组—龙马溪组黑色页岩储层特征[J]. 沉积与特提斯地质,2015,35(2):54-59. Guo Xiumei, Wang Jian, Yang Yuning, et al. Black shale reservoirs from the Wufeng and Longmaxi Formations in northeastern Chongqing[J]. Sedimentary Geology and Tethyan Geology, 2015, 35(2): 54-59. [18] 董大忠,程克明,王玉满,等. 中国上扬子区下古生界页岩气形成条件及特征[J]. 石油与天然气地质,2010,31(3):288-299,308. Dong Dazhong, Cheng Keming, Wang Yuman, et al. Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China[J]. Oil & Gas Geology, 2010, 31(3): 288-299, 308. [19] 梁峰,拜文华,邹才能,等. 渝东北地区巫溪2井页岩气富集模式及勘探意义[J]. 石油勘探与开发,2016,43(3):350-358. Liang Feng, Bai Wenhua, Zou Caineng, et al. Shale gas enrichment pattern and exploration significance of well Wuxi-2 in northeast Chongqing, NE Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(3): 350-358. [20] 郭旭升,李宇平,刘若冰,等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业,2014,34(6):9-16. Guo Xusheng, Li Yuping, Liu Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16. [21] 郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发,2014,41(1):28-36. Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36. [22] 梁狄刚,郭彤楼,陈建平,等. 中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布[J]. 海相油气地质,2008,13(2):1-16. Liang Digang, Guo Tonglou, Chen Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16. [23] 李艳芳,邵德勇,吕海刚,等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483. Li Yanfang, Shao Deyong, Haigang Lü, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483. [24] 张春明,张维生,郭英海. 川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J]. 地学前缘,2012,19(1):136-145. Zhang Chunming, Zhang Weisheng, Guo Yinghai. Sedimentary environment and its effect on hydrocarbon source rocks of Longmaxi Formation in southeast Sichuan and northern Guizhou[J]. Earth Science Frontiers, 2012, 19(1): 136-145. [25] 吴艳艳,高玉巧,陈云燕,等. 渝东南地区五峰—龙马溪组页岩气储层孔缝发育特征及其地质意义[J]. 油气藏评价与开发,2021,11(1):62-71,80. Wu Yanyan, Gao Yuqiao, Chen Yunyan, et al. Characteristics and geological significance of pore and fracture of shale gas reservoirs in Wufeng-Longmaxi Formation, southeastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(1): 62-71, 80. [26] 何顺,秦启荣,范存辉,等. 川东南丁山地区五峰—龙马溪组页岩储层特征及影响因素[J]. 油气藏评价与开发,2019,9(4):61-67,78. He Shun, Qin Qirong, Fan Cunhui, et al. Shale reservoir characteristics and influencing factors of Wufeng-Longmaxi Formation in Dingshan area, southeast Sichuan[J]. Reservoir Evaluation and Development, 2019, 9(4): 61-67, 78. [27] 郑珊珊,刘洛夫,汪洋,等. 川南地区五峰组—龙马溪组页岩微观孔隙结构特征及主控因素[J]. 岩性油气藏,2019,31(3):55-65. Zheng Shanshan, Liu Luofu, Wang Yang, et al. Characte-ristics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin[J]. Lithologic Reservoirs, 2019, 31(3): 55-65. [28] 李艳芳. 上扬子地区晚奥陶世—早志留世页岩地球化学特征、有机质富集及古环境意义[D]. 兰州:兰州大学,2017. [29] 梁狄刚,郭彤楼,边立曾,等. 中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质,2009,14(2):1-19. Liang Digang, Guo Tonglou, Bian Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19. [30] 牟传龙,周恳恳,梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报,2011,85(4):526-532. Mu Chuanlong, Zhou Kenken, Liang Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532. [31] 胡永亮,王伟,周传明. 沉积地层中的黄铁矿形态及同位素特征初探:以华南埃迪卡拉纪深水相地层为例[J]. 沉积学报,2020,38(1):138-149. Hu Yongliang, Wang Wei, Zhou Chuanming. Morphologic and isotopic characteristics of sedimentary pyrite: A case study from deepwater facies, Ediacaran Lantian Formation in South China[J]. Acta Sedimentologica Sinica, 2020, 38(1): 138-149. [32] Habicht K S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(24): 5351-5361. [33] 吴蓝宇,陆永潮,蒋恕,等. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J]. 石油勘探与开发,2018,45(5):806-816. Wu Lanyu, Lu Yongchao, Jiang Shu, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018, 45(5): 806-816. [34] 卢贤志,沈俊,郭伟,等. 中上扬子地区奥陶纪—志留纪之交火山作用对有机质富集的影响[J]. 地球科学,2021,46(7):2329-2340. Lu Xianzhi, Shen Jun, Guo Wei, et al. Influence of mercury geochemistry and volcanism on the enrichment of organic matter near the Ordovician Silurian transition in the Middle and Upper Yangtze[J]. Earth Science, 2021, 46(7): 2329-2340. [35] Rong J Y, Li R Y. A silicified Hirnantia fauna (Latest Ordovician brachiopods) from Guizhou, southwest China[J]. Journal of Paleontology, 1999, 73(5): 831-849. [36] Rong J Y, Harper D A T, Zhan R B, et al. Kassinella-Christiania Associations in the early Ashgill Foliomena brachiopod fauna of South China[J]. Lethaia, 1994, 27(1): 19-28. [37] 沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135. Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135. [38] 易定鑫,田景春,井翠,等. 五峰组—龙马溪组笔石带划分与沉积环境的意义:以重庆武隆接龙剖面为例[J]. 东北石油大学学报,2019,43(6):33-43. Yi Dingxin, Tian Jingchun, Jing Cui, et al. Graptolite biostratigraphy and sedimentary environment significance: A case study from the Wufeng Formation-Longmaxi Formation of Jielong section in Wulong, southeastern Chongqing[J]. Journal of Northeast Petroleum University, 2019, 43(6): 33-43. [39] Moradi A V, Sarı A, Akkaya P. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for Paleoclimate conditions, source-area weathering, provenance and tectonic setting[J]. Sedimentary Geology, 2016, 341: 289-303. [40] Craigie N. Principles of elemental chemostratigraphy: A practical user guide[M]. Cham: Springer, 2018. [41] 王茜,黄永建,张治锋,等. 上扬子地区双河露头五峰组—龙马溪组下段化学层序地层分析[J]. 西北地质,2021,54(1):1-14. Wang Qian, Huang Yongjian, Zhang Zhifeng, et al. Chemical sequence stratigraphy of the Wufeng Formation-Lower member of Longmaxi Formation in Shuanghe outcrop, Upper Yangtze[J]. Northwestern Geology, 2021, 54(1): 1-14. [42] 贺燚平,陈振林,张悦. 四川盆地周缘龙马溪组富有机质页岩地球化学差异性分析及其地质意义[J]. 矿物岩石地球化学通报,2020,39(5):1014-1022. He Yiping, Chen Zhenlin, Zhang Yue. The difference analysis and geological significance of geochemical characteristics of organic-rich shales from the Longmaxi Formation in the periphery of Sichuan Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(5): 1014-1022. [43] 王淑芳,董大忠,王玉满,等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质,2014,19(3):27-34. Wang Shufang, Dong Dazhong, Wang Yuman, et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2014, 19(3): 27-34. [44] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis limestone, Wabaunsee county, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82. [45] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129. [46] Schenau S J, Reichart G J, De Lange G J. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 919-931. [47] Redfield A C. The biological control of chemical factors in the environment[J]. Science Progress, 1960, 11: 150-170. [48] Algeo T J, Rowe H. Paleoceanographic applications of trace-metal concentration data[J]. Chemical Geology, 2012, 324-325: 6-18. [49] Fan J X, Chen X. Preliminary report on the Late Ordovician graptolite extinction in the Yangtze region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245(1/2): 82-94. [50] 贾敏. 川东北地区五峰组—龙马溪组泥页岩特征及有机质富集机理研究[D]. 兰州:兰州大学,2019. [51] 李园园. 渝东地区五峰—龙马溪组富有机质页岩沉积序列及古环境特征研究[D]. 成都:成都理工大学,2020. [52] 何龙,王云鹏,陈多福,等. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学,2019,30(2):203-218. He Long, Wang Yunpeng, Chen Duofu, et al. Relationship between sedimentary environment and organic matter accumulation in the black shale of Wufeng-Longmaxi Formations in Nanchuan area, Chongqing[J]. Natural Gas Geoscience, 2019, 30(2): 203-218.