-
ZK01钻孔位于太原盆地东北部(112°40′11″ E,37°35′39″ N,图1b),岩心总长850 m,揭露出太原盆地完整的新生代地层序列。地层从底到顶划分为六个沉积组,分别为下土河组、小白组、红崖组、大沟组、木瓜组和汾河组(表1)。
表 1 ZK01钻孔地层划分简表
Table 1. Stratigraphic division of core ZK01
年代地层 磁性地层 岩石地层 系 统 阶 GPTS2012年龄/Ma 组 厚度/m 第四系 全新统—中更新统 全新统—周口店阶 0~0.78 汾河组 127 下更新统 泥河湾阶 0.78~2.15 木瓜组 55 2.15~2.58 大沟组 82 新近系 上新统 麻则沟阶 2.58~3.60 红崖组 135 高庄阶 3.60~5.33 小白组 185 中新统 保德阶—灞河阶 5.33~8.11 下土河组 269 下土河组(853~584 m):不整合覆盖于上三叠统延长组上。下部(853~788 m)以棕色砾石和砂互层为特征。在粗粒部分的底部常见侵蚀面构造。砾石以中砾为主,磨圆中等—好,砾石成分主要为砂岩。砂从粉砂到粗砂不等,分选差。值得注意的是,在砾石层之间发育古土壤夹层(图2a)。沉积物颗粒大小向上减小,形成细砾—粉砂序列。上部(788~584 m)为块状浅砖红色粉砂和黏土质粉砂,含少量薄黏土夹层。粉砂粒径均一,富含钙质团块。这些沉积物被氧化铁染成了淡红色。此外,常见泥屑,意味着存在高能量流。化石少见。
图 2 ZK01钻孔典型沉积特征照片(向上或向左为顶)
Figure 2. Photographs of typical sedimentary features in core ZK01 (top is at left or up)
小白组(584~399 m):小白组下部(584~508 m)是整个钻心中粒度最细的部分,大部分为灰白色—灰绿色黏土;上部(508~399 m)为深灰绿色黏土和淡棕色粉砂至粉砂质黏土,黑色富有机质黏土层出现在该段上部(图2b)。总体而言,该组呈现出向上变粗的趋势。小白组沉积物由于含有大量的碳酸钙而呈现浅灰色,与下伏的浅砖红色下土河组有明显的区别。小白组大部分为块状厚层,夹少量细层韵律层。常见生活在淡水中的蚬类碎片。
红崖组(399~264 m):红崖组沉积物粒径变化大。底部(399~338 m)为具正粒序的含砾中砂,上覆褐色块状黏土—粉砂质黏土。中部(338~320 m)为暗褐色粉砂—中砂与粉砂质黏土互层。粉砂质黏土中发育大量锈色的斑点。在该段的顶部,粉砂中可见垂直于层理的被泥土充填的居住洞穴(图2c)。这部分构成了红崖组中粒度最粗的部分。上部(320~264 m)由灰褐色粉砂和黏土组成。在黏土层中可以观察到黄绿色斑点。粉砂层中夹有一层10 cm厚的中砾石状泥屑。泥屑分选差,半棱角状,层面不规则(图2d)。红崖组中包含少量田螺化石。
大沟组(264~182 m):大沟组底部(264~246 m)以灰褐色、深褐色粉砂质黏土为主,发育薄层不显著的交错层理。可见大量的壳类碎片。粗粒部分(246~215 m)主要为棕色细砂和粉砂。砂质纯净、均一,常见显著的正粒序,也可见零星分布的磨圆良好的细砾石。正粒序层的底部常见侵蚀面构造。上部(215~182 m)由浅棕色粉砂和粉砂质黏土组成,夹少量薄层细砂。该段可见大量的黄绿色斑点、条纹和团块。薄层粉砂和黏土互层发育层状构造,这可能与气候变化有关。粉砂层通常呈透镜状,且底部界线截然,在其上表面呈现波纹。粉砂中可见大量的壳类碎片(图2e)。
木瓜组(182~127 m):木瓜组主要由棕色—灰黑色黏土和粉砂质黏土组成。大量破碎的贝壳散布在非常薄的细砂层中。在下部(172~173 m),大量的锈斑覆盖了粉砂质黏土。平行层理非常发育,尤其是在粒度最细的层位。在木瓜组上部,灰色黏土单元中常见黑色富有机质条带。顶部砂层发育波状层理(图2f)。
汾河组(127~0 m):棕色和灰褐色粉砂质黏土、粉砂和细砂是汾河组的主要特征。汾河组含砂量的显著增加与下伏以黏土和粉砂质黏土为主的木瓜组有明显差异。从木瓜组最上部深灰色黏土向汾河组最下部粉砂质黏土的转变是过渡的。在汾河组下部(127~118 m)出现坚硬而致密的白色钙质胶结物(图2g)。中部(118~18 m)交替出现浅棕色粉砂质黏土—粉砂和深棕色细砂—中砂。沉积物多为块状,常见冲刷充填构造。粉砂和砂层中偶见次棱角状细砾石。该段的顶部可见蚬类壳体碎片。汾河组的顶部(18~0 m)主要由粉砂和黏土组成,由于与非常细粒的黄土混合,沉积物特征混乱和模糊,未作进一步区分。
-
重点从沉积物的结构、构造、颜色、化石等方面对沉积环境进行综合评价。将太原盆地沉积环境划分为河流环境、三角洲环境和湖泊环境。
-
钻孔剖面的河流沉积环境主要发育在下土河组下部和汾河组。其中下土河组下部(690~853 m)的河流沉积以砾石、(含砾)粗砂为典型特征,汾河组的河流沉积为(含砾)细—中砂与下土河组相区别。
在下土河组底部(839~853 m)发育大量由次圆中砾石组成的河道滞留沉积,其底部发育冲刷面,砾石层之上覆盖中—粗砂。砂体以浅棕红色为主色调,反映地表氧化环境;砂体结构成熟度低,表现为分选差、杂基含量高,反映快速堆积过程;砾石层间夹古土壤层(图2a),表明长期暴露风化环境。该段向上(690~853 m)主要为块状和具正粒序中—粗砂与粉砂互层,局部夹薄层黏土。中粗砂层底面通常为侵蚀面,指示废弃河道的充填沉积,黏土为洪水末期悬浮沉积[58]。下土河组下部整体缺乏化石及生物遗迹构造,粉砂和黏土含量低,符合冲积扇—砂质辫状河沉积环境。但钻进作用导致砾石变位、旋转和破碎,并破坏了砾石层间的部分砂体,因此难以准确划分下土河组冲积扇与辫状河环境的界线,在此将其统一划分为河流环境。
汾河组(18~103 m)以具冲刷充填构造的细—中砂和上覆的粉砂质黏土—粉砂为特征,相比下土河组下部粗粒沉积物显著减少,层厚也显著减薄,而细粒沉积物比例显著提高。薄层泥和粉砂的互层为天然堤沉积(图2h)[59⁃60];而厚层黏土和粉砂构成泛滥平原沉积;由于泛滥平原沉积物累积速率缓慢,中部古土壤层反映沉积速率缓慢的泛滥平原沉积[61];在厚层细粒沉积中夹逆粒序砂(图2m),为被泛滥平原沉积所包裹的决口扇沉积[62]。这些特征表明该段为曲流河环境,但是钻孔位置远离主河道,位于泛滥平原中。这种沉积特征与观察到的现今汾河泛滥平原一致,均表现出成熟、稳定的河流性质。
-
三角洲环境分为三角洲平原、三角洲前缘和前三角洲亚环境。
三角洲平原沉积。三角洲平原处于河流与湖泊的过渡带,三角洲平原可以遵循河流的识别特征,但比河流沉积物粒度更细,规模更小,主要由砂、粉砂和泥组成。下土河组上部发育较多泥砾,表明洪水对天然堤或泛滥平原暴露沉积的冲刷作用[63](图2d)。小白组的黑色富有机质层解释为三角洲平原边缘分流间湾的沼泽环境沉积[62,64];泛滥平原沉积广泛发育,常见决口扇成因逆粒序砂;此外,钙质硬壳层(钙结层)被包裹在松散沉积物中,它们是半干旱气候下长时间在地面风化环境中形成的[62],一般出现在河道或三角洲环境中[65]。与丰富的侵蚀构造、古土壤和地层中向上变细的砂层(图2n)共同构成三角洲平原环境。
三角洲前缘沉积。三角洲前缘沉积位于河口前缘,沉积物受波浪和潮汐作用影响较大[62]。因此,小白组中由薄层粉砂和泥夹层组成的波状层理和潮汐韵律层(图2i)是三角洲前缘沉积的重要识别标志。破碎贝壳的出现(如红崖组顶部和大沟组顶部,图2e)代表了高能量环境,比如遭受湖浪冲击的湖滩[66]。红崖组上段中发育的软沉积变形(图2j)代表三角洲前缘的斜坡环境,当未固结沉积物受到地震等因素而振动时,就会出现扭曲变形层[67]。
前三角洲沉积。前三角洲是三角洲环境的最远端部分,与湖相沉积物相似,都具有块状和水平层理的特征(如木瓜组下部)。然而,与湖泊相比,前三角洲沉积有更多的粉砂和更少的黏土(如下土河组上部与小白组)。
-
在钻孔岩心中,将厚层块状泥解释为湖相沉积,而带有侵蚀底部的薄夹层粉砂则解释为水下水道沉积,在洪水或地震活动期间深入到湖泊深处[67]。具湖相沉积特征的层位主要为小白组下部和木瓜组下部。韵律岩是深湖相最具特征的沉积构造,由淡色的富碳酸盐岩和深色的富有机质层组成(图2k)。小白组沉积物的灰绿色也表明沉积为还原环境,稳定的韵律层和厚层黏土层表明小白组为较深的湖相沉积[68];而木瓜组下部包含大量侵蚀构造和壳类碎片,表明湖泊较浅,甚至木瓜组湖相沉积与前三角洲沉积难以区分。此外,木瓜组还发育破碎后原地沉积的深、浅色薄互层黏土碎屑,可能为风暴或地震成因(图2l)。
综上所述,将ZK01沉积环境划分为河流沉积环境、三角洲沉积环境和湖泊沉积环境(图3)。表现为河流—三角洲/湖泊—河流的沉积环境演化过程。
-
碎屑成分(表2)主要为石英(Q,单晶和多晶颗粒),长石(F,钾长石和斜长石)和岩屑(L,火山岩屑、沉积岩屑、硅质岩屑、碳酸盐岩岩屑和硅酸盐岩岩屑的集合体)。副矿物包括云母和含量较低的锆石、磁铁矿等重矿物。样品矿物含量差异较大,说明砂样的类型复杂。
表 2 太原盆地ZK01钻孔碎屑成分及含量
Table 2. Detrital composition and content of core ZK01
样品编号 石英 长石 岩屑 云母 重矿物 Q-F-L分类 成熟度 斜长石 钾长石 Q% F% L% D28 46 73 99 47 41 7 17 65 18 0.21 D77 34 118 65 65 9 4 12 65 23 0.14 D98 65 73 103 53 10 19 22 60 18 0.28 D131 92 27 8 157 55 6 32 12 55 0.48 D190 37 103 65 65 13 5 14 62 24 0.16 D259 63 79 95 61 20 19 21 58 20 0.27 D298 57 83 101 63 19 7 19 61 21 0.23 D362 51 73 97 96 17 21 16 54 30 0.19 D393 57 74 97 45 12 27 21 63 16 0.26 D414 79 63 87 45 13 21 29 55 16 0.41 D449 36 54 41 120 36 2 14 38 48 0.17 D460 122 36 42 75 11 26 44 28 27 0.80 D480 45 75 84 60 20 4 17 60 23 0.21 D505 24 39 28 175 31 4 9 25 66 0.10 D605 21 87 68 116 43 1 7 53 40 0.08 D668 132 39 26 97 13 1 45 22 33 0.81 D689 167 22 11 93 7 1 57 11 32 1.33 D700 60 27 34 180 10 3 20 20 60 0.25 D710 77 18 9 218 3 1 24 8 68 0.31 D744 131 14 31 93 44 7 49 17 35 0.95 D758 66 9 21 179 24 4 24 11 65 0.32 D776 146 8 14 121 12 8 51 8 42 1.02 D821 165 11 21 83 16 3 59 11 30 1.43 D830 65 74 39 91 32 4 24 42 34 0.32 根据Q-F-L三元图解(图4a),ZK01钻孔中的砂可分为长石砂岩、岩屑长石砂岩、长石岩屑砂岩和岩屑砂岩。砂碎屑类型与沉积组之间存在一定的规律性。下土河组组拥有Q-F-L三元关系中最高比例的石英(59%)和岩屑(68%)组分。相反,长石的最高比例(65%)出现在最顶部的汾河组。下土河组和木瓜组主要为岩屑砂岩和长石岩屑砂岩,红崖组、大沟组和汾河组样品主要为长石砂岩—岩屑长石砂岩。而中段的小白组被划分为岩屑长石砂岩和长石岩屑砂岩,位于长石砂岩和岩屑砂岩的过渡区域。总体来看,剖面下部长石含量明显降低,而石英和岩屑含量略有增加。
-
共识别出重矿物种类18种(表3)。重点对锆石、金红石、石榴石和电气石进行形态特征观察。其中锆石以浅粉色和玫瑰色为主,半自形柱状或次棱角柱状,表面光亮洁净。少量磨圆度较高,晶体表面可见浅坑和浅凹槽,反映长距离的搬运和风化作用。金红石以深红、暗红色为主,呈柱状或粒状,半透明,具金刚光泽或油脂光泽。石榴石主要为粉色和浅粉色,透明粒状,玻璃光泽。电气石为茶褐色,次滚圆柱状和粒状,玻璃光泽。
表 3 现代汾河和ZK01钻孔重矿物类型和数量(颗粒数)及其物源指标
Table 3. Type and quantity of heavy minerals and their provenance indices from the modern Fen River and core ZK01
采样层位 现代汾河 汾河组 木瓜组 大沟组 红崖组 小白组 下土河组 样品名称 HM-FH-1 HM-ZK01-1 HM-ZK01-2 HM-ZK01-3 HM-ZK01-4 HM-ZK01-5 HM-ZK01-6 HM-ZK01-7 HM-ZK01-8 HM-ZK01-9 HM- ZK01-10 HM- ZK01-11 HM- ZK01-12 HM- ZK01-13 锆石 17 8 13 6 7 14 9 14 9 50 102 83 15 44 磷灰石 6 3 10 4 2 3 1 5 4 4 1 5 2 4 锐钛矿 0 2 3 1 2 3 2 2 2 28 27 21 6 5 金红石 2 1 1 1 2 2 5 3 1 3 20 12 3 4 白钛石 0 2 5 2 2 8 1 4 6 56 41 72 3 20 黄铁矿 0 0 0 0 0 0 0 0 0 1 0 0 0 0 重晶石 0 0 0 11 15 0 1 0 0 0 0 36 0 0 榍石 1 3 16 13 11 13 7 10 11 25 14 9 6 10 独居石 2 0 1 1 0 5 3 3 0 2 3 1 1 2 石榴石 131 119 153 155 103 173 148 123 88 74 85 93 73 55 电气石 0 0 3 2 0 1 2 2 0 6 3 12 0 3 绿帘石 19 33 24 29 21 25 17 20 25 31 3 1 15 9 辉石 30 0 0 1 2 0 0 4 1 0 1 0 0 0 角闪石 9 3 3 0 0 54 47 155 0 2 0 0 0 0 铬铁矿 0 0 0 0 0 0 0 0 0 0 5 7 0 0 钛铁矿 56 0 0 0 0 96 152 41 0 0 0 0 0 0 赤褐铁矿 148 306 170 274 301 75 71 89 257 218 195 148 167 161 磁铁矿 79 20 98 0 32 28 34 25 96 0 0 0 209 183 GZi 89 94 92 96 94 93 94 90 91 60 45 53 83 56 Ati 100 100 77 67 100 75 33 71 100 40 25 29 100 57 RuZi 11 11 7 14 22 13 36 18 10 6 16 13 17 8 ZTR 0.09 0.05 0.07 0.04 0.06 0.06 0.07 0.06 0.07 0.26 0.48 0.45 0.15 0.38 对透明矿物和非自生矿物重新进行含量统计,发现矿物含量在不同沉积组或沉积环境中变化较大(图3)。其中锆石和氧化钛类矿物主要集中在下土河组,并在下土河组顶部开始急剧减少。石榴石含量从下土河组到小白组略有增加,且总体含量较高(>30%),但是从红崖组开始含量进一步增加,最高可达70%。角闪石含量在大多数沉积组中含量极低,但在小白组和红崖组中却急剧增加,在小白组顶部达到45%。其他种类重矿物含量分布变化较小。总体看来,重矿物含量在下土河组和小白组之间变化明显,在其他层位相对稳定。
Late Cenozoic Sedimentary Environment Evolution and Provenance Analysis of Taiyuan Basin in Shanxi Graben System
-
摘要: 目的 山西地堑系因其独特的大地构造位置成为研究中国东部晚新生代变形的热点地区,然而受露头剖面的局限,目前少有报道地堑系盆地完整的沉积环境演化的工作,对进一步认识地堑系演化过程造成了困难。 方法 通过太原盆地ZK01钻孔揭露的约8.1 Ma以来的详细沉积记录,开展了沉积环境和物源分析工作。 结果和结论 沉积环境分析表明太原盆地经历了河流—三角洲/湖泊—河流的沉积环境演化过程,其中分别在5.8~4.4 Ma和2.2~1.6 Ma发育两期覆盖整个太原盆地的湖泊。物源分析表明在5.8 Ma前后存在物源转变。5.8 Ma以前物源主要来自东部太行山脉的侏罗系石英砂岩;5.8 Ma以后物源转为以三叠系长石砂岩为主,同时吕梁山北部的变质岩和火山岩碎屑进入盆地,表明汾河开始流入太原盆地。太原盆地沉积环境演化与区域古气候和构造的关系,表明盆地的湖泊扩展过程主要受构造沉降控制,是青藏高原东向扩展作用的构造—地貌响应。Abstract: Objective The Shanxi Graben System has become an important area of Late Cenozoic deformation research in eastern China for its unique tectonic location. However, due to the limitations of the outcrop profile, complete sedimentary environment evolution of the basins in the graben system is rarely reported, which hinders our understanding of its evolution process. Methods The depositional environments and provenance were analyzed using the detailed sedimentary record from the ZK01 borehole in the Taiyuan Basin. [Results and Conclusions] The analysis of the sedimentary environment shows that the Taiyuan Basin underwent a fluvial⁃delta/lake⁃river sedimentary environment evolution process. Two mega transgressions generated basin-wide lakes, one at ca. 5.8⁃4.4 and the other at ca. 2.2⁃1.6 Ma. Provenance analysis shows that the provenance was mainly theJurassic quartz sandstones of the Taihang Mountain before 5.8 Ma. After 5.8 Ma, the provenance changed to the Triassic feldspathic sandstones, Meanwhile, the debris of metamorphic and volcanic rocks from the northern part of the Lvliang Mountain began to enter the basin, indicating the development of Fen River in the Taiyuan Basin. Asynchronous processes between paleoclimatic variations and transgressions illustrate the lakes’ spreading processes as mainly influenced by tectonic subsidence, being a structural-geomorphic response to the eastward spreading of the Qinghai-Tibetan Plateau.
-
Key words:
- Shanxi Graben System /
- Taiyuan Basin /
- sedimentary environment /
- provenance analysis /
- paleoclimate
-
图 5 (a)太原盆地及周边地质图(据文献[71]修改);(b)三叠—侏罗地层柱状图;(c)ZK01钻孔碎屑成分变化图;(d)太原盆地沉积模式简图
Figure 5. (a) Geological map of Taiyuan Basin and adjacent area (modified from reference [71]); (b) stratigraphic column of the Triassic⁃Jurassic; (c) detrital composition diagram of core ZK01; (d) schematic sedimentary models of Taiyuan Basin
表 1 ZK01钻孔地层划分简表
Table 1. Stratigraphic division of core ZK01
年代地层 磁性地层 岩石地层 系 统 阶 GPTS2012年龄/Ma 组 厚度/m 第四系 全新统—中更新统 全新统—周口店阶 0~0.78 汾河组 127 下更新统 泥河湾阶 0.78~2.15 木瓜组 55 2.15~2.58 大沟组 82 新近系 上新统 麻则沟阶 2.58~3.60 红崖组 135 高庄阶 3.60~5.33 小白组 185 中新统 保德阶—灞河阶 5.33~8.11 下土河组 269 表 2 太原盆地ZK01钻孔碎屑成分及含量
Table 2. Detrital composition and content of core ZK01
样品编号 石英 长石 岩屑 云母 重矿物 Q-F-L分类 成熟度 斜长石 钾长石 Q% F% L% D28 46 73 99 47 41 7 17 65 18 0.21 D77 34 118 65 65 9 4 12 65 23 0.14 D98 65 73 103 53 10 19 22 60 18 0.28 D131 92 27 8 157 55 6 32 12 55 0.48 D190 37 103 65 65 13 5 14 62 24 0.16 D259 63 79 95 61 20 19 21 58 20 0.27 D298 57 83 101 63 19 7 19 61 21 0.23 D362 51 73 97 96 17 21 16 54 30 0.19 D393 57 74 97 45 12 27 21 63 16 0.26 D414 79 63 87 45 13 21 29 55 16 0.41 D449 36 54 41 120 36 2 14 38 48 0.17 D460 122 36 42 75 11 26 44 28 27 0.80 D480 45 75 84 60 20 4 17 60 23 0.21 D505 24 39 28 175 31 4 9 25 66 0.10 D605 21 87 68 116 43 1 7 53 40 0.08 D668 132 39 26 97 13 1 45 22 33 0.81 D689 167 22 11 93 7 1 57 11 32 1.33 D700 60 27 34 180 10 3 20 20 60 0.25 D710 77 18 9 218 3 1 24 8 68 0.31 D744 131 14 31 93 44 7 49 17 35 0.95 D758 66 9 21 179 24 4 24 11 65 0.32 D776 146 8 14 121 12 8 51 8 42 1.02 D821 165 11 21 83 16 3 59 11 30 1.43 D830 65 74 39 91 32 4 24 42 34 0.32 表 3 现代汾河和ZK01钻孔重矿物类型和数量(颗粒数)及其物源指标
Table 3. Type and quantity of heavy minerals and their provenance indices from the modern Fen River and core ZK01
采样层位 现代汾河 汾河组 木瓜组 大沟组 红崖组 小白组 下土河组 样品名称 HM-FH-1 HM-ZK01-1 HM-ZK01-2 HM-ZK01-3 HM-ZK01-4 HM-ZK01-5 HM-ZK01-6 HM-ZK01-7 HM-ZK01-8 HM-ZK01-9 HM- ZK01-10 HM- ZK01-11 HM- ZK01-12 HM- ZK01-13 锆石 17 8 13 6 7 14 9 14 9 50 102 83 15 44 磷灰石 6 3 10 4 2 3 1 5 4 4 1 5 2 4 锐钛矿 0 2 3 1 2 3 2 2 2 28 27 21 6 5 金红石 2 1 1 1 2 2 5 3 1 3 20 12 3 4 白钛石 0 2 5 2 2 8 1 4 6 56 41 72 3 20 黄铁矿 0 0 0 0 0 0 0 0 0 1 0 0 0 0 重晶石 0 0 0 11 15 0 1 0 0 0 0 36 0 0 榍石 1 3 16 13 11 13 7 10 11 25 14 9 6 10 独居石 2 0 1 1 0 5 3 3 0 2 3 1 1 2 石榴石 131 119 153 155 103 173 148 123 88 74 85 93 73 55 电气石 0 0 3 2 0 1 2 2 0 6 3 12 0 3 绿帘石 19 33 24 29 21 25 17 20 25 31 3 1 15 9 辉石 30 0 0 1 2 0 0 4 1 0 1 0 0 0 角闪石 9 3 3 0 0 54 47 155 0 2 0 0 0 0 铬铁矿 0 0 0 0 0 0 0 0 0 0 5 7 0 0 钛铁矿 56 0 0 0 0 96 152 41 0 0 0 0 0 0 赤褐铁矿 148 306 170 274 301 75 71 89 257 218 195 148 167 161 磁铁矿 79 20 98 0 32 28 34 25 96 0 0 0 209 183 GZi 89 94 92 96 94 93 94 90 91 60 45 53 83 56 Ati 100 100 77 67 100 75 33 71 100 40 25 29 100 57 RuZi 11 11 7 14 22 13 36 18 10 6 16 13 17 8 ZTR 0.09 0.05 0.07 0.04 0.06 0.06 0.07 0.06 0.07 0.26 0.48 0.45 0.15 0.38 -
[1] Tapponnier P, Molnar P. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 1977, 82(20): 2905-2930. [2] Tapponnier P, Peltzer G, Le Dain A Y, et al. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 1982, 10(12): 611-616. [3] Peltzer G, Tapponnier P, Zhang Z T, et al. Neogene and Quaternary faulting in and along the Qinling Shan[J]. Nature, 1985, 317(6037): 500-505. [4] Yin A. Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 2010, 488(1/2/3/4): 293-325. [5] 邓起东,王克鲁,汪一鹏,等. 山西隆起区断陷地震带地震地质条件及地震发展趋势概述[J]. 地质科学,1973(1):37-47. Deng Qidong, Wang Kelu, Wang Yipeng, et al. On the tendency of seismicity and their geological set up of the seismic belt of Shanxi graben[J]. Scientia Geologica Sinica, 1973(1): 37-47. [6] Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 1986, 19(1): 113-157. [7] Zhang Y Q, Ma Y S, Yang N, et al. Cenozoic extensional stress evolution in North China[J]. Journal of Geodynamics, 2003, 36(5): 591-613. [8] Kusky T M, Windley B F, Zhai M G. Tectonic evolution of the North China Block: From orogen to craton to orogen[J]. Geological Society, London, Special Publications, 2007, 280(1): 1-34. [9] Zhang Y Q, Mercier J L, Vergély P. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of South China with respect to Gobi-Mongolia[J]. Tectonophysics, 1998, 285(1/2): 41-75. [10] 邓起东,程绍平,闵伟,等. 鄂尔多斯块体新生代构造活动和动力学的讨论[J]. 地质力学学报,1999,5(3):13-21. Deng Qidong, Cheng Shaoping, Min Wei, et al. Discussion on Cenozoic tectonics and dynamics of Ordos block[J]. Journal of Geomechanics, 1999, 5(3): 13-21. [11] 魏荣珠,庄其天,闫纪元,等. 山西晋中盆地晚新生代地层划分、沉积环境及其先秦以来气候和湖泊演化[J]. 中国地质,2022,49(3):912-928. Wei Rongzhu, Zhuang Qitian, Yan Jiyuan, et al. Late Cenozoic stratigraphic division and sedimentary environment of Jinzhong Basin in Shanxi province, with the climate and lake evolution since the pre-Qin Period (2 500 years ago) [J]. Geology in China, 2022,49(3):912-928.. [12] Li B, Sørensen M B, Atakan K. Coulomb stress evolution in the Shanxi rift system, North China, since 1303 associated with coseismic, post-seismic and interseismic deformation[J]. Geophysical Journal International, 2015, 203(3): 1642-1664. [13] Zhao J F, Liu C Y, Mountney N, et al. Timing of uplift and evolution of the Lüliang Mountains, North China Craton[J]. Science China Earth Sciences, 2016, 59(1): 58-69. [14] Chang J, Qiu N S, Liu S, et al. Post-Triassic multiple exhumation of the Taihang Mountains revealed via low-T thermochronology: Implications for the paleo-geomorphologic reconstruction of the North China Craton[J]. Gondwana Research, 2019, 68: 34-49. [15] Clinkscales C, Kapp P, Wang H Q. Exhumation history of the north-central Shanxi rift, North China, revealed by low-temperature thermochronology[J]. Earth and Planetary Science Letters, 2020, 536: 116146. [16] Clinkscales C, Kapp P, Thomson S, et al. Regional exhumation and tectonic history of the Shanxi rift and Taihangshan, North China[J]. Tectonics, 2021: 40(3): e2020TC006416. [17] Su P, He H L, Tan X B, et al. Initiation and evolution of the Shanxi rift system in North China: Evidence from low-temperature thermochronology in a plate reconstruction framework[J]. Tectonics, 2021, 40(3): e2020TC006298. [18] 张岳桥,廖昌珍. 晚中生代—新生代构造体制转换与鄂尔多斯盆地改造[J]. 中国地质,2006,33(1):28-40. Zhang Yueqiao, Liao Changzhen. Transition of the Late Mesozoic-Cenozoic tectonic regimes and modification of the Ordos Basin[J]. Geology in China, 2006, 33(1): 28-40. [19] Shi W, Cen M, Chen L, et al. Evolution of the Late Cenozoic tectonic stress regime in the Shanxi rift, central North China Plate inferred from new fault kinematic analysis[J]. Journal of Asian Earth Sciences, 2015, 114: 54-72. [20] Shi W, Dong S W, Hu J M. Neotectonics around the Ordos block, North China: A review and new insights[J]. Earth-Science Reviews, 2020, 200: 102969. [21] Sun J M. Long-term fluvial archives in the Fen Wei graben, central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24(10/11): 1279-1286. [22] Deng C L, Zhu R X, Zhang R, et al. Timing of the Nihewan Formation and faunas[J]. Quaternary Research, 2008, 69(1): 77-90. [23] Liu P, Deng C L, Li S H, et al. Magnetostratigraphic dating of the Xiashagou fauna and implication for sequencing the mammalian faunas in the Nihewan Basin, North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 315-316: 75-85. [24] 陈兴强,施炜,胡健民,等. 华北临汾盆地中部柴庄上新世—更新世剖面沉积学特征及其构造意义[J]. 地质力学学报,2016,22(4):984-993. Chen Xingqiang, Shi Wei, Hu Jianmin, et al. Sedimentation of the Pliocene-Pleistocene Chaizhuang section in the central of Linfen Basin, North China and its tectonic significance[J]. Journal of Geomechanics, 2016, 22(4): 984-993. [25] Chen X Q, Dong S W, Shi W, et al. Magnetostratigraphic ages of the Cenozoic Weihe and Shanxi grabens in North China and their tectonic implications[J]. Tectonophysics, 2021, 813: 228914. [26] 刘少峰,张国伟. 盆山关系研究的基本思路、内容和方法[J]. 地学前缘,2005,12(3):101-111. Liu Shaofeng, Zhang Guowei. Fundamental ideas, contents and methods in study of basin and mountain relationships[J]. Earth Science Frontiers, 2005, 12(3): 101-111. [27] 庆建春,季建清,王金铎,等. 五台山新生代隆升剥露的磷灰石裂变径迹研究[J]. 地球物理学报,2008,51(2):384-392. Jianchun Qing, Ji Jianqing, Wang Jinduo, et al. Apatite fission track study of Cenozoic uplifting and exhumation of Wutai Mountain, China[J]. Chinese Journal of Geophysics, 2008, 51(2): 384-392. [28] 赵俊峰,刘池洋,王晓梅,等. 吕梁山地区中—新生代隆升演化探讨[J]. 地质论评,2009,55(5):663-672. Zhao Junfeng, Liu Chiyang, Wang Xiaomei, et al. Uplifting and evolution characteristics in the Lüliang Mountain and its adjacent area during the Meso-Cenozoic[J]. Geological Review, 2009, 55(5): 663-672. [29] 李建星,刘池洋,岳乐平,等. 吕梁山新生代隆升的裂变径迹证据及其隆升机制探讨[J]. 中国地质,2015,42(4):960-972. Li Jianxing, Liu Chiyang, Yue Leping, et al. Apatite fission track evidence for the Cenozoic uplift of the Lüliang Mountains and a discussion on the uplift mechanism[J]. Geology in China, 2015, 42(4): 960-972. [30] Liu J H, Zhang P Z, Lease R O, et al. Eocene onset and Late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 2013, 584: 281-296. [31] Heberer B, Anzenbacher T, Neubauer F, et al. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift[J]. Tectonophysics, 2014, 617: 31-43. [32] Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1/2): 198-208. [33] 邓起东,冉勇康,杨晓平,等. 中国活动构造图(1:400万)[M]. 北京:地震出版社,2007. Deng Qidong, Ran Yongkang, Yang Xiaoping, et al. Map of active tectonics in China (scale1: 4, 000, 000)[M]. Beijing: Seismological Press, 2007. [34] Xu X W, Ma X Y, Deng Q D. Neotectonic activity along the Shanxi rift system, China[J]. Tectonophysics, 1993, 219(4): 305-325. [35] Yan J Y, Hu J M, Gong W B, et al. Late Cenozoic magnetostratigraphy of the Yuncheng Basin, central North China Craton and its tectonic implications[J]. Geological Journal, 2020, 55(11): 7415-7428. [36] Xu Y, Yue L P, Li J X, et al. An 11-Ma-old red clay sequence on the eastern Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 284(3/4): 383-391. [37] 岳乐平,邓涛,张云翔,等. 保德阶层型剖面磁性地层学研究[J]. 地层学杂志,2004,28(1):48-51,63. Yue Leping, Deng Tao, Zhang Yunxiang, et al. Magnetostratigraphy of stratotype section of the Baode stage[J]. Journal of Stratigraphy, 2004, 28(1): 48-51, 63. [38] Chen G D. On the geotectonic nature of the Fen-Wei rift system[J]. Tectonophysics, 1987, 143(1/2/3): 217-223. [39] 王乃樑,杨景春,夏正楷,等. 山西地堑系新生代沉积与构造地貌[M]. 北京:科学出版社,1996:120-156. Wang Nailiang, Yang Jingchun, Xia Zhengkai, et al. Cenozoic deposits and tectonicgeomorphology in Shanxi grabens [M]. Beijing: Science Press, 1996: 120-156. [40] 国家地震局《鄂尔多斯周缘活动断裂系》课题组. 鄂尔多斯周缘活动断裂系[M]. 北京:地震出版社,1988:1-335. The Research Group on Active Fault System around Ordos Massif, State Seismological Bureau. Active fault system around Ordos massif[M]. Beijing: Seismological Press, 1988: 1-335. [41] Xu X W, Ma X Y. Geodynamics of the Shanxi rift system, China[J]. Tectonophysics, 1992, 208(1/2/3): 325-340. [42] 徐锡伟, 邓起东,尤惠川. 山西系舟山西麓断裂右旋错动证据及全新世滑动速率[J]. 地震地质,1986. 8(3): 44-46. Xu Xiwei, Deng Qidong, You Huichuan. Evidence on dextral dislocation of fault at the western foothills of Mt. Xizhoushan, Shanxi province and its slip rate during the Holocene[J]. Seismology and Geology, 1986, 8(3): 44-46. [43] 徐岳仁. 山西霍山山前断裂带晚第四纪活动特征研究[D]. 北京:中国地震局地质研究所,2013. Xu Yueren. A study on the Late Quaternary faulting of the Huoshan piedmont fault zone in the central Shanxi faulted basin belt[D]. Beijing: Institute of Geology, China Earthquake Administration, 2013. [44] Huang Y L, Wang Q L, Hao M, et al. Fault slip rates and seismic moment deficits on major faults in Ordos constrained by GPS observation[J]. Scientific Reports, 2018, 8(1): 16192. [45] 江娃利,邓起东,徐锡伟,等. 1303年山西洪洞8级地震地表破裂带[J]. 地震学报, 2004, 26(4): 355-362. Jiang Wali, Deng Qidong, Xu Xiwei, et al. Surface rupture zone of the 1303 Hongtong M=8 earthquake, Shanxi province[J]. Acta Seismologica Sinica, 2004, 26(4): 355-362. [46] Clinkscales C, Kapp P. Structural style and kinematics of the Taihang-Luliangshan fold belt, North China: Implications for the Yanshanian orogeny[J]. Lithosphere, 2019, 11(6): 767-783. [47] 山西省地质矿产局. 山西省区域地质志[M]. 北京:地质出版社,1989:267-276. Bureau of Geology and Mineral Resources of Shanxi Province. Regional geology of Shanxi province[M]. Beijing: Geological Publishing House, 1989: 267-276. [48] Willis B, Blackwelder E, Sargent R H. Research in China[M]. Washington: Carnegie Institution of Washington, 1907: 233-236. [49] 李平日,梁全武. 滹沱河上游和牧马河河道变迁的一些新资料[J]. 地质论评,1965,23(3):240-241,233. Li Pingri, Liang Quanwu. Recent data on the course change of the upper reaches of the Huto River and the Muma Rivers[J]. Geological Review, 1965, 23(3): 240-241, 233. [50] 程绍平. 论清水河和滹沱河的袭夺[J]. 河北地质学院学报,1983(2):41-53. Cheng Shaoping. Discussion on the capture of Qingshui River and Hutuo River[J]. Journal of Hebei GEO University, 1983(2): 41-53. [51] 吴忱,马永红,张秀清. 华北山地的古河道与古水系[J]. 地理研究,1996,15(3):33-41. Wu Chen, Ma Yonghong, Zhang Xiuqing. Palaeochannel and palaeodrainage patterns in the North China mountains[J]. Geographical Research, 1996, 15(3): 33-41. [52] Dickinson W R, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63(12): 2164-2182. [53] Ingersoll R V, Bullard T F, Ford R L, et al. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method[J]. Journal of Sedimentary Research, 1984, 54(1): 103-116. [54] Morton A C. Heavy minerals in provenance studies[M]//Zuffa G G. Provenance of arenites. Dordrecht: Springer, 1985: 249-277. [55] Morton A C, Hallsworth C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones[J]. Sedimentary Geology, 1994, 90(3/4): 241-256. [56] Mange M A, Maurer H F W. Heavy minerals in colour[M]. London: Chapman & Hall, 1992: 147. [57] Dunkl I, von Eynatten H, Andò S, et al. Comparability of heavy mineral data: The first interlaboratory round robin test[J]. Earth-Science Reviews, 2020, 211: 103210. [58] Prothero D R, Schwab F. Sedimentary geology: An introduction to sedimentary rocks and stratigraphy[M]. 3rd ed. New York: W. H. Freeman, 2014: 6. [59] Farrell K M. Sedimentology and facies architecture of overbank deposits of the Mississippi River, False River region, Louisiana[M]//Ethridge F G, Flores R M, Harvey M D. Recent developments in fluvial sedimentology. Tulsa, Oklahoma: Society of Sedimentary Geology, 1987: 111-120. [60] Collinson J D, Mountney N P, Thompson D B. Sedimentary structures[M]. 3rd ed. Harpenden: Terra Publishing, 2006. [61] Middleton G V, Church M J, Coniglio M A, et al. Encyclopedia of sediments and sedimentary rocks[M]. Dordrecht: Kluwer Academic Publishers, 2003: 286. [62] Nichols G. Sedimentology and stratigraphy[M]. Chichester: John Wiley & Sons, 2009. [63] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008. Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008. [64] Fielding C R. A coal depositional model for the Durham Coal Measures of NE England[J]. Journal of the Geological Society, 1984, 141(5): 919-931. [65] Carlisle D. Concentration of uranium and vanadium in calcretes and gypcretes[M]//Wilson R C L. Residual deposits, surface-related weathering processes and material. Geological Society of London, 1983: 185-195. [66] Jones S. Introducing sedimentology[M]. Edinburgh: Dunedin Academic Press Ltd, 2015. [67] Mills P C. Genesis and diagnostic value of soft-sediment deformation structures: A review[J]. Sedimentary Geology, 1983, 35(2): 83-104. [68] Eugster H P, Kelts K R. Lacustrine chemical sediments[M]//Goudie A S, Pye K. Chemical sediments and geomorphology: Precipitates and residua in the near-surface environment. London: Academic Press, 1983: 321-368. [69] Hubert J F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones[J]. Journal of Sedimentary Research, 1962, 32(3): 440-450. [70] Garzanti E, Andò S. Heavy minerals for junior woodchucks[J]. Minerals, 2019, 9(3): 148. [71] 李晨阳,王新春,何春珍,等. 全国1: 200 000数字地质图(公开版)空间数据库[J]. 中国地质,2019,46(增刊1):1-14. Li Chenyang, Wang Xinchun, He Chunzhen, et al. China national digital geological map (public version at 1: 200 000 scale) spatial database[J]. Geology in China, 2019, 46(Suppl.1): 1-14. [72] 魏荣珠,李好斌,徐朝雷,等. 对山西隆起区中新生代构造演化的认识[J]. 中国地质调查,2017,4(1):24-34. Wei Rongzhu, Li Haobin, Xu Chaolei, et al. Review on Meso-Cenozoic tectonic evolution in Shanxi uplift[J]. Geological Survey of China, 2017, 4(1): 24-34. [73] Schomacker E R, Kjemperud A V, Nystuen J P, et al. Recognition and significance of sharp-based mouth-bar deposits in the Eocene Green River Formation, Uinta Basin, Utah[J]. Sedimentology, 2010, 57(4): 1069-1087. [74] Gobo K, Ghinassi M, Nemec W. Gilbert-type deltas recording short-term base-level changes: Delta-brink morphodynamics and related foreset facies[J]. Sedimentology, 2015, 62(7): 1923-1949. [75] Lin C F, Liu S F, Zhuang Q T, et al. Sedimentation of Jurassic fan-delta wedges in the Xiahuayuan Basin reflecting thrust-fault movements of the western Yanshan fold-and-thrust belt, China[J]. Sedimentary Geology, 2018, 368: 24-43. [76] Allen P A, Allen J R. Basin analysis: Principles and application to petroleum play assessment[M]. Chichester: John Wiley & Sons, 2013. [77] Birgenheier L P, Berg M D V, Plink-Björklund P, et al. Climate impact on fluvial-lake system evolution, Eocene Green River Formation, Uinta Basin, Utah, USA[J]. GSA Bulletin, 2020, 132(3/4): 562-587. [78] Reading H G. Sedimentary environments: Processes, facies and stratigraphy[M]. 3rd ed. Cambridge: Blackwell Science, 1996: 83-106. [79] Jansen E, Sjøholm J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea[J]. Nature, 1991, 349(6310): 600-603. [80] Manabe S, Broccoli A J. Mountains and arid climates of middle latitudes[J]. Science, 1990, 247(4939): 192-195. [81] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. [82] Cheng X R, Zhao Q H, Wang J L, et al. Data report: Stable isotopes from sites 1147 and 1148[M]//Prell W L, Wang P, Blum P, et al. Proceedings of the ocean drilling program, scientific results. 2004, 184: 1-12(Online). http://www-odp.tamu.edu/Publications/184_SR/VOLUME/CHAPTERS/223.PDF. http://www-odp.tamu.edu/Publications/184_SR/VOLUME/CHAPTERS/223.PDF [83] Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6877): 159-163. [84] Deng C L, Shaw J, Liu Q S, et al. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling[J]. Earth and Planetary Science Letters, 2006, 241(1/2): 248-259. [85] Nie J S, Song Y G, King J W, et al. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during ~ 4.5-2.6 Ma[J]. Quaternary Research, 2013, 79(3): 465-470. [86] Ma Y Z, Wu F L, Fang X M, et al. Pollen record from red clay sequence in the central Loess Plateau between 8.10 and 2.60 Ma[J]. Chinese Science Bulletin, 2005, 50(19): 2234-2243. [87] Wu N Q, Pei Y P, Lu H Y, et al. Marked ecological shifts during 6.2-2.4 Ma revealed by a terrestrial molluscan record from the Chinese red clay formation and implication for palaeoclimatic evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233(3/4): 287-299. [88] Chen X L, Fang X M, An Z S, et al. An 8.1Ma calcite record of Asian summer monsoon evolution on the Chinese central Loess Plateau[J]. Science in China Series D: Earth Sciences, 2007, 50(3): 392-403. [89] Ao H, Rohling E J, Zhang R, et al. Global warming-induced Asian hydrological climate transition across the Miocene-Pliocene boundary[J]. Nature Communications, 2021, 12(1): 6935. [90] Shi N, Cao J X, Königsson L K. Late Cenozoic vegetational history and the Pliocene-Pleistocene boundary in the Yushe Basin, S. E. Shanxi, China[J]. Grana, 1993, 32(4/5): 260-271. [91] An Z S, Huang Y S, Liu W G, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation[J]. Geology, 2005, 33(9): 705-708. [92] Pan F, Li J X, Xu Y, et al. Uplift of the Lüliang Mountains at ca. 5.7 Ma: Insights from provenance of the Neogene eolian red clay of the eastern Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 502: 63-73. [93] Assie K R, Wang Y, Ma H M, et al. Late Cenozoic paleostress reconstruction and stress regimes in Taiyuan Basin of the Shanxi rift, North China[J]. International Journal of Earth Sciences, 2021, 110(1): 287-303. [94] Chen F H, Fan Y X, Chun X, et al. Preliminary research on Megalake Jilantai-Hetao in the arid areas of China during the Late Quaternary[J]. Chinese Science Bulletin, 2008, 53(11): 1725-1739. [95] 李建彪,冉勇康,郭文生. 河套盆地托克托台地湖相层研究[J]. 第四纪研究,2005,25(5):630-639. Li Jianbiao, Ran Yongkang, Guo Wensheng. Research on the lacustrine strata of the Tuoketuo mesa, Hetao Basin, China[J]. Quaternary Sciences, 2005, 25(5): 630-639. [96] 聂宗笙. 内蒙古河套盆地晚更新世地层划分、环境演变及黄河的贯通[J]. 地学前缘,2019,26(4):259-272. Nie Zongsheng. Stratigraphic division of the Upper Pleistocene, environmental change and formation of the Yellow River in the Hetao Basin, Inner Mongolia[J]. Earth Science Frontiers, 2019, 26(4): 259-272.