-
河道尺寸分析主要包括满岸深度与河道宽度的恢复。满岸深度可以通过测量野外剖面、钻孔岩心以及测井曲线所对应的完整保存的河道厚度来确定,考虑到沉积后的压实作用,通常将实测的河道厚度提高10%来作为满岸深度[37]。曲流河沉积体系中的河道、天然堤、决口扇以及河漫滩均有特定的岩相组合、沉积构造以及垂向变化趋势,同时对应一定的测井曲线形态(图4)。河道厚度的测量主要基于沉积序列与测井曲线的综合识别,沉积序列一般呈向上变细的趋势,下部河床滞留沉积厚度相对较小,可见槽状交错层理与树干化石,边滩作为河道的主体,常发育板状交错层理、平行层理以及爬升沙纹交错层理,与河道对应的测井曲线多表现为钟形或箱形(图5)。向上过渡为堤岸与河漫粒度较细的沉积,GR测井值相对较高,偶见漏斗形的测井曲线,指示了决口扇沉积。河道厚度的测量过程中需要选择完整保存的河道序列,而河道序列的保存主要取决于沉积物供给与可容空间之间的关系。在高沉积供给速率与低可容空间背景下容易出现多层河道叠置的情况,此时上覆河道往往会对下伏河道序列造成侵蚀而使其无法完整保存,应只测量最后一期完整保存的河道厚度来确定(图5)。鱼卡地区层序S2时期盆地沉降较为稳定,一般具有较高的可容空间背景,比较有利于完整河道序列的保存,给河道厚度的测量带来了便利。
图 5 柴北缘鱼卡地区层序S2曲流河沉积序列
Figure 5. Sedimentary succession of meandering river, sequence S2 in Yuqia area, northern Qaidam Basin
此外,利用底形高度与水流深度之间的比例关系也可以作为一种独立评估满岸深度的方式,与直接测量河道厚度的方式相互检验。交错层系(cross-bed set)厚度与河流沙丘高度具有明显的正相关性,Leclair et al.[39]基于现代河流水槽试验提出了二者的经验公式:
Hm =5.3β +0.001β 2(1) 式中:Hm 为沙丘平均高度,β=Sm /1.8,Sm 为交错层系平均垂向厚度[39]。
前人研究表明满岸深度一般为沙丘平均高度的6~10倍[25,39],因此将所计算的沙丘平均高度扩大6~10倍,即可得到满岸深度的范围。鱼卡地区河道沉积中可见明显的交错层理,主要包括板状交错层理、槽状交错层理与楔状交错层理,本次对其层系进行了标定与测量(图6)。这样在河道保存不完整或者仅局部出露的情况下,交错层系的厚度依然较为容易获取,进而独立计算满岸深度。
图 6 柴北缘鱼卡地区层序S2曲流河河道沉积中发育的交错层系
Figure 6. Cross⁃bed sets in meandering river channel deposits of sequence S2 in Yuqia area, northern Qaidam Basin
相对于河道厚度,河道宽度并不容易在野外剖面或者钻孔岩心中直接测量出来,但可以通过其他方法恢复。鱼卡地区层序S2发育的曲流河河道(图7),可以通过Bridge et al.[40]针对曲流河所提出的方程进行宽度评估:
Bbf =8.8Hbf 1.82(2) 式中:Hbf 为满岸深度,Bbf 为河道宽度。
图 7 柴北缘鱼卡地区层序S2曲流河河道对比剖面
Figure 7. Cross⁃section of meandering river channel deposits, sequence S2 in Yuqia area, northern Qaidam Basin
本次将鱼卡地区层序S2河道沉积中的砂岩样品,磨制成薄片并进行显微镜下粒度分析。沉积物粒径可以用来评估河床上的剪切应力,主要由水流深度和地形决定,并控制了泥沙输送模式(推移载和悬浮载荷)以及水流和泥沙输送速度[24]。粒径中值(D50)在接下来的过程中对满岸水流量以及古坡度的恢复具有一定的价值[25],粒径分布系列D16、D50、D84、D90则可以用来分析沉积物流量。
-
河道尺寸及粒度分析是满岸水流量与沉积物流量恢复的前提条件,此外古坡度与流速也是重要的基础参数。在现存的地层记录中,直接对古坡度进行测量的难度较高,但是可以应用Holbrook et al.[25]提出的方程进行计算:
τ *bf 50=(Hbf S )/(PD 50)=const(3) 式中:S为古坡度,D50为粒径中值。若沉积物以石英质为主则其密度可以假定为2.65 g/cm3,那么标准密度水中的浸没无量纲密度P为1.65。无量纲剪切应力的满岸阻抗参数τ* bf50为1.86[41⁃43]。
本次河流流速的恢复采用了两种不同的方法,从而可以对分析结果进行交叉比较。第一种方法利用Rubin et al.[44]建立的底床形态相位图,基于已获得的粒径、底床形态、水深来推断对应的流速。第二种方法是利用水力学方程对流速进行计算,基于Chezy系数、水力半径和古坡度来分析河流流速[25,39,45]:
v =Cz (RS )1/2(4) 式中:Cz 为Chezy系数,Cz =8.1g1/2(Hbf /ks )1/6;ks 为底形粗糙程度,ks =3D90+1.1Δ(1-e-25ψ );Δ为底形高度,Δ=Hbf /8;ψ=Δ/λ,λ为底形波长,λ=7.3Hbf;R为水力半径,R=(Bbf ×Hbf )/(2Hbf +Bbf )。
满岸水流量可以通过前面得出的河道尺寸及古坡度进行计算,此外,基于全球河流信息数据库,前人建立了河道厚度、流域面积以及满岸水流量之间的经验比例模型,同样可以作为一种恢复满岸水流量的手段与上述方法相互验证。其中Blum et al.[16]恢复了河道厚度与流域面积之间的比例关系模型(图8),Syvitski et al.[17]根据全球现代河流测量数据建立了不同气候条件下流域面积与满岸水流量之间的比例关系(图9),研究区在中侏罗世层序S2时期处于北纬25°~30°[32],古植物以及孢粉组合显示了温暖潮湿的亚热带古气候[35⁃36,46⁃51],可选择对应的比例关系进行满岸水流量分析。
利用河道尺寸及古坡度恢复满岸水流量的方程[25]如下:
Cf [(Qbf 2)/(Bbf 2Hbf 2)]=gHbf S (5) 式中:Cf 为无量纲Chezy摩擦系数,Cf-1/2=8.32(Hbf /ks )1/6,Qbf 为满岸水流量。
Qtbf =Bbf qtbf =Bbf (R gD 50)1/2αt [ϕsτ *bf 50-τ *c ]nt (6) 式中:qtbf 为单位宽度的推移载荷流量,αt =αEH /Cf,αEH =0.05,nt =2.5,ϕs =1,τ* c =0,公式中相关常数的详细论述可参见Engelund et al.[53]的研究成果。
满岸悬浮载荷流量主要通过van Rijn[45]提出的流程进行恢复,该方法利用推移载荷的粒度分布所评估的夹带阈值,推导出单位河道宽度沿深度上的平均悬浮载荷浓度,共包括13个步骤,利用12个方程来约束最后一个方程中所使用的变量。关于产生这些变量所需步骤的详细说明,请参考文献[45],最终可推导出如下公式:
qs =FvHbf ca (7) Qss =qsBbf (8) 式中:qs 为单位宽度悬浮载荷流量,F为悬浮因子,对给定深度下全水柱浓度进行校正,v为河流流速,ca 为指定深度下悬浮沉积物浓度,Qss 为满岸悬浮载荷流量。
-
上述方法所得出的满岸水流量、推移载荷流量及悬浮载荷流量均为河流满岸时期的瞬时流量,而支点法主要是评估一段地质时期内源—汇系统的收支平衡,而年均沉积物量是计算一段地质时期内河流搬运的沉积物量的前提条件。在现代源—汇系统中,河流沉积物流量能够实时观测,从而容易建立沉积物流量随时间变化的曲线,进而获得年均沉积物量,但这种方法显然无法在深时源—汇系统中实施。Kettner et al.[54]通过数据统计显示年径流量与短期径流量具有一定的关系,但并没有从统计数据中得出具体的径流量预测。Meybeck et al.[55]研究了大量不同流域和类型的河流,评估了其沉积物产量的共同关系。研究的河流普遍显示,每年的总沉积物载荷中有很大一部分是通过短期洪水事件(如满岸事件)所搬运的,这种趋势在小型及干旱型盆地中往往更为明显。在洪水事件中径流量突然增大,持续时间从几天至几周不等,但通常在一周左右[54⁃62]。基于前人对现代河流的大量统计汇编,可得出以下公式[25]:
Qmas =Qtbs ×D /b (9) 式中:Qmas 为年均沉积物量,Qtbs 满岸沉积物流量,D为满岸事件持续的时间,b为每年满岸事件搬运的沉积物量所占的比例。结合研究区的古气候分析,与现代类似物进行对比,可以对满岸事件持续的时间以及搬运沉积物量所占的比例评估。
-
柴北缘中侏罗世层序S2时期处于坳陷盆地演化阶段,整体沉降较为稳定,与早侏罗世相比曲流河与曲流河三角洲沉积体系明显增多,表明此时坡度应整体较缓。基于河道尺寸参数,应用公式(3)获得鱼卡地区层序S2时期的古坡度介于0.000 204 6~0.000 217 8,均值为0.000 211,中细砂为主的河道沉积也与该较缓的古坡度相对应。
河流流速是河床剪切应力的函数,主要由坡度和水流深度决定。基于Chezy系数、水力半径和古坡度,通过公式(4)可以计算出河流流速范围,主要集中在1.046~1.048 m/s,平均流速为1.047 m/s。此外,流速也可以利用Rubin et al.[44]建立的底床形态相位图进行分析,从而提供了一种独立验证公式(4)计算结果准确性的方式。底床形态主要受流速、流动深度和颗粒大小的影响,沙丘尺度的交错层理是鱼卡地区钻孔岩心和露头剖面中最常见的沉积构造,而高流态的底床形态(如平坦床沙与逆行沙丘)则未被观察到。根据满岸深度、砂岩粒度以及底床形态三个参数,从底床形态相位图中可获得流速范围为0.85~1.25 m/s(图14)。由公式(4)计算出的流速(1.047 m/s)落入底床形态相位图得出的速度范围内,且大致处于中间的位置,因此两种独立评估水流速度的结果相互印证。
利用恢复的河道尺寸及古坡度,通过公式(5)可进行满岸水流量评估,结果显示满岸水流量介于239.9~286.2 m3/s,均值为262.4 m3/s。与此同时,基于前人建立的全球河道厚度、流域面积以及满岸水流量之间的经验比例模型,同样可以对满岸水流量进行分析。通过Blum et al.[16]建立的河道厚度与流域面积之间的比例关系模型(图8),可获得研究区干流河道对应的流域面积为3 209.8~3 781.6 km2,依据层序S2时期温暖潮湿的亚热带古气候条件,选取Syvitski et al.[17]建立的对应流域面积与满岸水流量之间的比例关系(图9),显示满岸水流量为239.4~273 m3/s,与公式(5)得出的满岸水流量范围十分接近,在误差范围内可认为两种独立的计算方法获得了基本一致的结果。
鱼卡地区北部山前地带地层因后期构造抬升,遭受剥蚀而未保存下来,因而相对于下游沉积区,其物源区与上游搬运区所知的信息甚少。研究区干流河道对应的流域面积范围对于源—汇系统重建十分重要,Sømme et al.[4]曾指出河流系统的最大长度与流域面积具有明显的正相关性,但在“深时”系统中河流长度的测量十分困难。在一定程度上,流域盆地长度可代表河流系统的最大长度,对于一般树枝状的对称流域,其长度可通过以下公式来评估[67]:
L =1.4(DA )0.6(10) 式中:L为流域长度,DA为流域面积。
基于已恢复的流域面积,通过公式(10)可得出流域长度介于177.8~196.2 km,均值为187 km。这表明鱼卡地区河流下游入湖处至当时北部物源区祁连山的距离接近200 km,远大于现今祁连山与鱼卡地区的距离,前文物源分析也显示层序S2时期鱼卡地区碎屑组分具有远源沉积的特点。
利用公式(6),将河道宽度乘以单位宽度的推移载荷流量,估算出满岸推移载荷流量为0.043~0.048 m3/s,平均值为0.046 m3/s。基于公式(8),满岸悬浮载荷流量由单位宽度悬浮载荷流量乘以河道宽度来进行评价,得出其范围为0.083~0.094 m3/s,平均值为0.088 m3/s(表1)。
表 1 柴北缘鱼卡地区源—汇系统相关参数
满岸深度/m 河道宽度/m 粒度(D16,D50,D84,D90)/mm 坡度 流速/(m/s) 流域面积/km2 低值 3.1 69 0.15,0.220.28,0.31 0.000 204 6 1.046 3 209.8 均值 3.2 73 0.000 211 0 1.047 3 488.9 高值 3.3 77 0.000 217 8 1.048 3 781.6 流域长度/km 满岸水流量/(m3/s) 推移载荷流量/(m3/s) 悬浮载荷流量/(m3/s) 年均沉积物量/m3 累计沉积物量/km3 低值 177.8 239.9 0.043 0.083 158 862.4 349.5 均值 187 262.4 0.046 0.088 168 909.8 371.6 高值 196.2 286.2 0.048 0.094 179 242.3 394.3
Source-to-sink System Budget Analysis of Continental Fluvial-lacustrine Sedimentary Association: A case study from the Middle Jurassic in the northern Qaidam Basin
-
摘要: 源—汇系统分析已成为沉积学领域的研究热点,其中关键参数定量恢复是源—汇系统分析的重要内容。以柴北缘鱼卡地区中侏罗世发育的陆相盆地源—汇系统为例,通过支点法进行源—汇系统收支定量分析。首先识别干流河道沉积,测量或计算河道尺寸,进行粒度分析;然后计算瞬时满岸水流量及沉积物流量,结合古气候与流域分析,对年均沉积物量进行计算,得出在给定地层持续时间内输送的沉积物量;再对沉积区的沉积物量进行测量统计,并与计算出的沉积物量进行对比,分析源—汇系统收支状况。对柴北缘鱼卡地区中侏罗统石门沟组下部沉积的源—汇系统收支定量分析显示,目标研究层段河流沉积的干流满岸深度在3.1~3.3 m,河道宽度为69~77 m,流经了较缓的坡度(0.000 204 6~0.000 217 8),流速一般为1.046~1.048 m/s,搬运了中—细砂为主的沉积物。该时期流域面积约为3 209.8~3 781.6 km2,流域长度介于177.8~196.2 km,满岸水流量为239.9~286.2 m3/s,满岸推移载荷流量为0.043~0.048 m3/s,满岸悬浮载荷流量范围为0.083~0.094 m3/s。基于现代类似河流的对比研究,计算出鱼卡地区干流年均沉积物搬运量介于158 862.4~179 242.3 m3,在层序S2所持续的2.2 Ma共向沉积区输入349.5~394.3 km3的沉积物,与沉积区所统计的沉积体积(322 km3)大致相符。河流沉积物输入体积的高值约为支点下游沉积区统计体积的1.22倍,如果这一分析结果准确,则表明存在一定程度的沉积物遗失现象,研究区局限发育的重力流沉积可能是沉积物遗失的主要方式。建立的收支模型可进一步推广应用于陆相河湖沉积组合的源—汇系统分析。Abstract: The current research focus on source-to-sink system analysis in sedimentology involves the quantitative reconstruction of key parameters. The present study adopted the fulcrum approach to quantitative budget analysis of the continental basin source-to-sink system in the Middle Jurassic northern Qaidam Basin, in particular the Yuqia area. The thickness and width of channels, paleoslope and grain size were directly measured or calculated from field outcrop, borehole and geophysical logging. Bankfull water discharge and sediment discharge in the channels were estimated using paleohydrologic equations giving the sediment volume transported in a given stratal duration. The sediment volume in the sedimentary basins was estimated separately (e.g., from stratigraphic isopach maps) to check that the mass of source and sink material on each side of the fulcrum were in balance. This indicates that the trunk river in the Yuqia area was 3.1-3.3 m deep and 69-77 m wide, carrying mainly fine- to medium-grain-size sand, and that it flowed over a low-gradient paleoslopes of 0.000 204 6-0.000 217 8. The drainage area was about 3 209.8-3 781.6 km2; drainage length was 177.8-196.2 km. The bankfull discharge of the trunk river was estimated to be 239.9-286.2 m3/s; the bedload sediment discharge estimated by the Chézy coefficient method ranged from 0.043 m3/s to 0.048 m3/s; the suspended-load sediment discharge from the van Rijn equations ranged from 0.083 m3/s to 0.094 m3/s. Annual total sediment load was estimated to be 158 862.4 m3 to 179 242.3 m3, including both bedload and suspended load. Within the 2.2 Ma duration of the S2 sequence, the river was estimated to have transported 349.5-394.3 km3 of sediment into the basin, which is consistent with the 322 km3 of sediment estimated for the sink area. The high input volume of sediment obtained from the paleohydrologic equation was about 1.22 times the statistical volume of the downstream sedimentary area of the fulcrum. If this is accurate, it implies that some sediment escaped, mainly by gravity flow deposits in the study area. The budget model established in this study may be applied in the analysis of other source-to-sink systems of continental fluvial-lacustrine sedimentary association.
-
Key words:
- source-to-sink system /
- budget analysis /
- northern Qaidam Basin /
- fulcrum approach
-
表 1 柴北缘鱼卡地区源—汇系统相关参数
满岸深度/m 河道宽度/m 粒度(D16,D50,D84,D90)/mm 坡度 流速/(m/s) 流域面积/km2 低值 3.1 69 0.15,0.220.28,0.31 0.000 204 6 1.046 3 209.8 均值 3.2 73 0.000 211 0 1.047 3 488.9 高值 3.3 77 0.000 217 8 1.048 3 781.6 流域长度/km 满岸水流量/(m3/s) 推移载荷流量/(m3/s) 悬浮载荷流量/(m3/s) 年均沉积物量/m3 累计沉积物量/km3 低值 177.8 239.9 0.043 0.083 158 862.4 349.5 均值 187 262.4 0.046 0.088 168 909.8 371.6 高值 196.2 286.2 0.048 0.094 179 242.3 394.3 -
[1] Allen P A. From landscapes into geological history[J]. Nature, 2008, 451(7176): 274-276. [2] Amorosi A, Maselli V, Trincardi F. Onshore to offshore anatomy of a Late Quaternary source-to-sink system (Po Plain-Adriatic Sea, Italy)[J]. Earth-Science Reviews, 2016, 153: 212-237. [3] Romans B W, Graham S A. A deep-time perspective of land-ocean linkages in the sedimentary record[J]. Annual Review of Marine Science, 2013, 5: 69-94. [4] Sømme T O, Helland-Hansen W, Martinsen O J, et al. Relationships between morphological and sedimentological parameters in source-to-sink systems: A basis for predicting semi-quantitative characteristics in subsurface systems[J]. Basin Research, 2009, 21(4): 361-387. [5] 林畅松,夏庆龙,施和生,等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20. Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. [6] 刘强虎,朱筱敏,李顺利,等. 沙垒田凸起前古近系基岩分布及源—汇过程[J]. 地球科学,2016,41(11):1935-1949. Liu Qianghu, Zhu Xiaomin, Li Shunli, et al. Pre-Palaeogene bedrock distribution and source-to-sink system analysis in the Shaleitian uplift[J]. Earth Science, 2016, 41(11): 1935-1949. [7] Xu J, Snedden J W, Fulthorpe C S, et al. Quantifying the relative contributions of Miocene rivers to the deep gulf of Mexico using detrital zircon geochronology: Implications for the evolution of Gulf Basin circulation and regional drainage[J]. Basin Research, 2022, doi: 10.1111/bre.12653 . [8] 龚承林,齐昆,徐杰,等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252. Gong Chenglin, Qi Kun, Xu Jie, et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica, 2021, 39(1): 231-252. [9] Bhattacharya J P, Copeland P, Lawton T F, et al. Estimation of source area, river paleo-discharge, paleoslope, and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential[J]. Earth-Science Reviews, 2016, 153: 77-110. [10] Sømme T O, Jackson C A L, Vaksdal M. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: Part 1-depositional setting and fan evolution[J]. Basin Research, 2013, 25(5): 489-511. [11] Walsh J P, Wiberg P L, Aalto R, et al. Source-to-sink research: Economy of the Earth's surface and its strata[J]. Earth-Science Reviews, 2016, 153: 1-6. [12] Liu B Q, Shao L Y, Wang X T, et al. Application of channel-belt scaling relationship to Middle Jurassic source-to-sink system in the Saishiteng area of the northern Qaidam Basin, NW China[J]. Journal of Palaeogeography, 2019, 8(2): 16. [13] Blum M D, Hattier-Womack J. Climate change, sea-level change, and fluvial sediment supply to deepwater depositional systems[M]//Kneller B, Martinsen O L, McCaffrey B. External controls on deep-water depositional systems. Tulsa: SEPM Society for Sedimentary Geology, 2009: 15-39. [14] Hovius N. Controls on sediment supply by large rivers[M]//Kocurek G. Relative role of eustacy, climate, and tectonism in continental rocks. Tulsa: SEPM Society for Sedimentary Geology, 1998: 2-16. [15] Anderson J B, Wallace D J, Simms A R, et al. Recycling sediments between source and sink during a eustatic cycle: Systems of Late Quaternary northwestern gulf of Mexico Basin[J]. Earth-Science Reviews, 2016, 153: 111-138. [16] Blum M, Martin J, Milliken K, et al. Paleovalley systems: Insights from Quaternary analogs and experiments[J]. Earth-Science Reviews, 2013, 116: 128-169. [17] Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1-19. [18] Davidson S K, Hartley A J. Towards a quantitative method for estimating paleohydrology from clast size and comparison with modern rivers[J]. Journal of Sedimentary Research, 2010, 80(7): 688-702. [19] Gardner T W. Paleohydrology and paleomorphology of a Carboniferous, meandering, fluvial sandstone[J]. Journal of Sedimentary Research, 1983, 53(3): 991-1005. [20] Khan Z A, Tewari R C. Paleochannel and paleohydrology of a Middle Siwalik (Pliocene) fluvial system, northern India[J]. Journal of Earth System Science, 2011, 120(3): 531-543. [21] Milliken K T, Blum M D, Snedden J W, et al. Application of fluvial scaling relationships to reconstruct drainage-basin evolution and sediment routing for the Cretaceous and Paleocene of the gulf of Mexico[J]. Geosphere, 2018, 14(2): 749-767. [22] Xu J, Snedden J W, Galloway W E, et al. Channel-belt scaling relationship and application to Early Miocene source-to-sink systems in the gulf of Mexico Basin[J]. Geosphere, 2017, 13(1): 179-200. [23] Allen P A, Armitage J J, Carter A, et al. The QS problem: Sediment volumetric balance of proximal foreland basin systems[J]. Sedimentology, 2013, 60(1): 102-130. [24] Hajek E A, Heller P L. Flow-depth scaling in alluvial architecture and nonmarine sequence stratigraphy: Example from the castlegate sandstone, Central Utah, U.S.A[J]. Journal of Sedimentary Research, 2012, 82(2): 121-130. [25] Holbrook J, Wanas H. A fulcrum approach to assessing source-to-sink mass balance using channel paleohydrologic paramaters derivable from common fluvial data sets with an example from the Cretaceous of Egypt[J]. Journal of Sedimentary Research, 2014, 84(5): 349-372. [26] Matenco L, Andriessen P. Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: Source to sink studies in the Danube Basin-Black Sea system[J]. Global and Planetary Change, 2013, 103: 1-18. [27] Michael N A, Whittaker A C, Allen P A. The functioning of sediment routing systems using a mass balance approach: Example from the Eocene of the southern Pyrenees[J]. The Journal of Geology, 2013, 121(6): 581-606. [28] Paola C, Mohrig D. Palaeohydraulics revisited: Palaeoslope estimation in coarse-grained braided rivers[J]. Basin Research, 1996, 8(3): 243-254. [29] Petter A L, Steel R J, Mohrig D, et al. Estimation of the paleoflux of terrestrial-derived solids across ancient basin margins using the stratigraphic record[J]. GSA Bulletin, 2013, 125(3/4): 578-593. [30] 刘炳强. 柴北缘早中侏罗世聚煤古地理与源—汇系统分析[D]. 北京:中国矿业大学(北京),2020. Liu Bingqiang. Coal accumulation paleogeography and source-to-sink system analysis of Early-Middle Jurassic in the northern Qaidam Basin[D]. Beijing: China University of Mining & Technology (Beijing), 2020. [31] 吕宝凤,张越青,杨书逸. 柴达木盆地构造体系特征及其成盆动力学意义[J]. 地质论评,2011,57(2):167-174. Baofeng Lü, Zhang Yueqing, Yang Shuyi. Characteristics of structural system and its implication for formation dynamics in Qaidam Basin[J]. Geological Review, 2011, 57(2): 167-174. [32] 李江海,姜洪福. 全球古板块再造、岩相古地理及古环境图集[M]. 北京:地质出版社,2013. Li Jianghai, Jiang Hongfu. World atlas of plate tectonic reconstruction, lithofacies paleogeography and plaeoenvironment[M]. Beijing: Geological Publishing House, 2013. [33] 刘天绩,邵龙义,曹代勇,等. 柴达木盆地北缘侏罗系煤炭资源形成条件及资源评价[M]. 北京:地质出版社,2013. Liu Tianji, Shao Longyi, Cao Daiyong, et al. Formation conditions and resource evaluation of Jurassic coal in the northern Qaidam Basin[M]. Beijing: Geological Publishing House, 2013. [34] 刘炳强,祝铠甲,黄献好,等. 柴西缘阿尔金山前下侏罗统层序地层与岩相古地理研究[J]. 沉积学报,2019,37(2):356-370. Liu Bingqiang, Zhu Kaijia, Huang Xianhao, et al. Sequence stratigraphy and lithofacies paleogeography of the Lower Jurassic in southern Altyn Tagh, western Qaidam Basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 356-370. [35] 杨平,杨玉芹,马立协,等. 柴达木盆地北缘侏罗系沉积环境演变及其石油地质意义[J]. 石油勘探与开发,2007,34(2):160-164. Yang Ping, Yang Yuqin, Ma Lixie, et al. Evolution of the Jurassic sedimentary environment in northern margin of Qaidam Basin and its significance in petroleum geology[J]. Petroleum Exploration and Development, 2007, 34(2): 160-164. [36] 李佩娟,何元良,吴向午,等. 青海柴达木盆地东北缘早、中侏罗世地层及植物群[M]. 南京:南京大学出版社,1988. Li Peijuan, He Yuanliang, Wu Xiangwu, et al. Early and Middle Jurassic strata and flora in northeastern Qaidam Basin, Qinghai province[M]. Nanjing: Nanjing University Press, 1988. [37] Ethridge F G, Schumm S A. Reconstructing paleochannel morphologic and flow characteristics: Methodology, limitations, and assessment[M]//Miall A D. Fluvial sedimentology. Calgary: Canadian Society of Petroleum Geologists, 1978: 703-722. [38] Galloway W E. Depositional architecture of Cenozoic gulf coastal plain fluvial systems[M]//Ethridge F G, Flores R M. Recent and ancient nonmarine depositional environments: Models for exploration. Tulsa: SEPM Society for Sedimentary Geology, 1981: 127-155. [39] Leclair S F, Bridge J S. Quantitative interpretation of sedimentary structures formed by river dunes[J]. Journal of Sedimentary Research, 2001, 71(5): 713-716. [40] Bridge J S, Mackey S D. A revised alluvial stratigraphy model[M]//Marzo M, Puigdefábregas C. Alluvial sedimentation. Boston: Blackwell Scientific Publications, 1993: 317-336. [41] Dade W B, Friend P F. Grain-size, sediment-transport regime, and channel slope in alluvial rivers[J]. The Journal of Geology, 1998, 106(6): 661-676. [42] Parker G. Self-formed straight rivers with equilibrium banks and mobile bed. Part 1. The sand-silt rive[J]. Journal of Fluid Mechanics, 1978, 89(1): 109-125. [43] Parker G, Paola C, Whipple K X, et al. Alluvial fans formed by channelized fluvial and sheet flow. I: Theory[J]. Journal of Hydraulic Engineering, 1998, 124(10): 985-995. [44] Rubin D M, McCulloch D S. Single and superimposed bedforms: A synthesis of San Francisco Bay and flume observations[J]. Sedimentary Geology, 1980, 26(1/2/3): 207-231. [45] van Rijn L C. Sediment transport, part II: Suspended load transport[J]. Journal of Hydraulic Engineering, 1984, 110(11): 1613-1641. [46] 党玉琪,胡勇,余辉龙,等. 柴达木盆地北缘石油地质[M]. 北京:地质出版社,2003. Dang Yuqi, Hu Yong, Yu Huilong, et al. Petroleum geology in the northern Qaidam Basin[M]. Beijing: Geological Publishing House, 2003. [47] 黄迪颖. 中国侏罗纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):227-256. Huang Diying. Jurassic integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 227-256. [48] 黄嫔,席萍,乔子真. 青海柴达木盆地鄂博梁2号井早侏罗世孢粉植物群及其地层意义[J]. 微体古生物学报,2003,20(3):253-265. Huang Pin, Xi Ping, Qiao Zizhen. Early Jurassic sporopollen assemblage from well Eboliang 2 of the Chaidamu Basin, Qinghai and their stratigraphical significance[J]. Acta Micropalaeontologica Sinica, 2003, 20(3): 253-265. [49] 阎存凤,袁剑英,田光荣,等. Kuqaia孢型体在柴达木盆地的发现及对冷科1井地层时代再认识[J]. 地层学杂志,2014,38(4):439-448. Yan Cunfeng, Yuan Jianying, Tian Guangrong, et al. The discovery of Kuqaia palynomorph and the recognition on stratigraphic age of well Lengke 1 in Qaidam Basin[J]. Journal of Stratigraphy, 2014, 38(4): 439-448. [50] 杨平,谢宗奎,袁秀君,等. 柴达木盆地北缘侏罗纪古生态特征及其古地理意义[J]. 古地理学报,2006,8(2):165-173. Yang Ping, Xie Zongkui, Yuan Xiujun, et al. Palaeoecological characteristics and its palaeogeographic significance of the Jurassic in northern margin of Qaidam Basin[J]. Journal of Palaeogeography, 2006, 8(2): 165-173. [51] 张泓. 中国西北侏罗纪含煤地层与聚煤规律[M]. 北京:地质出版社,1998. Zhang Hong. Jurassic coal-bearing strata and coal accumulation in northwest China[M]. Beijing: Geological Publishing House, 1998. [52] Wright S, Parker G. Flow resistance and suspended load in sand-bed rivers: Simplified stratification model[J]. Journal of Hydraulic Engineering, 2004, 130(8): 796-805. [53] Engelund F, Hansen E. A monograph on sediment transport in alluvial streams[M]. Copenhagen: Teknisk Forlag, 1967. [54] Kettner A J, Syvitski J P M. HydroTrend v.3.0: A climate-driven hydrological transport model that simulates discharge and sediment load leaving a river system[J]. Computers & Geosciences, 2008, 34(10): 1170-1183. [55] Meybeck M, Laroche L, Dürr H H, et al. Global variability of daily total suspended solids and their fluxes in rivers[J]. Global and Planetary Change, 2003, 39(1/2): 65-93. [56] Cramer B D, Vandenbroucke T R A, Ludvigson G A. High-Resolution Event Stratigraphy (HiRES) and the quantification of stratigraphic uncertainty: Silurian examples of the quest for precision in stratigraphy[J]. Earth-Science Reviews, 2015, 141: 136-153. [57] Dott R H, Jr. Episodic event deposits versus stratigraphic sequences-shall the twain never meet?[J]. Sedimentary Geology, 1996, 104(1/2/3/4): 243-247. [58] Fatorić S, Chelleri L. Vulnerability to the effects of climate change and adaptation: The case of the Spanish Ebro Delta[J]. Ocean & Coastal Management, 2012, 60: 1-10. [59] Sadler P M. Sediment accumulation rates and the completeness of stratigraphic sections[J]. The Journal of Geology, 1981, 89(5): 569-584. [60] Vandenberghe J. Climate forcing of fluvial system development: An evolution of ideas[J]. Quaternary Science Reviews, 2003, 22(20): 2053-2060. [61] Wolman M G, Miller J P. Magnitude and frequency of forces in geomorphic processes[J]. The Journal of Geology, 1960, 68(1): 54-74. [62] Powell G E, Mecklenburg D, Ward A. Evaluating channel-forming discharges: A study of large rivers in Ohio[J]. Transactions of the ASABE, 2006, 49(1): 35-46. [63] Li M, Shao L Y, Lu J, et al. Sequence stratigraphy and paleogeography of the Middle Jurassic coal measures in the Yuqia coalfield, northern Qaidam Basin, northwestern China[J]. AAPG Bulletin, 2014, 98(12): 2531-2550. [64] 鲁静,邵龙义,鞠奇,等. 柴北缘大煤沟矿区侏罗纪煤系层序地层及其煤岩变化特征[J]. 煤田地质与勘探,2009,37(4):9-14. Lu Jing, Shao Longyi, Ju Qi, et al. Coal petrography variation in the sequence stratigraphic frame of the Jurassic coal measures of Dameigou mine area in northern Qaidam Basin[J]. Coal Geology & Exploration, 2009, 37(4): 9-14. [65] 夏文臣,张宁,袁晓萍,等. 柴达木侏罗系的构造层序及前陆盆地演化[J]. 石油与天然气地质,1998,19(3):173-180,195. Xia Wenchen, Zhang Ning, Yuan Xiaoping, et al. Jurassic tectonic sequences of Qaidam and foreland basin evolution[J]. Oil & Gas Geology, 1998, 19(3): 173-180, 195. [66] 杨明慧,夏文臣. 非海相前陆盆地含煤沉积层序地层分析:以柴达木盆地大煤沟侏罗系剖面为例[J]. 煤田地质与勘探,1998,26(3):1-4. Yang Minghui, Xia Wenchen. The sequence stratigraphic analysis of coal-bearing strata in non-marine foreland basin: In case of Jurassic section of Dameigou, Qaidam Basin[J]. Coal Geology & Exploration, 1998, 26(3): 1-4. [67] Ritter D F, Kochel R C, Miller J R. Process geomorphology[M]. 3rd ed. Dubuque, Iowa: Wm. C. Brown Publishers, 1995. [68] Owen G. Experimental soft-sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples[J]. Sedimentology, 1996, 43(2): 279-293. [69] Suter F, Martínez J I, Vélez M I. Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: Evidence for pre-Hispanic seismic activity?[J]. Sedimentary Geology, 2011, 235(3/4): 188-199. [70] 杜远生, Shi G,龚一鸣,等. 东澳大利亚南悉尼盆地二叠系与地震沉积有关的软沉积变形构造[J]. 地质学报,2007,81(4):511-518. Du Yuansheng, Shi G, Gong Yiming, et al. Permian soft-sediment deformation structures related to earthquake in the southern Sydney Basin, eastern Australia[J]. Acta Geologica Sinica, 2007, 81(4): 511-518. [71] 乔秀夫,姜枚,李海兵,等. 龙门山中、新生界软沉积物变形及构造演化[J]. 地学前缘,2016,23(6):80-106. Qiao Xiufu, Jiang Mei, Li Haibing, et al. Soft-sediment deformation structures and their implications for tectonic evolution from Mesozoic to Cenozoic in the Longmen Shan[J]. Earth Science Frontiers, 2016, 23(6): 80-106. [72] 周瑶琪,张振凯,许红,等. 灵山岛沉积物软变形构造特征[J]. 海洋地质前沿,2015,31(4):42-54. Zhou Yaoqi, Zhang Zhenkai, Xu Hong, et al. Soft-sediment deformation structures in the sediments at Lingshan island[J]. Marine Geology Frontiers, 2015, 31(4): 42-54. [73] Owen G, Moretti M, Alfaro P. Recognising triggers for soft-sediment deformation: Current understanding and future directions[J]. Sedimentary Geology, 2011, 235(3/4): 133-140. [74] Simms M J. Uniquely extensive soft-sediment deformation in the Rhaetian of the UK: Evidence for earthquake or impact?[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 407-423. [75] Dott R H. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin, 1963, 47(1): 104-128. [76] 邵龙义,刘炳强,吉丛伟,等. 湖南邵阳地区茅口期晚期重力流沉积的发现及意义[J]. 古地理学报,2017,19(4):583-594. Shao Longyi, Liu Bingqiang, Ji Congwei, et al. Discovery and significance of gravity flow deposits of the late Maokouan in Shaoyang area of Hunan province[J]. Journal of Palaeogeography, 2017, 19(4): 583-594. [77] 邵龙义,张鹏飞. 广西来宾—合山一带晚二叠世海底扇浊积岩相[J]. 古地理学报,1999,1(1):20-31. Shao Longyi, Zhang Pengfei. Late Permian submarine fan turbidite facies in the Laibin-Heshan area of Guangxi[J]. Journal of Palaeogeography, 1999, 1(1): 20-31. [78] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962. [79] Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297. [80] Shanmugam G. The Bouma Sequence and the turbidite mind set[J]. Earth-Science Reviews, 1997, 42(4): 201-229. [81] Talling P J, Wynn R B, Masson D G, et al. Onset of submarine debris flow deposition far from original giant landslide[J]. Nature, 2007, 450(7169): 541-544. [82] 刘炳强,邵龙义,王伟超,等. 重力流主导的深水沉积特征及其模式:以共和盆地下三叠统为例[J]. 地质学报,2020,94(4):1106-1127. Liu Bingqiang, Shao Longyi, Wang Weichao, et al. Sedimentary characteristics and depositional model of deep-water deposits dominated by gravity flow: A case study from the Lower Triassic in the Gonghe Basin[J]. Acta Geologica Sinica, 2020, 94(4): 1106-1127. [83] Plint A G, Tyagi A, Hay M J, et al. Clinoforms, paleobathymetry, and mud dispersal across the western Canada Cretaceous foreland basin: Evidence from the Cenomanian Dunvegan Formation and Contiguous Strata[J]. Journal of Sedimentary Research, 2009, 79(3): 144-161. [84] Holbrook J M, Bhattacharya J P. Reappraisal of the sequence boundary in time and space: Case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity[J]. Earth-Science Reviews, 2012, 113(3/4): 271-302. [85] Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29. [86] Walling D E, Collins A L. The catchment sediment budget as a management tool[J]. Environmental Science & Policy, 2008, 11(2): 136-143. [87] Hajek E A, Wolinsky M A. Simplified process modeling of river avulsion and alluvial architecture: Connecting models and field data[J]. Sedimentary Geology, 2012, 257-260: 1-30. [88] Wang Y N, Straub K M, Hajek E A. Scale-dependent compensational stacking: An estimate of autogenic time scales in channelized sedimentary deposits[J]. Geology, 2011, 39(9): 811-814. [89] Sweet W V, Geratz J W. Bankfull hydraulic geometry relationships and recurrence intervals for North Carolina’s Coastal Plain[J]. Journal of the American Water Resources Association, 2003, 39(4): 861-871. [90] Davide V, Pardos M, Diserens J, et al. Characterisation of bed sediments and suspension of the river Po (Italy) during normal and high flow conditions[J]. Water Research, 2003, 37(12): 2847-2864. [91] Moog D B, Whiting P J. Annual hysteresis in bed load rating curves[J]. Water Resources Research, 1998, 34(9): 2393-2399. [92] Sichingabula H M. Magnitude-frequency characteristics of effective discharge for suspended sediment transport, Fraser River, British Columbia, Canada[J]. Hydrological Processes, 1999, 13(9): 1361-1380. [93] Sharma S, Bhattacharya J P, Richards B. Source-to-sink sediment budget analysis of the Cretaceous Ferron Sandstone, Utah, U.S.A., using the fulcrum approach[J]. Journal of Sedimentary Research, 2017, 87(6): 594-608. [94] Lorenz J C, Heinze D M, Clark J A, et al. Determination of widths of meander-belt sandstone reservoirs from vertical downhole data, Mesaverde Group, Piceance Creek Basin, Colorado[J]. AAPG Bulletin, 1985, 69(5): 710-721. [95] Origin Holbrook J., interrelationships genetic, and stratigraphy over the continuum of fluvial channel-form bounding surfaces : An illustration from Middle Cretaceous strata, southeastern Colorado[J]. Sedimentary Geology, 2001, 144(3/4): 179-222. [96] Paola C, Heller P L, Angevine C L. The large-scale dynamics of grain-size variation in alluvial basins, 1: Theory[J]. Basin Research, 1992, 4(2): 73-90.