-
深水(深海、深湖)水道是深水沉积体系最主要的沉积物(含有机质、污染物、塑料等)运移通道,也是粗粒碎屑沉积场所,为全球重要深水油气储集层[1⁃3]。纵观已发现深水水道油气藏,即便其有较高的孔隙度和渗透率,但受沉积结构复杂多变的影响,其储层连通性在侧向较短的几千米距离内也会有较大变化,这极大限制了该类油气藏的高效开发和采收率的提高[4⁃6]。“沉积构型”是研究储层非均质性的先进理论和技术手段,也是当今油气田开发地质学的研究热点和难点。
深水沉积构型的概念最早由Mutti和Normark于1987年提出[7],之后国内外学者先后基于野外露头、现代沉积和地球物理数据等不同研究资料提出了相应的深水水道级次划分方案[7⁃16],笔者对全球主要深海水道沉积构型分级方案进行了梳理和级次对应(表1)。虽然人们对深水水道构型系统的理解不断深入,但不同构型级次划分方案存在较大差异,各构型单元级次亦存在不对应性。如Pickering et al.[9]基于现代和古代沉积,提出了7级级次划分方案,并指出不是所有的构型级次都会出现在深海沉积体系中;Prather et al.[10]基于地震资料将深海水道划分为7级,包括4个地震可识别级次和3个亚地震级次(低于传统地震分辨率的级次);Mayall et al.[15]以限制性水道为研究对象,开展3~5级沉积构型要素研究,与其他学者不同,他强调每条水道及其内部充填物的独特性;Pickering et al.[16]根据内部相组合、构型几何形态及其束缚界面,提出了由纹层到水道体系的8级构型单元划分方案,尺度涵盖了地震到岩心或露头。
表 1 国外典型深水水道沉积体构型分级方案
Mutti et al.[7] Ghosh et al.[8] Pickering et al.[9] Gardner et al.[11] Gardner et al.[12] Navarre et al.[13] Sprauge et al.[14] Pickering et al.[16] 1级:颗粒、 构造变化段 0级:层系界面 1级:纹层 5级:浊积岩层 2级:流体事件界面 1级:层系组界面 1级:岩层 2级:岩层 2级:岩层组 3级:岩层组 4级:岩层组 2级:岩层组 1级:单一水道 1级:单一水道 7级:相组合 3级:岩层系列 4级:岩层系列 3级:水道沉积单元 3级:大型侵蚀面 2级:水道复合体 2级:复合水道 6级:水道充填 4级:水道充填和朵叶 5级:水道充填或 块状搬运单元 3级:水道 复合体 5级:单一水道 5级:水道/朵叶复合体 6级:水道复合体 3级:扇体亚阶段 4级:水道复合体 4级:盆地范围 侵蚀接触面 3级:海底扇通道 4级:海底水道通道 4级:水道复合体 6级:水道复合体系列 2级:单一扇体 5级:扇体沉积 5级:单个扇体系 界面 4级:海底扇通道 复合体 3级:水道体系 7级:水道复合体体系 7级:砂岩沉积体 1级:扇复合体 6级:扇复合体 6级:盆地充填 层序界面 2级:巨层序沉积 8级:水道复合体 体系系列 8级:水道体系 上述深水水道沉积构型单元级次划分方案存在争议的原因可归纳为:一方面与研究所用数据有关,这种数据资料的分辨率差异性和解释多解性,势必导致研究尺度、研究结果迥异[17]。另一方面取决于深水沉积体系的复杂性,不同海底扇沉积体系,受海平面升降、沉积物供给和构造运动等大尺度因素影响,水道构型样式可存在一定差异[18⁃19];同时,受地形地貌、重力流流体性质等小尺度因素影响,同一水道体系不同平面位置,其沉积构型样式也会存在差异[2,20⁃22]。此外,当前人们对深水沉积体结构的认识仍不全面、不深入。这些因素均可导致不同学者对深水水道构型级次的划分存在差异。
现有构型级次划分方案的差异性,使得深水水道难以实现露头与地下数据、现代沉积与古代沉积的类比。为此,笔者综合利用野外露头、浅层高频地震、深层油气藏井震联合资料、薄片等多维度、多时间域、多尺度信息,基于沉积体形态、规模及叠置样式分析,系统提出了一种深水水道沉积体构型单元分级方案,详细揭示了不同水道级次沉积单元的成因及其储层内部非均质性。
-
针对当前深水水道构型级次研究存在的问题,结合深水沉积环境特点,综合利用地质、地球物理等多种信息,提出了11级深水水道沉积构型分级新方案(表2)。方案充分厘定了构型单元的级次、类型、成因、形成时间跨度、结构样式、非均质性、界面规模及其地下识别资料分辨性等,并将其与Vail et al.[23]、Cross[24]和米兰科维奇旋回[25]进行了统一和对比。
表 2 深水水道构型级次划分方案
构型级次 构型单元 时间跨度/a 厚度/m 宽度/m 识别资料 Vail旋回 Cross旋回 米兰科维奇旋回 1级 沉积颗粒段 10-6~10-5 — — 显微镜下 2级 纹层 10-5~10-3 10-3~10-2 101~102 岩心 3级 岩层内均质段 10-3~10-2 10-2~100 101~102 岩心、测井 4级 岩层 10-2~100 100 101~102 测井 5级 岩层组 101~102 100~101 101~102 测井 6级 次级水道单元 102~103 100~5×101 1×102~5×102 测井、地震 超短周期旋回 7级 单一水道 103~104 2×101~8×101 5×102~1×103 地震 短期旋回 8级 复合水道 104~105 4×101~1×102 1×103~5×103 地震 5级 中期旋回 岁差周期 9级 复合水道系列 105~106 1×102~3×102 103 地震 4级 长期旋回 黄赤交角周期 10级 水道体系 106~107 102~103 103~104 地震 3级 超长期旋回 偏心率周期 11级 水道体系系列 108 103~104 104~105 地震 2级 巨旋回 -
构型级次划分是开展沉积(储层)构型研究的关键。国际上构型级次划分方式通常为正序或倒序两种,此次采用正序方案,即数字越大,构型单元级别越大[26]。方案将深水水道储层构型单元级次划分为11级,按照规模由小到大依次为:微观开发尺度(1~3级)、宏观开发尺度(4~9级)和勘探尺度(10~11级)。因此,该构型单元级次划分能够做到宏观构型与微观构型的融合,实现地面露头与地下沉积体之间的类比,确保构型单元级次的完整性。
构型单元类型是开展沉积(储层)构型研究的基础。受沉积机制类型多变性的影响,深水水道储层结构复杂多变,加上目前深水水道储层构型研究缺乏系统性,导致同一构型单元类型存在多种术语,不同构型单元类型可能用同一术语表述,个别术语用词存在无法反映其构型内涵的问题。根据国内外经典沉积学教材和通用行业标准,明确深水水道各级次储层结构所对应的构型单元类型(图1),确保构型单元术语的规范性和统一性。所述构型单元类型具体如下。
图 1 深水水道沉积体构型分级模式
Figure 1. Classification model of sedimentary body configurations in deep⁃water channels
(1) 微观开发尺度
1级单元为纹层内部颗粒、填隙物、孔隙及喉道等相似的微米级区域;2级单元为纹层,为沉积物粒级、成分和颜色相似的毫米级层;3级单元为岩层中均质段,为沉积物颗粒大小或沉积构造变化段,对应鲍马序列某一段(如鲍马序列Ta,Tb或Tc段[27]),或高密度浊流段(如Lowe序列S1,S2或R1段[28]),其往往难以在块状沉积单元(如砾岩和碎屑流)内识别,其内部储层均质性相对较好。
(2) 宏观开发尺度
4级单元为岩层,是由多个组分、结构和沉积构造相似的均质层段组成,内部沉积物粒度大小可为均质的,也可为非均质的;5级单元为岩层组,由多个组分、结构和沉积构造相似的粗粒岩层垂向叠置而成,其间可夹有细粒泥岩层;6级单元为次级水道单元,由多套垂向上叠置、成因相连的岩层序列构成,流动路径相同,本身呈水道形态;7级单元为单一水道,由多个垂向叠置的次级水道单元组成,是短期海平面变化或构造活动的响应结果,记录了侵蚀、过路、充填和废弃(或溢出)的沉积过程;8级单元为复合水道,由多个单一水道组成,主要记录了局部地形地貌对水道沉积过程的控制,复合水道边界可发育大型侵蚀面;9级单元为复合水道系列,由多个复合水道组成,主要记录了局部构造运动(如底辟引发的断层活动或褶皱形成)等小规模异旋回作用对水道沉积过程的控制。
(3) 宏观勘探尺度
10级单元为水道体系,由多个复合水道系列组成,主要记录了相对海平面长期变化、区域构造运动等大规模异旋回作用对水道沉积过程的控制;11级单元为水道体系系列,由多个水道体系组成,记录了2级海平面变化、区域构造运动等大规模异旋回作用对水道沉积过程的控制。
-
(1) 构型单元成因
理清各级次构型单元成因是确保级次划分科学性的关键。基于深水水道沉积动力学和层序地层学原理,揭示了各级次构型单元的成因,具体如下。
1级单元为相同水动力条件下沉积物颗粒均匀堆积的产物;2级单元是单一重力流流体类型中相同水动力条件流态产物;3级单元是单次沉积事件中单一重力流流体类型的产物;4级单元是单次沉积事件的产物;5级单元是流体能量总体相似的一系列沉积事件的产物[8];6级单元是流体能量规律性变化(增强或减弱)的一系列沉积事件的产物;7级单元是流体能量渐进式变化(一般先增强后减弱)的一系列沉积事件的产物;8级单元以自旋回事件成因为主;9级单元以异旋回事件成因为主[13];10级单元是异旋回事件成因[15];11级单元是区域性构造—地层旋回成因[7]。
(2) 构型单元形成时间跨度
受成因差异性的影响,各级别构型单元的形成时间跨度也会存在差异。基于深水水道构型单元成因约束,明确了各级次构型单元的形成时间跨度,具体如下。
1级单元形成于数秒—数分钟内;2级单元时间跨度为数分钟到数十分钟;3级单元为数分钟到数小时;4级单元常在数天内形成;5级单元时间跨度可达数天到数年[8];6级单元形成时间区间为十年到一百年;7级单元时间跨度为一百年到一千年;8级单元多在一万年内形成;9级单元则为一万年到十万年[13];10级单元形成时间基本在十万年到一百万年内[15];11级单元时间跨度则可以达到数百万年[7]。
依据上述深水水道构型单元成因分类和形成时间跨度标准,可反推各级次构型单元的沉积演变过程以及所经历的各级地质事件,此外还可根据地下地层实际测定时间推测构型单元级次,以及反推各级沉积体形成时间跨度,实现现代沉积与古代沉积之间的类比,从而确保构型单元级次划分的科学性。
-
构型单元结构样式决定了各级沉积体的渗流屏障和渗流差异空间分布,其对油气成藏条件、油气藏高效开发和提高采收率具有重要实际意义。基于前述的多维度、多时间域和多尺度综合信息,厘定了1~11级深水水道分级次构型单元结构样式。
1级单元根据岩石结构和矿物特征差异引起的孔隙规模非均质性,可分为孔隙非均质性、颗粒非均质性和填隙物非均质性,表现为岩石矿物颗粒大小、分选及磨圆特征、胶结物和填隙物类型以及生物化石碎屑差异等(图2)。
图 2 甘南水道浊积岩矿物颗粒镜下特征
Figure 2. Microscopic characteristics of turbidite mineral particles in channel from Gannan
2级单元根据纹层形态特征,可分为平直状、波状、弯曲状、透镜状、不规则状等(图3b,c),其内部宏观非均质性相对极弱,但微观非均质性强。
图 3 甘南深水露头1~3级构型沉积特征
Figure 3. Sedimentary characteristics of 1⁃3⁃order configuration of deep⁃water outcrop in Gannan
3级单元根据流体能量变化情况,可将其对应为鲍马序列[27](中粒浊积岩)、Low序列[28](粗粒浊积岩)、Stow序列[29](细粒浊积岩)的某一段,如Ta,Tb或Tc(图3a,b),其内部宏观非均质性较弱。
4级单元依据沉积事件及重力流成因类型,可分为滑塌相、砂质碎屑流相、超高密度流相、高密度浊流相、低密度浊流相和深水半远洋—远洋沉积等(图4),对应鲍马序列[27](中粒浊积岩)、Lowe序列[28](粗粒浊积岩)、Stow序列[29](细粒浊积岩)的完整或部分沉积序列,其内部储层非均质性弱。
5级单元依据成因类型,可分为两类(图5):1)多个单一韵律或(和)块状砂体(以厚层、中层为主)垂向叠置,其间可夹有薄层泥岩,主要位于水道主体部位。2)多个单一韵律或块状砂体(以中层、薄层为主)与泥岩互层,多发育在水道边缘;其内部储层非均质性相对弱。该级次单元可由单个或多个沉积序列组成,不同沉积序列之间存在较为明显的沉积颗粒突变界面,冲刷面等明显沉积界面少见。
6级单元依据成因类型,可分为两类(图6):1)透镜体型,由流体通过垂向加积作用形成的水平层状岩层系列叠置而成,水道边缘砂体以超覆或收敛状尖灭。2)楔形体型,由流体通过侧向加积或垂向加积作用形成的岩层系列叠置而成,下部一般为渗透性的砂体,上覆泥质细粒沉积或泥砾岩等非渗透岩层。不同沉积环境下,非渗透岩层厚度不一,可被后续流体侵蚀殆尽;内部岩相由水道轴部向边缘、由水道底部向顶部可呈规律性渐变,储层平面非均质性强。
7级单元根据充填形态特征,可分为五类:1)层状充填型(图7a1),水道内部由垂向上相互平行的次级水道单元叠置而成,水道整体表现出一定的正韵律特征。内部沉积的次级水道单元多以厚层或块状砂岩为主(图7a2),不同次级单元之间的接触面常充填细粒沉积物。2)束状充填型(图7b1),整体沉积特征与层状充填型水道相似,水道主体为相互平行的块状或厚层砂岩,边缘则呈束状收束(图7b2)。3)侧积型,主要为水道内部次级单元侧向加积沉积形成,根据侧积体间的细粒沉积物充填特征,可分为连通型(图7c1)、半连通型(图7c3)与非连通型(图7c5)。4)切叠型(图7d1)。5)块状充填型(图7e1)。7级构型单元内部岩相由水道轴部向边缘、由水道底部向顶部可呈规律性渐变,储层垂向非均质性较强,岩层层间渗流差异大。
8级单元根据内部单一水道的叠置样式,可分为离散型、拼接型和紧凑型三大类(图8)。离散型水道内部单一水道之间常充填以深海泥岩或小规模天然堤细粒沉积物,在地震剖面上表现为明显的弱振幅,水道整体形态特征较易识别。拼接型水道单一水道间可能发育规模较小的侵蚀面,指示单一水道形成时间以及迁移方向。紧凑型水道内部单一水道间相互切叠,边界处发育大型侵蚀面,在地震剖面上为明显弱振幅条带。单元内部单一水道拼接处发育的侵蚀面,可存在渗流屏障或渗流差异,储层垂向非均质性强。
9级单元根据内部复合水道的叠置样式,也可分为离散型、拼接型和紧凑型三类(图9)。沉积构型特征与复合水道类似,但在沉积规模上差异明显,表现为地震剖面上明显的强弱振幅分布及水道边界的包络面特征。在单元内部单一复合水道拼接处,可存在渗流屏障或渗流差异,储层非均质性强。
10级单元根据限制程度,可细分为如图10所示限制性、半限制性和非限制性三类[5]。内部储层非均质性强,即便在数百米范围内,孔隙度和渗透率亦可发生较大变化。
11级单元可根据构造活动及物源供给能力等,分为富砂型、富泥型和砂泥混杂型水道体系系列,水道体系之间被厚层泥岩隔挡。
-
构型单元规模是确定地下油气藏勘探开发各阶段研究目标的重要依据。基于全球范围内有文献记载且出露较好的26处深水水道野外露头沉积规模[36],以及地下油藏的实际构型解剖结果[37⁃38],明晰了深水水道各级构型单元的厚度及宽度,具体如下。
1级单元为微观构型,属微米级尺度(图2)。2级单元厚度大小不一,常介于数毫米到数厘米,侧向宽度一般介于数厘米到数米(图3c)。3级单元厚度介于数厘米到数十厘米,侧向宽度一般介于数十米到数百米(图3a,b)。4级单元顶底被小型侵蚀面或加积面约束,厚度变化区间较大,可为小于十厘米薄层,也可为大于一百厘米的厚层,侧向宽度介于数十米到数百米(图4)。5级单元顶底被小型侵蚀面或加积面约束,厚度数米级,侧向宽度介于数十米到数百米(图5)。6级单元顶底通常被侵蚀面或加积面约束,其厚度数米到数十米,侧向宽度介于数十米到数百米(图6)。7级单元底部通常被大型侵蚀面约束,顶部在未被侵蚀的情况下多发育泥质细粒沉积,对应Cross的超短期旋回[24](岁差周期),其厚度数米到数十米,一般以10~50 m居多,侧向宽度介于数十米到数百米,一般以100~500 m居多(图7)。8级单元底部可发育大型侵蚀面,对应Vail的5级层序[23]和Cross的短期旋回[24](偏心率短周期),厚度数十米,以20~80 m为主,侧向宽度介于数百米到数千米,一般以500~1 000 m居多(图8)。9级单元底部通常发育大型侵蚀面,顶部为厚层深水细粒沉积物,表明水道体系活动性暂时停止,该级单元可直接与一个沉积层序的低位体系域相比较,对应Vail的4级层序[23]和Cross的中期旋回[24](偏心率长周期);厚度数十米到百余米,以40~100 m为主,侧向宽度介于数百米到数千米,一般为1 000~5 000 m(图9)。10级单元底部通常发育巨型侵蚀面(不整合面),顶部发育厚层深水细粒沉积物,为海侵或高位体系域产物,对应Vail的3级层序[23]和Cross的长期旋回[24];其厚度数十米到数百米,以100~300 m为主,侧向宽度一般为数千米,可在盆地范围内进行追踪对比(图10)。11级单元顶/底部通常发育大面积的不整合面(削截),对应Vail的2级层序[23]和Cross的超长期旋回[24],其厚度数百米,侧向宽度数千米到数万米,可在盆地范围内进行追踪对比。
据上述深水水道沉积结构样式、构型界面特征和规模,一方面可为判定构型单元级次归属提供了标准(包括地面露头和地下油气藏研究),另一方面也为深水水道各级储层非均质性研究提供参考。这有助于厘清油气藏各勘探开发阶段的研究目标体,以及实现地面露头与地下油气藏、现代沉积与古代沉积之间的类比,确保了构型单元级次的实用性。
Sedimentary Architecture Unit Classification and Structural Style of Deep-water Channels
-
摘要: 构型分级是深水油气高效开发重要的技术手段和指导方法。目前关于深水水道沉积体的构型分级方案缺乏较为统一的认识和标准,造成同一沉积单元的构型划分存在规模和成因等多解性问题,这制约了深水沉积理论的发展和油气勘探开发进程。在不同构型单元的沉积规模、叠置关系、时间跨度以及成因演化等基础上,采用正序分级原则,建立了相对系统的深水水道沉积体构型分级方案和结构样式。方案将水道沉积体划分为11级构型单元,1级单元为沉积颗粒段,包括孔隙非均质性、颗粒非均质性和填隙物非均质性;2级单元为纹层,多表现为平直状、波状、弯曲状、透镜状及不规则状;3级单元为岩层内均质段,如鲍马序列某一段;4级单元为岩层,如完整鲍马序列;5级单元为岩层组,包括“单一韵律叠置”和“砂体泥岩互层”两类;6级单元为次级水道单元,多呈透镜体型和楔形体型;7级为单一水道,可划分为层状充填、束状充填、侧积、切叠以及块状充填5种类型;8级单元为复合水道,由多期单一水道叠置,9级为复合水道系列,为多期复合水道叠置,8级单元和9级单元按其内部水道组合关系均可划分为离散型、拼接型和紧凑型三种类型;10级单元为水道体系,包括限制性、半限制性以及非限制性水道体系三种类型;11级单元为水道体系系列,可分为富砂型、富泥型和砂泥混杂型。其中1~9级为油气开发级次,10~11级为勘探级次。该研究不仅为地面与地下、现代与古代水道沉积的类比提供了理论依据,也为深水水道油气藏不同尺度储层非均质解析提供了地质依据。Abstract: Architecture configuration classification of deep-water channel sediments is an important technical means and guideline for the efficient development of deep-water oil and gas resources. At present, the lack of a unified architecture classification system may result in ambiguities of scale and origin for the architecture of a particular sedimentary unit, which may in turn restrict the development of deep-water sedimentation theory and the exploration and development processes. In view of the current research use of deep-water channel sedimentary body architecture classification schemes based on sedimentary scale, overlapping relationship, time span and genetic evolution conditions of different architectural units, the proposed system adopts the reverse-order classification principle to establish a relatively systematic description of deep-water channel sedimentary bodies. The proposed grading scheme is analyzed and compared with existing configuration grading schemes. The proposed classification scheme divides channel sediments into 11 structural units: (1) sedimentary grain properties (pore heterogeneity, particle heterogeneity, interstitial heterogeneity); (2) laminar layer (straight, wavy, curved, lenticular, irregular); (3) homogeneous sections within the strata, e.g. a particular section of the Bouma sequence; (4) strata sequence, e.g. the complete Bouma sequence; (5) strata grouping (single-rhythm superposition, sandbody-mudstone interbedding); (6) secondary channel unit, mostly lens type and wedge-shaped; (7) five types of single channel infill (layered, bundle, lateral accumulation, cut-and-stack, block); (8) channel complex; (9) channel complex set (units 8 and 9 are each in three types: discrete, splicing and compact type, depending on how their internal water channels are combined and the relationship between them); (10) three types of channel system (restricted, semi-restricted, non-restricted); and (11) three types of channel system set (sand-rich, mud-rich mixed sand-mud). Units 1-9 are useful for oil and gas development; units 10 and 11 are appropriate for exploration. This study provides a theoretical basis for the analogy between surface/underground and modern/ancient channel deposits, and also contains the geological basis for analyzing heterogeneous deep-water channel oil and gas reservoirs of different scales.
-
图 3 甘南深水露头1~3级构型沉积特征
(a)鲍马序列Ta到Te的正韵律变化特征;(b)Tc段波状层理;(c)Tb段单个水平层理
Figure 3. Sedimentary characteristics of 1⁃3⁃order configuration of deep⁃water outcrop in Gannan
(a) positive rhythm variations of the Bouma sequence from Ta to Te; (b) wave bedding in the Tc band; (c) single horizontal bedding in the Tb band
图 4 甘南深水露头岩层沉积特征(据黄文奥等[30])
(a)滑塌相;(b)碎屑流相;(c)超高密度流相;(d)高密度流相;(e)低密度流相;(f)深海泥岩
Figure 4. Sedimentary characteristics of deep⁃water outcrop strata in Gannan (after Huang et al.[30])
(a) slump phase; (b) detrital fluid phase; (c) ultra⁃high density fluid phase; (d) high⁃density fluid phase; (e) low⁃density fluid phase; (f) deep⁃sea mudstone
图 6 次级水道单元构型级次沉积模式
(a)透镜体型次级沉积单元,原型为美国San Clemente State Beach露头(据Li et al.[31]修改);(b)楔状体型次级沉积单元,原型为加拿大Castle Creek North露头(据Arnott[32]修改)
Figure 6. Secondary channel unit architecture, grade sedimentation model
(a) lens⁃shaped sediments (prototype is San Clemente State Beach outcrop, California USA (modified from Li et al.[31])); (b) large wedge⁃shaped sediments (prototype is Castle Creek North outcrop, Canada (modified from Arnott[32]))
图 7 单一水道构型级次沉积模式
(a1,a2)层状充填型,加拿大Castle Creek North露头(据Arnoot[32]修改);(b1,b2)束状充填型,美国San Clemente State Beach露头(据Walker[33]修改);(c1~c6)侧积型:c1为泥质含量较少沉积体,美国San Clemente State Beach露头(据Li et al.[31]修改),c2为含一定泥质沉积体,美国Baumgardner Quarryd露头,c3为泥质含量较多沉积体,美国Rehy Cliffs露头(据Abreu et al.[34]修改);(d1,d2)切叠型,加拿大North Casde Creek露头(据Arnott[32]修改);(e1,e2)块状充填型,秘鲁Lobitos Village露头(据Nilsen et al.[35]修改)
Figure 7. Sedimentary model of single channel configuration
(a1,a2) layered filling type, Castle Creek North outcrop, Canada (modified from Arnoot[32]); (b1,b2) bundle filling type, San Clemente State Beach California USA outcrop (modified from Walker[33]); (c1⁃c6) lateral product type: c1 is a sedimentary body with less shale content in San Clemente outcrop (modified from Li et al.[31]); c2 is a sedimentary body with some argillaceous content, Baumgardner Quarry outcrop, Arkansas USA; c3 is a sedimentary body with more argillaceous content, Rehy Cliffs outcrop, Ireland (modified from Abreu et al.[34]); (d1,d2) cut stack type, Castle Creek North outcrop, Canada (modified from Arnott[32]); (e1,e2) block⁃filled type, Lobitos Village outcrop, Peru (modified from Nilsen et al.[35])
表 1 国外典型深水水道沉积体构型分级方案
Mutti et al.[7] Ghosh et al.[8] Pickering et al.[9] Gardner et al.[11] Gardner et al.[12] Navarre et al.[13] Sprauge et al.[14] Pickering et al.[16] 1级:颗粒、 构造变化段 0级:层系界面 1级:纹层 5级:浊积岩层 2级:流体事件界面 1级:层系组界面 1级:岩层 2级:岩层 2级:岩层组 3级:岩层组 4级:岩层组 2级:岩层组 1级:单一水道 1级:单一水道 7级:相组合 3级:岩层系列 4级:岩层系列 3级:水道沉积单元 3级:大型侵蚀面 2级:水道复合体 2级:复合水道 6级:水道充填 4级:水道充填和朵叶 5级:水道充填或 块状搬运单元 3级:水道 复合体 5级:单一水道 5级:水道/朵叶复合体 6级:水道复合体 3级:扇体亚阶段 4级:水道复合体 4级:盆地范围 侵蚀接触面 3级:海底扇通道 4级:海底水道通道 4级:水道复合体 6级:水道复合体系列 2级:单一扇体 5级:扇体沉积 5级:单个扇体系 界面 4级:海底扇通道 复合体 3级:水道体系 7级:水道复合体体系 7级:砂岩沉积体 1级:扇复合体 6级:扇复合体 6级:盆地充填 层序界面 2级:巨层序沉积 8级:水道复合体 体系系列 8级:水道体系 表 2 深水水道构型级次划分方案
构型级次 构型单元 时间跨度/a 厚度/m 宽度/m 识别资料 Vail旋回 Cross旋回 米兰科维奇旋回 1级 沉积颗粒段 10-6~10-5 — — 显微镜下 2级 纹层 10-5~10-3 10-3~10-2 101~102 岩心 3级 岩层内均质段 10-3~10-2 10-2~100 101~102 岩心、测井 4级 岩层 10-2~100 100 101~102 测井 5级 岩层组 101~102 100~101 101~102 测井 6级 次级水道单元 102~103 100~5×101 1×102~5×102 测井、地震 超短周期旋回 7级 单一水道 103~104 2×101~8×101 5×102~1×103 地震 短期旋回 8级 复合水道 104~105 4×101~1×102 1×103~5×103 地震 5级 中期旋回 岁差周期 9级 复合水道系列 105~106 1×102~3×102 103 地震 4级 长期旋回 黄赤交角周期 10级 水道体系 106~107 102~103 103~104 地震 3级 超长期旋回 偏心率周期 11级 水道体系系列 108 103~104 104~105 地震 2级 巨旋回 -
[1] Zhao X M, Qi K, Liu L, et al. Development of a partially-avulsed submarine channel on the Niger Delta continental slope: Architecture and controlling factors[J]. Marine and Petroleum Geology, 2018, 95: 30-49 [2] Ashiru O R, Qin Y, Wu S. Structural controls on submarine channel morphology, evolution, and architecture, offshore western Niger Delta[J]. Marine and Petroleum Geology, 2020, 118: 104413. [3] 周伟. 深水单向迁移水道建造模式与成因机制研究进展[J]. 古地理学报,2021,23(6):1082-1093. Zhou Wei. Research progress on architectural patterns and formation mechanisms of deep-water unidirectionally migrating channels[J]. Journal of Palaeogeography (Chinese Edition), 2021, 23(6): 1082-1093. [4] 赵晓明,葛家旺,谭程鹏,等. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望[J]. 中国海上油气,2019,31(5):76-87. Zhao Xiaoming, Ge Jiawang, Tan Chengpeng, et al. Research status and prospect of deep sea channel reservoir architecture and its response mechanism to synsedimentary structure[J]. China Offshore Oil and Gas, 2019, 31(5): 76-87. [5] Liu L, Zhang T S, Zhao X M, et al. Sedimentary architecture models of deepwater turbidite channel systems in the Niger Delta continental slope, West Africa[J]. Petroleum Science, 2013, 10(2): 139-148. [6] 赵晓明,吴胜和,刘丽. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征[J]. 石油学报,2012,33(6):1049-1058. Zhao Xiaoming, Wu Shenghe, Liu Li. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo oilfield, Niger Delta Basin[J]. Acta Petrolei Sinica, 2012, 33(6): 1049-1058. [7] Mutti E, Normark W R. Comparing examples of modern and ancient turbidite systems: Problems and concepts[M]//Leggett J K, Zuffa G G. Marine clastic sedimentology: Concepts and case studies. Dordrecht: Springer, 1987: 1-38. [8] Ghosh B, Lowe D. The architecture of deep-water channel complexes, Cretaceous Venado Sandstone Member, Sacremento Valley, California [C]// Graham S A, Lowe D R. Advances in the Sedimentary Geology of the Great Valley Group, Sacremento Valley, California. Pacific Section SEPM, SEPM, 1993:51-65. [9] Pickering K T, Clark J D, Smith R D A, et al. Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems[M]//Pickering K T, Hiscott R N, Kenyon N H, et al. Atlas of deep water environments: Architectural style in turbidite systems. Dordrecht: Springer, 1995: 1-10. [10] Prather B E, Booth J R, Steffens G S, et al. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5A): 701-728. [11] Gardner M H, Borer J M. Submarine channel architecture along a slope to basin profile, Brushy Canyon Formation, West Texas. [C]// Bouma A H, Stone C G.Fine-grained Turbidite Systems.SEPM Special Publication,2000, 68:195-214. [12] Gardner M H, Borer J M, Melick J J, et al. Stratigraphic process-response model for submarine channels and related features from studies of Permian Brushy Canyon outcrops, West Texas[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 757-787. [13] Navarre J C, Claude D, Liberelle E, et al. Deepwater turbidite system analysis, West Africa: Sedimentary model and implications for reservoir model construction[J]. The Leading Edge, 2002, 21(11): 1132-1139. [14] Sprague A R G, Garfield T R, Goulding F J, et al. Integrated slope channel depositional models: The key to successful prediction of reservoir presence and quality in offshore West Africa[R].: Colegio de Ingenieros Petroleros de México, Veracruz: Cuarto E-Exitep, 2005: 1-13. [15] Mayall M, Jones E, Casey M. Turbidite channel reservoirs—Key elements in facies prediction and effective development[J]. Marine and Petroleum Geology, 2006, 23(8): 821-841. [16] Pickering K T, Cantalejo B. Deep-marine environments of the Middle Eocene Upper Hecho Group, Spanish Pyrenees: Introduction[J]. Earth-Science Reviews, 2015, 144: 1-9. [17] Cullis S, Colombera L, Patacci M, et al. Hierarchical classifications of the sedimentary architecture of deep-marine depositional systems[J]. Earth-Science Reviews, 2018, 179: 38-71. [18] Ogbe O B. Sequence stratigraphic controls on reservoir characterization and architectural analysis: A case study of Tovo field, coastal swamp depobelt, Niger Delta Basin, Nigeria[J]. Marine and Petroleum Geology, 2020, 121: 104579. [19] Liu L, Wen H G, Chen H D, et al. Depositional architectures and evolutional processes of channel systems in lacustrine rift basins: The Eocene Shahejie Formation, Zhanhua Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2021, 131: 105155. [20] Zhao X M, Qi K, Liu L, et al. Quantitative characterization and controlling factor analysis of the morphology of Bukuma-minor channel on southern Niger Delta slope[J]. Interpretation, 2018, 6(2): SD57-SD69. [21] Li L, Gong C L, Steel R J. Bankfull discharge as a key control on submarine channel morphology and architecture: Case study from the Rio Muni Basin, West Africa[J]. Marine Geology, 2018, 401: 66-80. [22] 冯潇飞,赵晓明,谭程鹏,等. 深海弯曲水道内部一种特殊的沉积单元:凹岸坝[J]. 沉积学报,2020,38(2):440-450. Feng Xiaofei, Zhao Xiaoming, Tan Chengpeng, et al. A distinctive sedimentary element within the sinuous submarine channel: Outer bank bar[J]. Acta Sedimentologica Sinica, 2020, 38(2): 440-450. [23] Vail P R, Mitchum Jr R M, Thompson III S. Seismic stratigraphy and global changes of sea level, part 4: Global cycles of relative changes of sea level[M]//Payton C E. Seismic stratigraphy-applications to hydrocarbon exploration. Tulsa: American Association of Petroleum Geologists, 1977, 26: 83-98. [24] Cross T A. Controls on coal distribution in transgressive e regressive cycles, Upper Cretaceous, Western Interior, U S A. [C]// Wilgaus C K, et al. Sea-level changes: An integrated approach. SEPM Special Publication, 1988, 42:371-380. [25] Milankovitch M. Kanon der erdbestrahlung und seine anwendung auf das eiszeitenproblem[M]. Acade´mie Royale Serbe Editions Speciales Section des Sciences Mathe´matiques et Naturelles, Tome CXXXIII. Stamparija Mihaila Curcica, Beograd, 1941. [26] 吴胜和,纪友亮,岳大力,等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,2013,19(1):12-22. Wu Shenghe, Ji Youliang, Yue Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22. [27] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amstedam: Elsevier, 1962. [28] Lowe D R. Sediment gravity flows; Ⅱ, depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297. [29] Stow D A V, Piper D J W. Deep-water fine-grained sediments: Facies models[J]. Geological Society, London, Special Publications, 1984, 15(1): 611-646. [30] 黄文奥,赵晓明,谭程鹏,等. 西秦岭直合隆地区三叠系深水水道沉积模式分析[J]. 沉积学报,2020,38(5):1061-1075. Huang Wenao, Zhao Xiaoming, Tan Chengpeng, et al. Sedimentary model analysis of Triassic deep-water channels in Zhihelong, West Qinling Mountains[J]. Acta Sedimentologica Sinica, 2020, 38(5): 1061-1075. [31] Li P, Kneller B C, Hansen L, et al. The classical turbidite outcrop at San Clemente, California revisited: An example of sandy submarine channels with asymmetric facies architecture[J]. Sedimentary Geology, 2016, 346: 1-16. [32] Arnott R W C. Stratal architecture and origin of lateral accretion deposits (LADs) and conterminuous inner-bank levee deposits in a base-of-slope sinuous channel, Lower Isaac Formation (Neoproterozoic), East-Central British Columbia, Canada[J]. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 515-528. [33] Walker R G. Nested submarine-fan channels in the Capistrano Formation, San Clemente, California[J]. GSA Bulletin, 1975, 86(7): 915-924. [34] Abreu V, Sullivan M, Pirmez C, et al. Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 631-648. [35] Nilsen T H, Shew R D, Steffens G S, et al. Atlas of deep-water outcrops[M]. Tulsa: American Association of Petroleum Geologists, 2008 [36] 刘飞,赵晓明,冯潇飞,等. 基于重力流相的深水水道分类方案研究[J]. 古地理学报,2021,23(5):951-965. Liu Fei, Zhao Xiaoming, Feng Xiaofei, et al. Research on classification of deep-water channels based on gravity flow facies[J]. Journal of Palaeogeography, 2021, 23(5): 951-965. [37] 赵晓明,吴胜和,刘丽. 西非陆坡区深水复合水道沉积构型模式[J]. 中国石油大学学报(自然科学版),2012,36(6):1-5, 12. Zhao Xiaoming, Wu Shenghe, Liu Li. Sedimentary architecture model of deep-water channel complexes in slope area of West Africa[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(6): 1-5, 12. [38] Zhao X M, Li M H, Qi K, et al. Development of a distinct submarine depositional system on a topographically complex Niger Delta slope[J]. Geological Journal, 2020, 55(5): 3732-3747. [39] 赵晓明,刘丽,谭程鹏,等. 海底水道体系沉积构型样式及控制因素:以尼日尔三角洲盆地陆坡区为例[J]. 古地理学报,2018,20(5):825-840. Zhao Xiaoming, Liu Li, Tan Chengpeng, et al. Styles of submarine-channel architecture and its controlling factors: A case study from the Niger Delta Basin slope[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(5): 825-840. [40] 段瑞凯,胡光义,宋来明,等. 深海水道沉积体系精细刻画及表征方法:以西非尼日尔三角洲盆地M油田A油组为例[J]. 中国海上油气,2019,31(5):113-123. Duan Ruikai, Hu Guangyi, Song Laiming, et al. Fine description and characterization of deep sea channel sedimentation system: Taking the A oil group of M oilfield in the Niger Delta Basin of West Africa as an example[J]. China Offshore Oil and Gas, 2019, 31(5): 113-123. [41] 杨希濮,陈筱,冯潇飞,等. 尼日尔盆地油藏水道沉积构型识别及演化规律[J]. 海洋地质前沿,2021,37(10):49-57. Yang Xipu, Chen Xiao, Feng Xiaofei, et al. The study of channel sediment architecture and evolution pattern of reservoir in Niger Basin[J]. Marine Geology Frontiers, 2021, 37(10): 49-57.