Sedimentary Evolution and Controlling Factors of Miocene Gravity Flow Deposits in the Lower Congo Basin
-
摘要: 针对下刚果盆地中新统重力流沉积演化及其控制因素认识不够明确的问题,利用下刚果盆地X区块丰富的三维地震、测井及岩心资料,在建立中新统层序格架的基础上,精细识别了重力流沉积单元类型,系统揭示了重力流沉积演化特征并探讨了其控制因素。区内中新统可划分为SQ1(下中新统)、SQ2(中中新统下段)、SQ3(中中新统上段)及SQ4(上中新统)等4个三级层序,主要发育块体搬运、重力流水道(包括侵蚀过路水道、受限侵蚀水道、弱受限侵蚀—加积水道)、天然堤及朵叶体等沉积单元。SQ1早期,重力流沉积多在拉张区呈NW—SE向分布,主导沉积单元为朵叶体。SQ2早期,重力流沉积分布较广(呈NW—SE向),主导发育弱受限侵蚀—加积水道。SQ3早期,重力流沉积在研究区北部呈NWW—SEE向发育且以受限侵蚀水道为主。SQ4早期,重力流沉积全区发育(E—W走向),主导发育侵蚀过路水道。SQ1~SQ4,重力流沉积总体北迁、进积。刚果河携带大量物源向深水搬运(气候变冷、构造隆升及海平面下降所致)是重力流沉积大规模进积的第一要素,陆缘结构(掀斜陆架和宽缓陆坡)及陆坡坡度变化(断层及盐构造所致)控制了沉积分散过程和砂体横向分布。该研究有助于深化区内中新统重力流沉积演化认识,并为深水油气勘探提供借鉴。Abstract: The sedimentary evolution and controlling factors of the Miocene gravity flow deposits in the Lower Congo Basin are not well understood. Based on the integral analysis of seismic, logging, and core samples in block X of the Lower Congo Basin, the Miocene sequence framework is established, and the sedimentary units of the Miocene gravity flow deposits are fully identified. The sedimentary evolution of the gravity flow deposits is systematically revealed, and the controlling factors are discussed. The Miocene strata in the study area can be divided into four 3rd order sequences, referred to as SQ1 (Lower Miocene), SQ2 (lower part of Middle Miocene), SQ3 (upper part of Middle Miocene), and SQ4 (Upper Miocene). Four major types of deep-water sedimentary units are identified: gravity flow channel (including erosional bypassing channel, restricted erosional channel, weakly restricted erosional- aggradational channel and unrestricted aggradational channel), lobe, levee, and mass transport deposits. In SQ1, the gravity flow deposits were primarily developed in the stretching zone of block X with NW-SE extension, and the dominant sedimentary unit was either lobes or unrestricted aggradational channels. During SQ2, the gravity flow deposits were widely distributed (NW-SE trending), and weakly restricted erosional-aggradational channels were dominant. In SQ3, the gravity flow deposits developed in the northern section of the study area with NWW-SEE extension, and restricted erosional channels were widely recognized. In SQ4, the gravity flow deposits developed throughout the entire study area (E-W trending) with erosional bypassing channels being dominant. For SQ1⁃SQ4, the gravity flow deposits were generally characterized by progradation. That the Congo River delivered an abundant source supply to the deep-water caused by tectonic uplift, climate cooling, and sea level fall was the overriding factor for the progradation of the deposits. The continental margin shape (tilting shelf and wide slope) and the gradient change of the slope caused by salt structure and faults controlled the sedimentary dispersion process and sand body distribution. This study can help in the understanding of the sedimentary evolution of the Miocene gravity flow deposits in the Lower Congo Basin and provide a reference for the hydrocarbon exploration within the basin.
-
Key words:
- gravity flow deposits /
- sedimentary evolution /
- controlling factors /
- Miocene /
- Lower Congo Basin
-
图 3 下刚果盆地X区块三维地震剖面层序地层划分(剖面位置见图1,P1)
IC.侵蚀过路水道;RC.受限侵蚀水道;WRC.弱受限侵蚀—加积水道;SL.朵体
Figure 3. Interpreted seismic profile in block X of the Lower Congo Basin, showing sequence classification (see profile location in Fig.1, P1)
IC. incised bypass channel; RC. restricted erosional channel; WRC. weakly restricted erosional⁃aggradational channel; SL. lobe
图 4 下刚果盆地X区块连井剖面层序—沉积单元对比(剖面位置见图1,P1)
IC.侵蚀过路水道;RC.受限侵蚀水道;WRC.弱受限侵蚀—加积水道;URC.不受限加积水道;SL.朵体;HST.高位体系域;TST.海侵体系域;LST.低位体系域
Figure 4. Well⁃log section calibrated by P1 in Fig.1, showing sequence classification and sedimentary units in block X, Lower Congo Basin
IC. incised bypass channel; RC. restricted erosional channel; WRC. weakly restricted erosional⁃aggradational channel; URC. unrestricted aggradational channel; SL. lobe; HST. high⁃stand system tracts; TST. transgressive system tracts; LST. low⁃stand system tracts
图 6 基于RMS振幅属性切片解释的下刚果盆地X区块重力流沉积演化
(a,a’)SQ1;(b,b’)SQ2;(c,c’)SQ3;(d,d’)SQ4;IC.侵蚀过路水道;RC.受限侵蚀水道;WRC.弱受限侵蚀—加积水道;SL.朵体;S.盐
Figure 6. Evolution of gravity deposits in block X based on RMS (root mean square) amplitude slice analysis, Lower Congo Basin
(a,a’) SQ1; (b,b’) SQ2; (c,c’) SQ3; (d,d’) SQ4; IC. incised bypass channel; RC. restricted erosional channel; WRC. weakly restricted erosional⁃aggradational channel; SL. lobe; S. salt
-
[1] 林畅松,夏庆龙,施和生,等. 地貌演化、源—汇过程与盆地分析[J]. 地学前缘,2015,22(1):9-20. Lin Changsong, Xia Qinglong, Shi Hesheng, et al. Geomorphological evolution, source to sink system and basin analysis[J]. Earth Science Frontiers, 2015, 22(1): 9-20. [2] Gong C L, Steel R J, Wang Y M, et al. Shelf-margin architecture variability and its role in sediment-budget partitioning into deep-water areas[J]. Earth-Science Reviews, 2016, 154: 72-101. [3] Wu W, Li Q, Yu J, et al. The Central Canyon depositional patterns and filling process in east of Lingshui Depression, Qiongdongnan Basin, northern South China Sea[J]. Geological Journal, 2018, 53(6): 3064-3081. [4] 孙涛,王建新,孙玉梅. 西非塞内加尔盆地深水区油气地球化学特征与油气成藏[J]. 沉积学报,2017,35(6):1284-1292. Sun Tao, Wang Jianxin, Sun Yumei. Petroleum geochemical characteristics and accumulation in offshore of Senegal Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1284-1292. [5] Brooks H L, Hodgson D M, Brunt R L, et al. Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture, an example from the Karoo Basin, South Africa[J]. GSA Bulletin, 2018, 130(9/10): 1723-1746. [6] Sun Q L, Cartwright J, Wu S G, et al. Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change[J]. Marine and Petroleum Geology, 2016, 77: 75-91. [7] Niyazi Y, Eruteya O E, Omosanya K O, et al. Seismic geomorphology of submarine channel-belt complexes in the Pliocene of the Levant Basin, offshore central Israel[J]. Marine Geology, 2018, 403: 123-138. [8] Zhao X M, Qi K, Liu L, et al. Development of a partially-avulsed submarine channel on the Niger Delta continental slope: Architecture and controlling factors[J]. Marine and Petroleum Geology, 2018, 95: 30-49. [9] Tian H X, Lin C S, Zhang Z T, et al. Depositional architecture, evolution and controlling factors of the Miocene submarine canyon system in the Pearl River Mouth Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2021, 128: 104990. [10] Ferry J N, Parize O, Mulder T, et al. Sedimentary architecture and growth pattern of turbidite systems in distal part of a median fan; example of the Upper Miocene sedimentary sequence of the Lower Congo Basin[J]. Geodinamica Acta, 2005, 18(2): 145-152. [11] Lavier L L, Steckler M S, Brigaud F. Climatic and tectonic control on the Cenozoic evolution of the West African margin[J]. Marine Geology, 2001, 178(1/2/3/4): 63-80. [12] 蔡露露,刘春成,吕明,等. 西非下刚果盆地深水水道发育特征及沉积储层预测[J]. 中国海上油气,2016,28(2):60-70. Cai Lulu, Liu Chuncheng, Ming Lü, et al. The development characteristics of deep water channel and sedimentary reservoir prediction in Lower Congo Basin, West Africa[J]. China Offshore Oil and Gas, 2016, 28(2): 60-70. [13] 陈亮,赵千慧,王英民,等. 盐构造与深水水道的交互作用:以下刚果盆地为例[J]. 沉积学报,2017,35(6):1197-1204. Chen Liang, Zhao Qianhui, Wang Yingmin, et al. Interactions between submarine channels and salt structures: Examples from the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1197-1204. [14] 李全,吴伟,康洪全,等. 西非下刚果盆地深水水道沉积特征及控制因素[J]. 石油与天然气地质,2019,40(4):917-929. Li Quan, Wu Wei, Kang Hongquan, et al. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin, West Africa[J]. Oil & Gas Geology, 2019, 40(4): 917-929. [15] Chen H, Lin C S, Zhang Z M, et al. Evolution and controlling factors of the gravity flow deposits in the Miocene sequence stratigraphic framework, the Lower Congo—Congo Fan Basin, West Africa[J]. Petroleum Exploration and Development, 2021, 48(1): 146-158. [16] 龚承林,王英民,官宝聪,等. 典型被动大陆边缘深水盆地构造演化与层序地层学分析[J]. 沉积学报,2010,28(3):419-425. Gong Chenglin, Wang Yingmin, Guan Baocong, et al. The tectonic evolution and sequence stratigraphy of passive continental margins deep-water basin[J]. Acta Sedimentologica Sinica, 2010, 28(3): 419-425. [17] 张文彪,刘志强,陈志海,等. 安哥拉深水水道地质知识库建立及应用[J]. 沉积学报,2015,33(1):142-152. Zhang Wenbiao, Liu Zhiqiang, Chen Zhihai, et al. Establishment and application of geological data base on deep-water channels in Angola Block[J]. Acta Sedimentologica Sinica, 2015, 33(1): 142-152. [18] Sutra E, Manatscha G, Mohn G, et al. Quantification and restoration of extensional deformation along the western Iberia and Newfoundland rifted margins[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(8): 2575-2597. [19] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346. [20] Huang Y Q. Sedimentary characteristics of turbidite fan and its implication for hydrocarbon exploration in Lower Congo Basin[J]. Petroleum Research, 2018, 3(2): 189-196. [21] 林畅松. 沉积盆地的构造地层分析:以中国构造活动盆地研究为例[J]. 现代地质,2006,20(2):185-194. Lin Changsong. Tectono-stratigraphic analysis of sedimentary basins: A case study on the inland tectonically active basins in China[J]. Geoscience, 2006, 20(2): 185-194. [22] 秦雁群,万仑坤,计智锋,等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质,2018,39(1):140-152. Qin Yanqun, Wan Lunkun, Ji Zhifeng, et al. Progress of research on deep-water mass-transport deposits[J]. Oil & Gas Geology, 2018, 39(1): 140-152. [23] Moscardelli L, Wood L, Mann P. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela[J]. AAPG Bulletin, 2006, 90(7): 1059-1088. [24] 李磊,王英民,张莲美,等. 块体搬运复合体的识别、演化及其油气勘探意义[J]. 沉积学报,2010,28(1):76-82. Li Lei, Wang Yingmin, Zhang Lianmei, et al. Identification and evolution of mass transport complexes and its significance for oil and gas exploration[J]. Acta Sedimentologica Sinica, 2010, 28(1): 76-82. [25] 秦磊,毛金昕,倪凤玲,等. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展,2020,35(6):632-642. Qin Lei, Mao Jinxin, Ni Fengling, et al. A brief introduction to deep-water mass-transport complexes: Structures, genetic classifications and identification methods[J]. Advances in Earth Science, 2020, 35(6): 632-642. [26] Posamentier H W, Kolla V,刘化清. 深水浊流沉积综述[J]. 沉积学报,2019,37(5):879-903. Posamentier H W, Kolla V, Liu Huaqing. An overview of deep-water turbidite deposition[J]. Acta Sedimentologica Sinica, 2019, 37(5): 879-903. [27] 林畅松. 盆地沉积动力学:研究现状与未来发展趋势[J]. 石油与天然气地质,2019,40(4):685-700. Lin Changsong. Sedimentary dynamics of basin: Status and trend[J]. Oil & Gas Geology, 2019, 40(4): 685-700. [28] Séranne M, Abeigne C R N. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (west Africa): Consequences for sedimentation and southeast Atlantic upwelling[J]. Sedimentary Geology, 1999, 128(3/4): 179-199. [29] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298. [30] Séranne M, Anka Z. South Atlantic continental margins of Africa: A comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins[J]. Journal of African Earth Sciences, 2005, 43(1/2/3): 283-300. [31] Fort X, Brun J P, Chauvel F. Salt tectonics on the Angolan margin, synsedimentary deformation processes[J]. AAPG Bulletin, 2004, 88(11): 1523-1544. [32] Oluboyo A P, Gawthorpe R L, Bakke K, et al. Salt tectonic controls on deep-water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola[J]. Basin Research, 2014, 26(4): 597-620. [33] Unternehr P, Péron-Pinvidic G, Manatschal G, et al. Hyper-extended crust in the South Atlantic: In search of a model[J]. Petroleum Geoscience, 2010, 16(3): 207-215. [34] Anka Z, Séranne M, Lopez M, et al. The long-term evolution of the Congo deep-sea fan: A basin-wide view of the interaction between a giant submarine fan and a mature passive margin (ZaiAngo project)[J]. Tectonophysics, 2009, 470(1/2): 42-56. [35] 吕奇奇,罗顺社,李梦杰,等. 深水碎屑流与浊流混合事件层沉积特征及分布:以鄂尔多斯盆地西南长7油层组为例[J]. 东北石油大学学报,2020,44(2):69-78. Qiqi Lü, Luo Shunshe, Li Mengjie, et al. Sedimentary characteristics and distribution of deep-water hybrid event beds comprising debris and turbidites: A case study of Chang7 oil formation in the southwest of Ordos Basin[J]. Journal of Northeast Petroleum University, 2020, 44(2): 69-78. [36] 秦雁群,张光亚,巴丹,等. 转换型被动陆缘盆地地质特征与深水油气聚集规律:以赤道大西洋西非边缘盆地群为例[J]. 地学前缘,2016,23(1):229-239. Qin Yanqun, Zhang Guangya, Ba Dan, et al. Geological characteristics and deep water hydrocarbon accumulation patterns of transformed passive continental marginal basins: A case history from basins of West Africa margin in Equatorial Atlantic[J]. Earth Science Frontiers, 2016, 23(1): 229-239. [37] 胡孝林,于水,刘新颖. 尼日尔三角洲盆地过路朵叶体特征及发育模式[J]. 东北石油大学学报,2014,38(5):31-39. Hu Xiaolin, Yu Shui, Liu Xinying. Characteristic and development model of transient lobe in Niger Delta Basin[J]. Journal of Northeast Petroleum University, 2014, 38(5): 31-39.