-
水道受水流侵蚀能力、水道底部滞留沉积的影响不同和成熟度差异,不同水道或同一水道的不同位置,水道特征均有较大不同。研究区内主要有两条代表性的水道(图2a),其一为位于南部边缘部位的发育早期的小型顺直水道,其二为位于中部的发育成熟期的贝罗河水下弯曲水道。通过剖析水道在地震反射剖面上的几何外形、内部构型,并分析现今水道在海底地震反射地貌图中的平面特征、地形背景,及提取等时反射层地震属性反应的多期水道平面展布及演化关系,期望在时空上全方位挖掘限制性水道的沉积特征与演化过程。
-
依据地震反射海底地貌(图2a)和海底倾角(图2b),南部小型水道在研究区内延伸约20 km,平面上呈顺直展布,走向几乎完全垂直于海底地形等深线,海底地形坡度介于3°~4°,沿水道地形坡度由浅至深逐渐增大。图3为过水道上、中、下位置的aa’、bb’及cc’三条横切水道地震反射剖面,剖面间距约5 km。地震反射剖面显示,水道两边河床近似“V”型对称,水道深度从上游到下游渐次变小,水道宽度也依次缓慢变小,而水道宽深比依次明显增大,水道内或底部未见明显的砂体沉积地层的强地震反射,即未发育明显的粗粒滞留沉积。上述地震响应特征表明南部小型顺直水道处于早期侵蚀性过路不沉积的水道发育阶段。
-
贝罗河陆上峡谷头部与其水下河口直接相连,为深水限制性水道的形成提供了有利的源动力条件。该水道从东南向西北穿过研究区中部(图2),是多期次发育的、弯曲的、典型的水下限制性浊积水道。
-
从图4地震反射剖面可知,地震剖面上水道现今河床呈明显的不对称深“V”型反射,水道沉积体地震反射外形为明显的“U”型,可分为上、下两套地震反射层序,下部层序为粗粒滞留沉积层,呈现强振幅、中等频率、中等连续的内部地震反射,平面呈现向缓坡加积叠置,该地震响应特征使其明显区别于周边围岩地层;上部层序为深海漂浮泥质披覆沉积,呈现弱振幅、高频、较连续的地震反射响应特征,且与广海沉积层无缝连接,但水道内地层明显增厚。地震剖面上堤岸地形基本保持原始区域地形形态,无明显溢岸沉积建造。上述地震响应反映了限制性水道的主要特点:强水流动力,重力流活动限制在连通水道内,水流侵蚀作用总体大于沉积,底部沉积侧向加积粗粒地层。
深水限制性水道在地质时间尺度上,往往由相邻期次的单一水道以不同的切割、叠合等关系组合而形成深水水道沉积体系。从图4地震剖面反射特征来看,水道沉积体系可大概归纳为侧切叠加式和垂切叠加式两个类型,地震剖面下部明显发育侧切叠加式水道沉积体系,地震剖面上部明显发育垂切叠加式水道沉积体系。
-
研究区地震反射海底地形(图2)总体呈东南高西北低,现今贝罗河水下限制性水道从东南高部位向西北低凹处展布,延伸长度约60 km。依据研究区内水道的整体特征,可分为上下两段,以水道海底水深1 900 m为界线,水深1 900 m至900 m以浅为上段,水深1 900 m至2 600 m以深为下段,上、下两段水道特征明显不同(表1、图2),水道分界处也是海底地形变化的枢纽地带,上段地形坡度较陡,介于2°~3°,下段地形坡度较缓,介于0.5°~2°。水道弯曲度、摆动幅度与其位置、地形坡度及水道演化程度相关。
表 1 水道特征要素表
分类 落差/m 直线距离/km 轴线距离/km 地形坡度/度 纵比降/*1 000 弯曲度 摆动幅度/km 摆动频率/每10 km 上段 800 26.0 38.7 2~4 31 1.5 1.7 2.0 下段 800 35.3 44.5 0.5~2 23 1.3 3.6 1.0 水道上段海底背景地形具明显的以水道轴线近似对称的正向构造特征(图2),说明水道上段周边地层有一个长期的沉积建造,即该段水道发育程度相对较高;水道下段周边海底地形具明显的负向构造背景,且水道直线与负向构造轴线不一致,预示该段水道随西北部沉降中心的向北移动而向构造低部位迁移的趋势,即该段水道发育程度相对较低。
-
为了描述水道平面演化特征,在海底地震反射层及其以下大约1 000 m的浅部地层范围内,解释了现今、中期、早期三个地震反射界面(图5)。该套地层相当于更新世—全新世时期的沉积地层[9],同时也是水下限制性水道体系的集中发育层段。提取三个反射层面的对水道砂体沉积响应敏感的地震均方根振幅属性(图6a~c),以揭示各期水道的平面展布及演化(图6d)。
早期水道为单支,位于研究区中南部,从研究区东南角延伸到研究区西部边界中心位置。中期水道中部分为双支,整体位置相对早期向北部大幅移动。现今水道又变为单支,位于研究区正中部,从研究区西南角延伸到东北角,整体位置相对中期水道向北移动。从三期水道平面叠合关系图(图6d)可知,水道的演化从早期到现今整体渐进式向北移动,上段迁移距离较小,下段迁移距离较大。中期水道在水道中部发育为两支,南侧一支为早期水道在该处的消亡遗迹,北侧一支为晚期水道在该处的早期雏形。水道的迁移方向明显指向西北部盆地沉降中心位置,即预示着盆地沉降中心控制着水道的迁移方向。
Seismic Response and Sedimentary Evolution of a Deepwater Channel at a Passive Continental Margin: Case study of the Namibe Basin
-
摘要: 目的 被动陆缘盆地深水浊积砂体已成为深海油气勘探突破及储量发现的新领域。 方法 以典型被动陆缘纳米贝盆地深水高分辨率三维地震资料为研究基础,以受构造活动和沉积压实影响较小而保持原始水道沉积构型的海底第四纪沉积地层为目标,精细描述和解析了目标层内限制性水道沉积的剖面和平面地震响应特征。 结果与结论 限制性浊积水道侵蚀作用总体大于沉积作用,单一水道的沉积模式以凹岸侵蚀、凸岸“S”型加积为主,该过程使“V”型河谷展宽并充填形成“U”型水道沉积;多期叠置水道沉积体系分为侧切叠置和垂切叠置的两种模式,以侧切叠置模式为主;窄陆架、宽缓陆坡的海底地形控制限制性水道的延伸方向及长度规模,陆缘盆地的沉降中心控制着各期水道的迁移方向,古气候事件发生频率控制着水道体系内部浊积砂体发育的期次。该研究成果能够给予限制性水道沉积构型认识及砂体储层预测启发。Abstract: Objective Deepwater turbidite sand bodies in passive continental margin basins are a new field of oil and gas exploration. Methods High-resolution 3D seismic data for a typical passive deepwater basin margin (in this case,the Namibe Basin margin) enabled the sedimentary characteristics of limited channel submarine Quaternary sedimentary strata to be finely depicted and analyzed. Because these have been relatively unaffected by tectonic activity and sedimentary compaction,they have retained the original sedimentary configuration of the channel. [Results and Conclusions] It was found that the erosion of confined turbid channels generally exceeded deposition. The sedimentary mode of a single channel exhibits mainly concave bank erosion and convex bank ‘S’-type accretion,leading to ‘V’-type valley broadening into wide ‘U’-type channel deposition. Multiple-channel sedimentary systems are divided into either lateral or vertical erosive superposition. The submarine topography of a narrow continental shelf and a wide,gentle continental slope has determined both the direction and length of extension of limited channels. The frequency of paleoclimate events has affected the developmental times of turbidite sand bodies in the channel system. These results provide information for predicting the presence of reservoirs and for analyzing the sedimentary architecture of channel turbidite sand bodies in exploration for oil and gas in this type of deep formation.
-
表 1 水道特征要素表
分类 落差/m 直线距离/km 轴线距离/km 地形坡度/度 纵比降/*1 000 弯曲度 摆动幅度/km 摆动频率/每10 km 上段 800 26.0 38.7 2~4 31 1.5 1.7 2.0 下段 800 35.3 44.5 0.5~2 23 1.3 3.6 1.0 -
[1] 张文彪,段太忠,刘彦锋,等. 深水浊积水道构型要素特征及三维分布模拟[J]. 石油与天然气地质,2018,39(4):801-810. Zhang Wenbiao,Duan Taizhong,Liu Yanfeng,et al. Characteristics and 3D distribution simulation of architecture elements in deep-water turbidity channels[J]. Oil & Gas Geology,2018,39(4): 801-810. [2] 袁圣强,曹锋,吴时国,等. 南海北部陆坡深水曲流水道的识别及成因[J]. 沉积学报,2010,28(1):68-75. Yuan Shengqiang,Cao Feng,Wu Shiguo,et al. Architecture and origin of deepwater sinuous channel on the slope of northern South China Sea[J]. Acta Sedimentologica Sinica,2010,28(1): 68-75. [3] 乔博,张昌民,李少华,等. 珠江口盆地白云凹陷深水水道内部结构样式[J]. 海洋地质与第四纪地质,2015,35(1):91-98. Qiao Bo,Zhang Changmin,Li Shaohua,et al. The internal architecture of deepwater channels in Baiyun Sag,Pearl River Mouth Basin[J]. Marine Geology & Quaternary Geology,2015,35(1): 91-98. [4] 孙立春,汪洪强,何娟,等. 尼日利亚海上区块近海底深水水道体系地震响应特征与沉积模式[J]. 沉积学报,2014,32(6):1140-1152. Sun Lichun,Wang Hongqiang,He Juan,et al. Seismic characteristics and depositional model of near-seabed submarine leveed-channel complexes in Nigeria offshore block,West Africa[J]. Acta Sedimentologica Sinica,2014,32(6): 1140-1152. [5] 张昌民,张尚锋,李少华,等. 中国河流沉积学研究20年[J]. 沉积学报,2004,22(2):183-192. Zhang Changmin,Zhang Shangfeng,Li Shaohua,et al. Advances in Chinese fluvial sedimentology from 1983 to 2003[J]. Acta Sedimentologica Sinica,2004,22(2): 183-192. [6] 马本俊,吴时国,米立军,等. 三维地震解释技术在南海北部陆缘深水水道体系中的应用[J]. 海洋地质与第四纪地质,2016,36(4):163-171. Ma Benjun,Wu Shiguo,Mi Lijun,et al. Application of 3D seismic interpretation to the deepwater channel system on the northern continental margin of South China Sea[J]. Marine Geology & Quaternary Geology,2016,36(4): 163-171. [7] 冯志强. 泰国湾第四纪层序建造与河流演化特征[J]. 大庆石油学院学报,2001,25(3):14-19. Feng Zhiqiang. Characteristics of the Quaternary sequence construction and river evolution in the gulf of Thailand[J]. Journal of Daqing Petroleum Institute,2001,25(3): 14-19. [8] 王妍心,蒲仁海. 西非纳米贝盆地构造—沉积演化与油气勘探潜力[J]. 海洋地质前沿,2021,37(2):62-69. Wang Yanxin,Pu Renhai. Tectono-sedimentary evolution and petroleum potential of Namibe Basin at the passive continental margin of West Africa[J]. Marine Geology Frontiers,2021,37(2): 62-69. [9] Picot M,Droz L,Marsset T,et al. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan)[J]. Marine and Petroleum Geology,2016,72: 423-446. [10] 渠庚,郑承太,赵占超,等. 弯曲河道成因及演化机制研究进展[J]. 水利水电快报,2020,41(2):9-16. Qu Geng,Zheng Chengtai,Zhao Zhanchao,et al. Research progress on genesis and evolution mechanism of curved channel[J]. Express Water Resources & Hydropower Information,2020,41(2): 9-16. [11] 刘新颖,于水,胡孝林,等. 深水水道坡度与曲率的定量关系及控制作用:以西非Rio Muni盆地为例[J]. 吉林大学学报(地球科学版),2012,42(增刊1):127-134. Liu Xinying,Yu Shui,Hu Xiaolin,et al. Quantitative relation between the gradient and sinuosity of deepwater channel and its control: A case study in the Rio Muni Basin,West Africa[J]. Journal of Jilin University (Earth Science Edition),2012,42(Suppl.1): 127-134. [12] 赵晓明,葛家旺,谭程鹏,等. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望[J]. 中国海上油气,2019,31(5):76-87. Zhao Xiaoming,Ge Jiawang,Tan Chengpeng,et al. Research status and prospect of deep sea channel reservoir architecture and its response mechanism to synsedimentary structure[J]. China Offshore Oil and Gas,2019,31(5): 76-87. [13] 李磊,邵子玮,都鹏燕,等. 穆尼盆地第四纪深水弯曲水道:沉积构型、成因及沉积过程[J]. 现代地质,2012,26(2):349-354. Li Lei,Shao Ziwei,Du Pengyan,et al. Quaternary sinuous submarine channel in Muni Basin: Architecture,genesis and process[J]. Geoscience,2012,26(2): 349-354. [14] 宫越,冯志强,邬长武,等. 西非北部塞内加尔盆地白垩系陆源碎屑沉积体系及其控制因素[J]. 石油与天然气地质,2020,41(6):1244-1256. Gong Yue,Feng Zhiqiang,Wu Changwu,et al. Sedimentary system of the Cretaceous terrigenous clastics and its controlling factors in Senegal Basin,northern West Africa[J]. Oil & Gas Geology,2020,41(6): 1244-1256. [15] 刘楠,田劲,马康. 深水迁移水道沉积特征及形成机制[J]. 四川地质学报,2017,37(4):548-551. Liu Nan,Tian Jin,Ma Kang,et al. Sedimentary characteristics and formation mechanism of deep water migration channel[J]. Acta Geologica Sichuan,2017,37(4): 548-551. [16] Anka Z,Séranne M,Lopez M,et al. The long-term evolution of the Congo deep-sea fan: A basin-wide view of the interaction between a giant submarine fan and a mature passive margin (ZaiAngo project)[J]. Tectonophysics,2009,470(1/2): 42-56. [17] 龚承林,齐昆,徐杰,等. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制[J]. 沉积学报,2021,39(1):231-252. Gong Chenglin,Qi Kun,Xu Jie,et al. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes[J]. Acta Sedimentologica Sinica,2021,39(1): 231-252.