-
根据研究区内植被样方调查结果,统计主要科属植被盖度情况发现:乔木为主要在个别样点出现的云杉属和梭梭属;灌木主要为绵刺属和沙棘属;草本植物最多,主要为藜科、蓼科、禾本科(Gramineae)、豆科、莎草科(Cyperaceae)和芦苇属(Phragmits)。222个表土样品共鉴定出花粉种属30个,均为西北沙漠毗邻区现生植被种类。其中,乔木主要为松属和云杉属;灌木主要为麻黄属(Ephedra)和白刺属;草本主要为蒿属、藜科、禾本科和菊科(Compositae)。依据表土孢粉特征和植被调查,将西北沙漠毗邻区划分为荒漠带(三个亚带)、灌丛带、草甸带、高山草甸带和林草过渡带5个带,鉴定的主要孢粉科属与调查的主要植被种类基本对应。
荒漠带1(A1):共30个样品,分布在腾格里沙漠和巴丹吉林沙漠北缘及西北缘(图1,2,3),该带植被盖度32.5%,主要生长灌木和草本植物。植被组成为柽柳属(7.0%,中位数下同)(Tamarix)—绵刺属(5.5%)—白刺属(4.6%)—禾本科(2.5%)—蒺藜科(2.0%)(Zygophyllaceae),与之对应的孢粉组合蒿属(30.5%,中位数下同)—藜科(21.5%)—白刺属(11.4%)—松属(7.5%)—麻黄属(2.7%)—菊科(1.2%)—禾本科(1.0%)。柽柳属、绵刺属和蒺藜科的花粉几乎未统计到。另外,花粉组合中发现的松属、落叶栎属、莎草科和香蒲属等花粉,并未发现相应科属植物生长。
荒漠带2(A2):共30个样品,取自巴丹吉林沙漠西缘以及马鬃山戈壁北缘(1,2,3)。该带植被盖度为17%,植被生长较差主要为耐旱的灌木和草本。主要植被组成是柽柳属(4.5%)—蒺藜科(4.2%)—麻黄属(2.5%)—藜科(2.1%),对应的花粉组合为白刺属(20.9%)—松属(19.0%)—蒿属(9.2%)—藜科(6.5%)。该区域植被盖度低、种类少,花粉组合中松属和云杉属在植被调查时并未发现,白刺属以及蒿属等植被盖度均低于1%。柽柳属和蒺藜科花粉含量较低,枸杞属(Lycium)和驼绒藜属的花粉并未发现。
荒漠带3(A3):共108个样品,取自南湖戈壁、库木塔格沙漠周围以及河西走廊(图1,2,3)。该带植被盖度为40%,草本植物占比较高。植被组成为藜科(8.9%)—禾本科(7.4%)—柽柳属(6.6%)—豆科(4.1%)(Leguminosae)—麻黄属(3.1%)。与之对应的花粉组合是藜科(28.0%)—松属(6.8)—云杉属(6.8)—蒿属(6.5%)—菊科(3.4%)—麻黄属(1.7%)。植被调查中未发现松属、云杉属、香蒲属(Typha)和白花丹科(Plumbaginaceae)等生长;样方中出现的豆科花粉含量极低,驼绒藜属等则未发现。
灌丛带(B):共12个样点,主要取自南湖戈壁北缘天山余脉海拔较高处(图1,2,3)。该带植被盖度为60%,以草本为主,但灌丛植被盖度相比其他植被带最高。植被组成为禾本科(13.0%)—豆科(9.2%)—蒿属(9.1%)—藜科(6.6%)—柽柳属(4.3%)—麻黄属(3.0%)—驼绒藜属(1.8%),对应的花粉组合为藜科(25.8%)—云杉属(23.4%)—蒿属(6.4%)—松属(3.5%)—菊科(1.5%)。花粉中占相当比例的云杉和松属在植被调查中并未发现属外来花粉,调查中禾本科、豆科以及灌木花粉含量极少。
草甸带(C):共10个样点,主要天山余脉以及祁连山的阴坡处(图1,2,3)。该带植被盖度为61.5%。植被组成为禾本科(19.1%)—蒿属(10.1%)—藜科(7.2%)—芦苇属(5%)—柽柳属(4.0%)—蒺藜科(2.5%)—豆科(2.5%),对应的花粉组合为藜科(21.4%)—蒿属(18.9%)—云杉属(10.8%)—菊科(6.3%)—松属(5.9%)—禾本科(5.0%)。花粉组合中云杉属、松属以及莎草科等在植被调查中是未发现的科属。芦苇属在植被调查中有一定的盖度但未发现相应的花粉。
高山草甸带(D):共17个样点,主要分布在祁连山、阿尔金山以及天山余脉的高海拔处(1,2,3)。该带植被盖度为50%。植被组成为禾本科(14.7%)—莎草科(9.8%)—蔷薇科(8.2%)(Rosaceae)—藜科(6.1%)—石竹科(5.7%)(Caryophyllaceae)—菊科(2.1%),对应的花粉组合为莎草科(8.4%)—菊科(6.7%)—云杉属(5.9%)—松属(3.4%)—禾本科(3.1%)。花粉组合中的云杉属和松属在植被调查中依旧没有发现相应的植被。植被调查中占相当比例的蔷薇科、藜科等花粉含量较低。
林草过渡带(E):共15个样点,主要分布在贺兰山西侧、六盘山以西的黄土高原以及额济纳旗附近(图1,2,3)。该带植被盖度为75%。植被组成为云杉属(30%)—菊科(12%)—蔷薇科(9.0%)—禾本科(6%)—蒿属(5.2%),对应的花粉组合为云杉属(39.6%)—蒿属(12.1%)—松属(7.8%)—藜科(7.18%)—菊科(4.5%)。花粉组合中的松属、白刺属以及香蒲属等在植被调查中并未发现,调查中出现的蔷薇属、玄参科(Scrophulariaceae)和唇形科(Labiatae)等的花粉含量极低。
-
指示种分析显示10个花粉科属对植被类型的指示能力达到极显著水平(p<0.01),两个科属的指示能力达到显著水平(p<0.05)(表1)。沙棘属、蒿属以及鹅耳枥属是荒漠带1的良好指示种。白刺属、麻黄属和桦属是荒漠带2的良好指示种。相比之下,荒漠带3的指示种只有藜科,而且指示性较弱。莎草科以及石竹科是高山草甸带的良好指示种,尤其是莎草科指示值为0.67,为所有科属里最高。落叶栎属和云杉属是林草过渡带的潜在指示种。
表 1 不同植被类型指示种
科属 植被类型 指示值 P值 频率值 沙棘属 荒漠1 0.38 0.001 69 蒿属 荒漠1 0.29 0.002 217 鹅耳枥属 荒漠1 0.26 0.006 33 白刺属 荒漠2 0.46 0.001 167 麻黄属 荒漠2 0.41 0.003 181 桦属 荒漠2 0.32 0.001 63 藜科 荒漠3 0.24 0.015 219 旋花科 灌丛 0.20 0.040 51 莎草科 高山草甸 0.67 0.001 99 石竹科 高山草甸 0.53 0.001 68 落叶栎属 林草过渡 0.39 0.009 79 云杉属 林草过渡 0.33 0.004 212 -
主要花粉代表性用R值描述(表2)。云杉属花粉只有在林草过渡带样点的R值为0.74,属低代表性,其余样点植被调查均未发现云杉林。麻黄在除林草过渡带样点外均有植被分布且花粉有较低的代表性,在荒漠带2样点中R值为0.38,相比各带代表性较高。白刺植被只在3个荒漠带样点中分布,且荒漠带1和荒漠带2相比荒漠带3白刺花粉的代表性较好。藜科和蒿属为典型的干旱区植被,在所有样点均有分布,藜科花粉在灌丛和荒漠3中具有超代表性,其余植被带代表性较低,蒿属花粉在荒漠1和灌丛带具有超代表性,草甸带中代表性较好,其余植被带中代表性较低。禾本科植物和菊科在所有植被带样点中均有分布,且花粉代表性均较低。旋花科(Convolvulaceae)植物在荒漠1、荒漠3和灌丛带样点中出现,花粉代表性均较低,但与其余两个植被带样点相比,旋花科代表性较好。莎草科在荒漠3、灌丛、高山草甸以及林草过渡带等植被带样点出现,石竹科在荒漠3、灌丛以及高山草甸等植被带样点出现,二者花粉代表性均较低,但均在高山草甸带样点中代表性较好。
表 2 主要表土花粉R值
植被带 云杉属 沙棘属 麻黄属 白刺属 藜科 蒿属 禾本科 旋花科 菊科 莎草科 荒漠1 — — 0.07 0.57 0.95 2.39 0.06 0.01 0.05 — 荒漠2 — — 0.38 0.50 0.34 0.35 0.15 — 0.01 — 荒漠3 — — 0.26 0.01 1.27 0.43 0.25 0.03 0.16 0.02 灌丛 — — 0.06 — 2.01 3.26 0.08 0.10 0.09 0.08 草甸 — — 0.31 — 0.74 1.07 0.27 — 0.37 — 高山草甸 — — 0.02 — 0.20 0.10 0.41 — 0.56 0.26 林草过渡带 0.75 0.00 — — 0.09 0.23 0.22 — 0.14 0.02 注: —为无植被数据。 -
PCA结果显示(图4)30个花粉种属数据集的方差总变量(Total Variation)为2 981,其中轴1解释33%,轴2解释20%,两轴共解释53%。轴1与麻黄属,沙棘属和白刺属等喜干植物呈负相关,与莎草科、石竹科等喜湿植物呈现较强的正相关,因此轴1可能主要反映研究区水文因素的变化。轴2正向花粉科属数量明显大于负向,灌丛植被如麻黄,沙棘;草本植物如禾本科和胡颓子属(Elaeagnus)等喜暖植物均分布在轴2正向,而喜冷植物云杉属主要分布在轴2负向。因此,轴2可能主要反映温度的变化。
图4显示所有荒漠样点多且呈散乱分布,没有明确的指示意义,因此,将3个荒漠带的样点做PCA分析(图5)。结果显示,轴1解释18%,轴2解释12%。轴1可将荒漠带3与荒漠带1、荒漠带2区分开,轴2可大致将荒漠带1和荒漠带2区分开。并且,从图中可以看出,白刺属、沙棘属和落叶栎属等喜暖的科属分布于轴1正向,而喜冷的云杉属在轴1负向;莎草科,胡颓子属以及石竹科等喜湿植被分布于轴2正向,轴2负向主要分布藜科、蒿属等荒漠典型植被。因此,轴1可能反映温度的差异,轴2可能反映水文因素的影响。
计算的所有气候变量的VIF除Pann外均大于10(表3),根据反向选择逐步删除大于10的变量,直至所有VIF均低于10。但反向选择变量不仅取决于VIF的大小,还取决于变量的自身性质,如Tann指代年平均温度但忽略年内温度变化,删除Tann后所有VIF均小于5。这表明Pann、TJan和TJuly共线性极低,可以进行下一步的讨论。同时,可以看出Pann具有最高的λ1/λ2和较大的向量长度(表3、图6),表明Pann是表土花粉关系最密切的气候变量,而TJan和TJuly的λ1/λ2分别为0.41和0.92,这些气候变量不是影响表土花粉组合的决定性因素。
表 3 气候变量的选择结果
气候变量 VIF VIF(除Tann) λ1/λ2 Pann 2.04 1.91 1.32 Tann 206.06 — — TJan 25.97 2.62 0.41 TJuly 114.29 4.01 0.92 图 6 花粉类型和样点与气候的CCA结果图
Figure 6. CCA results of pollen taxa and sampling sites with climate variables
对30种现代花粉种属和3个气候变量的CCA排序显示(图6、表4),相关排列检验具有统计学意义(P=0.002),前两个CCA轴的特征值分别是0.26和0.10,且同一轴上的物种环境相关度较高(分别为0.73和0.55),表明30种花粉类型的分布和3种气候变量有着较强的相关性。Pann与轴1正相关,而TJan和TJuly则与轴2呈现正相关。因此,CCA轴1正向代表更加湿冷的环境,而负向代表更加干热的环境。与之对应的是,荒漠样品主要分布在轴1负向和轴2的正向,而草甸,高山草甸以及林草过渡带主要分布在轴1正向。
表 4 花粉类群和气候的CCA结果
轴1 轴2 轴3 轴4 排列测试结果 P 特征值 0.26 0.10 0.10 0.01 物种数据方差(累积) 6.94 9.72 12.34 12.8 物种—环境相关度 0.73 0.55 0.53 0.31 物种—环境关系(累积) 54.21 75.94 96.39 100 所有特征值 0.002 -
选择Pann、TJan和TJuly为气候预测参数,比较预测模型的性能和预测能力。为消除部分离群值对模型性能的影响,采取把残差值大于环境梯度20%的样本过滤来优化预测模型。3个气候参数的预测模型性能均得到提高,从WA-PLS和MAT模型留一法(LOO)交叉验证结果(表5)可以看出,WA-PLS对3个气候参数的重建效果优于MAT。
表 5 WA⁃PLS和MAT的预测性能比较
模型 Pann/mm TJuly/℃ TJan/℃ RMSEP R2 Max.bias RMSEP R2 Max.bias RMSEP R2 Max.bias WA-PLS 41.06 0.73 123.14 2.16 0.91 3.75 0.84 0.95 2.52 MAT 42.88 0.64 163.10 1.84 0.85 2.84 0.91 0.89 2.34 为了更直观地表示模型的预测性能,绘制气候参数的模型预测值—实际观测值散点图和残差值—实际观测值散点图(图7)。图7分别为两种模型优化后的模拟结果,可以看出,两个模型优化后预测值—实际观测值图中样点更集中于1∶1线附近,残差值相对更小,更集中于0轴上下。
Relationship Between Topsoil Pollen, Vegetation, and Climate in Desert Adjacent Areas of Northwest China: Implications of palaeoclimate and palaeocological reconstruction
-
摘要: 为探讨中国西北沙漠毗邻区现代花粉、植被和气候之间的定性和定量关系,利用222个表土花粉样品、植被样方调查以及气象数据,进行指示种分析、花粉代表性分析、排序分析以及古气候定量重建尝试。结果表明,沙漠毗邻区的表土花粉可分为荒漠带(三个亚带)、灌丛带、草甸带、高山草甸带和林草过渡带5个带;各植被带中主要科属花粉的代表性均较低,且同种花粉不同区域代表性有较大差异;荒漠带2和灌丛带的花粉组合与植被调查一致性较差,其余植被带的花粉组合和植被调查结果均有较好的一致性;指示种分析以及排序分析表明除草甸带和高山草甸带样点区分度较差外,其余植被带样点之间均有较好的区分;年平均降水量、7月平均温度和1月平均温度是研究区3个重要的气候变量,其中年平均降水量是气候重建最理想的因素;利用加权偏最小二乘法(WA-PLS)和现代类比法(MAT)建立花粉—气候校准集,留一法交叉验证结果显示,WA-PLS预测性能优于MAT。Abstract: To explore the qualitative and quantitative relationship among modern pollen, vegetation, and climate in the adjacent desert of northwest China, 222 topsoil pollen samples, vegetation sample survey results, and meteorological data were used to perform indicator species, pollen representative, and sequence analyses and paleoclimate quantitative reconstruction. The results show that the topsoil pollen in the adjacent desert area can be divided into three desert subzones, as well as shrub, meadow, alpine meadow, and forest-grass transition zones. The representativeness of pollen from major families and genera in each vegetation zone is low, and that of the same species differs significantly in different regions. The pollen assemblage of desert zone 2 and the shrub zone is not consistent with the vegetation investigation. The pollen assemblage and vegetation survey results of other vegetation belts are in good agreement. Indicator species and sequencing analyses show that except for the poor differentiation of the meadow and alpine meadow zones, there is a good distinction among the different zones, and the three important climate variables in the study area are annual mean precipitation (Pann), July mean temperature (TJuly), and January mean temperature (TJan), among which Pann is the most ideal factor for climate reconstruction. The pollen-climate calibration set is established by using the weighted partial least square (WA-PLS) and modern analogy (MAT) methods. The cross-validation results show that the prediction performance of WA-PLS is better than that of MAT.
-
表 1 不同植被类型指示种
科属 植被类型 指示值 P值 频率值 沙棘属 荒漠1 0.38 0.001 69 蒿属 荒漠1 0.29 0.002 217 鹅耳枥属 荒漠1 0.26 0.006 33 白刺属 荒漠2 0.46 0.001 167 麻黄属 荒漠2 0.41 0.003 181 桦属 荒漠2 0.32 0.001 63 藜科 荒漠3 0.24 0.015 219 旋花科 灌丛 0.20 0.040 51 莎草科 高山草甸 0.67 0.001 99 石竹科 高山草甸 0.53 0.001 68 落叶栎属 林草过渡 0.39 0.009 79 云杉属 林草过渡 0.33 0.004 212 表 2 主要表土花粉R值
植被带 云杉属 沙棘属 麻黄属 白刺属 藜科 蒿属 禾本科 旋花科 菊科 莎草科 荒漠1 — — 0.07 0.57 0.95 2.39 0.06 0.01 0.05 — 荒漠2 — — 0.38 0.50 0.34 0.35 0.15 — 0.01 — 荒漠3 — — 0.26 0.01 1.27 0.43 0.25 0.03 0.16 0.02 灌丛 — — 0.06 — 2.01 3.26 0.08 0.10 0.09 0.08 草甸 — — 0.31 — 0.74 1.07 0.27 — 0.37 — 高山草甸 — — 0.02 — 0.20 0.10 0.41 — 0.56 0.26 林草过渡带 0.75 0.00 — — 0.09 0.23 0.22 — 0.14 0.02 注: —为无植被数据。表 3 气候变量的选择结果
气候变量 VIF VIF(除Tann) λ1/λ2 Pann 2.04 1.91 1.32 Tann 206.06 — — TJan 25.97 2.62 0.41 TJuly 114.29 4.01 0.92 表 4 花粉类群和气候的CCA结果
轴1 轴2 轴3 轴4 排列测试结果 P 特征值 0.26 0.10 0.10 0.01 物种数据方差(累积) 6.94 9.72 12.34 12.8 物种—环境相关度 0.73 0.55 0.53 0.31 物种—环境关系(累积) 54.21 75.94 96.39 100 所有特征值 0.002 表 5 WA⁃PLS和MAT的预测性能比较
模型 Pann/mm TJuly/℃ TJan/℃ RMSEP R2 Max.bias RMSEP R2 Max.bias RMSEP R2 Max.bias WA-PLS 41.06 0.73 123.14 2.16 0.91 3.75 0.84 0.95 2.52 MAT 42.88 0.64 163.10 1.84 0.85 2.84 0.91 0.89 2.34 -
[1] Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3/4): 351-364. [2] Chen F H, Jia J, Chen J H, et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the Late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146. [3] 余莺潇,王乃昂,隆浩,等. 巴丹吉林沙漠东南缘砂楔年代及其环境意义[J]. 科学通报,2017,62(30):3461-3469. Yu Yingxiao, Wang Naiang, Long Hao, et al. The age of sand wedges and its environmental significance at the southeast edge of Badain Jaran Desert[J]. Chinese Science Bulletin, 2017, 62(30): 3461-3469. [4] 伏梦璇,于世永,吴金甲,等. 巴丹吉林沙漠南缘高台盐湖记录的中晚全新世气候变化[J]. 海洋地质与第四纪地质,2020,40(4):192-203. Fu Mengxuan, Yu Shiyong, Wu Jinjia, et al. Mid-to-Late Holocene climate changes on the southern margin of the Badain Jaran Desert: Evidence from the Gaotai Lake sediments[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 192-203. [5] 鞠远江,刘耕年. 孢粉记录揭示的4 000 a BP来乌鲁木齐河源区气候环境变化[J]. 冰川冻土,2004,26(2):166-170. Ju Yuanjiang, Liu Gengnian. Climate and environment changes inferred from pollen records since 4 000 a BP in the headwaters of the Ürümqi River, Tianshan[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 166-170. [6] 陈发虎,吴薇,朱艳,等. 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报,2004,49(1):1-9. Chen Fahu, Wu Wei, Zhu Yan, et al. Lake records of drought events in the Alxa Plateau during the Middle Holocene [J]. Chinese Science Bulletin, 2004, 49(1): 1-9. [7] Liu L N, Wang W, Chen D X, et al. Soil-surface pollen assemblages and quantitative relationships with vegetation and climate from the Inner Mongolian Plateau and adjacent mountain areas of northern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 543: 109600. [8] Chen F H, Chen X M, Chen J H, et al. Holocene vegetation history, precipitation changes and Indian summer monsoon evolution documented from sediments of Xingyun Lake, south-west China[J]. Journal of Quaternary Science, 2014, 29(7): 661-674. [9] Lu K Q, Qin F, Li Y, et al. A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109762. [10] Huang X Z, Chen C Z, Jia W N, et al. Vegetation and climate history reconstructed from an alpine lake in central Tienshan Mountains since 8.5 ka BP[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 432: 36-48. [11] Xu Q H, Zhang S R, Gaillard M J, et al. Studies of modern pollen assemblages for pollen dispersal- deposition- preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: A review based on case studies in China[J]. Quaternary Science Reviews, 2016, 149: 151-166. [12] An C B, Feng Z D, Barton L. Dry or humid? Mid-Holocene humidity changes in arid and semi-arid China[J]. Quaternary Science Reviews, 2006, 25(3/4): 351-361. [13] 段凤莲,王多民. 贺兰山地区近5年气候变化特征分析[J]. 现代农业,2019(5):100-102. Duan Fenglian, Wang Duomin. Characteristics of climate change in Helan Mountain area in recent 5 years [J]. Modern Agriculture, 2019(5): 100-102. [14] 苏俊礼. 巴丹吉林沙漠和腾格里沙漠降水特征研究[D]. 兰州:兰州大学,2016. Su Junli. A study of precipitation characteristics in the Badain Juran Desert and Tengger Desert[D]. Lanzhou: Lanzhou University, 2016. [15] 康延臻,陈世红,张莹,等. 2008—2013年库姆塔格沙漠及阿尔金山降水特征[J]. 中国沙漠,2015,35(1):203-210. Kang Yanzhen, Chen Shihong, Zhang Ying, et al. Precipition during 2008-2013 in the Kumtagh Desert and Altun Mountains[J]. Journal of Desert Research, 2015, 35(1): 203-210. [16] 宁凯. 巴丹吉林沙漠湖泊沉积孢粉和正构烷烃记录的全新世环境变化[D]. 兰州:兰州大学,2018. Ning Kai. Holocene environmental evolution implied by pollen and n-alkanes in Groundwater Recharge Lakes, Badain Jaran Desert, northwestern China[D]. Lanzhou: Lanzhou University, 2018. [17] 尹林克. 中国温带荒漠区的植物多样性及其易地保护[J]. 生物多样性,1997,5(1):40-48. Yin Linke. Diversity and ex-situ conservation of plants in the desert region of temperate zone in China[J]. Chinese Biodiversity, 1997, 5(1): 40-48. [18] 张玉. 巴丹吉林沙漠南北边缘植被群落特征与土壤理化性质研究[D]. 西安:陕西师范大学,2014. Zhang Yu. Characteristics of vegetation community and soil physicochemical properties in the north and south margin of Badain Jaran Desert [D]. Xi'an: Shaanxi Normal University, 2014. [19] 马全林,张德奎,袁宏波,等. 乌兰布和沙漠植被数量分类及环境解释[J]. 干旱区资源与环境,2019,33(9):160-167. Ma Quanlin, Zhang Dekui, Yuan Hongbo, et al. Numerical classification and environmental interpretation of desert vegetation in the Ulan Buh Desert[J]. Journal of Arid Land Resources and Environment, 2019, 33(9): 160-167. [20] 张明理. 中国西北干旱区和中亚植物区系地理研究[J]. 生物多样性,2017,25(2):147-155. Zhang Mingli. A review on the floristic phytogeography in arid northwestern China and Central Asia[J]. Biodiversity Science, 2017, 25(2): 147-155. [21] 侯学煜. 1:1000000中国植被图集[M]. 北京:科学出版社,2001:1-260. Hou Xueyu. 1:1000000 Vegetation atlas of China[M]. Beijing: Science Press, 2001: 1-260. [22] 王伏雄,钱南芬,张玉龙,等. 中国植物花粉形态[M]. 2版. 北京:科学出版社,1995:1-276. Wang Fuxiong, Qian Nanfen, Zhang Yulong, et al. Pollen flora of China[M]. 2nd ed. Beijing: Science Press, 1995: 1-276. [23] Zhao H, Huang W, Xie T T, et al. Optimization and evaluation of a monthly air temperature and precipitation gridded dataset with a 0.025° spatial resolution in China during 1951-2011[J]. Theoretical and Applied Climatology, 2019, 138(1/2): 491-507. [24] Dufrêne M, Legendre P. Species assemblages and indicator species: The need for a flexible asymmetrical approach[J]. Ecological Monographs, 1997, 67(3): 345-366. [25] Roberts D W. Labdsv: Ordination and multivariate analysis for ecology[EB/OL]. http://cran.r-project.org/package=labdsv, 2019-08-04. [26] 李宜垠,张新时,周广胜,等. 中国北方几种常见表土花粉类型与植被的数量关系[J]. 科学通报,2000,45(7):761-765. Li Yiyin, Zhang Xinshi, Zhou Guangsheng, et al. Quantitative relationships between several common surface pollen types and vegetation in northern China [J]. Chinese Science Bulletin, 2000, 45(7): 761-765. [27] Oksanen J, Blanchet F G, Friendly M, et al. Vegan community ecology package version 2.5-7 November 2020 [EB/OL]. https://cran.r-project.org/package=vegan, 2020-11-28. [28] Hill M O, Gauch H G, Jr. Detrended correspondence analysis: An improved ordination technique[J]. Vegetatio, 1980, 42(1/2/3): 47-58. [29] ter Braak C J F, Šmilauer P. Canoco reference manual and user’s guide: Software for ordination, version 5.0[M]. Ithaca: Microcomputer Power, 2012: 1-30. [30] Cao X Y, Herzschuh U, Telford R J, et al. A modern pollen-climate dataset from China and Mongolia: Assessing its potential for climate reconstruction[J]. Review of Palaeobotany and Palynology, 2014, 211: 87-96. [31] Herzschuh U, Birks H J B, Mischke S, et al. A modern pollen-climate calibration set based on lake sediments from the Tibetan Plateau and its application to a Late Quaternary pollen record from the Qilian Mountains[J]. Journal of Biogeography, 2010, 37(4): 752-766. [32] Overpeck J T, Webb III T, Prentice I C. Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs[J]. Quaternary Research, 1985, 23(1): 87-108. [33] Juggins S. Rioja: Analysis of quaternary science data[EB/OL]. https://cran.r-project.org/package=rioja, 2020-10-28. [34] Markel E R, Booth R K, Qin Y M. Testate amoebae and δ13C of Sphagnum as surface-moisture proxies in Alaskan peatlands[J]. The Holocene, 2010, 20(3): 463-475. [35] Charman D J, Blundell A, Alm J. A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands[J]. Journal of Quaternary Science, 2007, 22(3): 209-221. [36] 姚付龙,马春梅,朱诚,等. 中国西天山北坡表土花粉与区域植被关系[J]. 古生物学报,2021,60(3):471-482. Yao Fulong, Ma Chunmei, Zhu Cheng, et al. Relationship between surface pollen and vegetation on the northern slope of west Tianshan Mountains, China[J]. Acta Palaeontologica Sinica, 2021, 60(3): 471-482. [37] 杨庆华,杨振京,张芸,等. 新疆夏尔希里自然保护区表土孢粉与植被的关系[J]. 干旱区地理,2019,42(5):986-997. Yang Qinghua, Yang Zhenjing, Zhang Yun, et al. Relationship between surface sporepollen and modern vegetation in Xarxili Nature Reserve of Xinjiang[J]. Arid Land Geography, 2019, 42(5): 986-997. [38] 李月丛,许清海,阳小兰,等. 中国草原区主要群落类型花粉组合特征[J]. 生态学报,2005,25(3):555-564. Li Yuecong, Xu Qinghai, Yang Xiaolan, et al. Pollen assemblages of major steppe communities in China[J]. Acta Ecologica Sinica, 2005, 25(3): 555-564. [39] 郎青,姚付龙,杨海军. 新疆中天山山间盆地表土花粉谱特征[J]. 生态学杂志,2020,39(8):2518-2527. Lang Qing, Yao Fulong, Yang Haijun. Surface pollen spectrum in intermountain basin of Middle Tianshan, Xinjiang, China[J]. Chinese Journal of Ecology, 2020, 39(8): 2518-2527. [40] 路晶芳,张克信,宋博文,等. 柴达木盆地大红沟地区始新世—上新世孢粉记录及气候变化[J]. 现代地质,2020,34(4):732-744. Lu Jingfang, Zhang Kexin, Song Bowen, et al. Paleogene-Neogene pollen and climate change in Dahonggou region of Qaidam Basin[J]. Geoscience, 2020, 34(4): 732-744. [41] 罗传秀,潘安定,郑卓. 西北干旱地区表土孢粉与植被关系研究进展[J]. 干旱区研究,2006,23(2):314-319. Luo Chuanxiu, Pan Anding, Zheng Zhuo. Progresses about the studies on the relationship between topsoil spore-pollen and vegetation in arid areas of Northwest China[J]. Arid Zone Research, 2006, 23(2): 314-319. [42] 朱艳,陈发虎,刘虎俊,等. 石羊河流域空气传播孢粉的初步研究[J]. 兰州大学学报(自然科学版),2003,39(2):100-105. Zhu Yan, Chen Fahu, Liu Hujun, et al. Preliminary studies on the air-borne pollen in the Shiyang River drainage, arid China[J]. Journal of Lanzhou University (Natural Sciences), 2003, 39(2): 100-105. [43] 朱艳,程波,陈发虎,等. 石羊河流域现代孢粉传播研究[J]. 科学通报,2004,49(1):15-21. Zhu Yan, Cheng Bo, Chen Fahu, et al. Study on modern pollen dispersal in the Shiyang River Basin [J]. Chinese Science Bulletin, 2004, 49(1): 15-21. [44] 关文彬. 中国东北地区白桦林植被生态学的研究:桦属植物与中国白桦林的地理分布[J]. 北京林业大学学报,1998,20(4):104-109. Guan Wenbin. Vegetation ecology on communities dominated by Betula platyphylla in northeast of China: Distribution of communities dominated by Betula platyphylla [J]. Journal of Beijing Forestry University, 1998, 20(4): 104-109. [45] 郑敬刚,董东平,赵登海,等. 贺兰山西坡植被群落特征及其与环境因子的关系[J]. 生态学报,2008,28(9):4559-4567. Zheng Jinggang, Dong Dongping, Zhao Denghai, et al. Relationship between vegetation community characteristics and its environmental factors in the west slope of Helan Mountain[J]. Acta Ecologica Sinica, 2008, 28(9): 4559-4567. [46] Guo C, Ma Y Z, Li D D, et al. Modern pollen and its relationship with vegetation and climate in the Mu Us Desert and surrounding area, northern China: Implications of palaeoclimatic and palaeocological reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 547: 109699. [47] Luo C X, Zheng Z, Tarasov P, et al. A potential of pollen-based climate reconstruction using a modern pollen-climate dataset from arid northern and western China[J]. Review of Palaeobotany and Palynology, 2010, 160(3/4): 111-125. [48] Li Y C, Xu Q H, Liu J S, et al. A transfer-function model developed from an extensive surface-pollen data set in northern China and its potential for palaeoclimate reconstructions[J]. The Holocene, 2007, 17(7): 897-905. [49] Xu Q H, Li Y C, Bunting M J, et al. The effects of training set selection on the relationship between pollen assemblages and climate parameters: Implications for reconstructing past climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289(1/2/3/4): 123-133. [50] ter Braak C J F, van Dame H. Inferring pH from diatoms: A comparison of old and new calibration methods[J]. Hydrobiologia, 1989, 178(3): 209-223. [51] Telford R J, Birks H J B. The secret assumption of transfer functions: Problems with spatial autocorrelation in evaluating model performance[J]. Quaternary Science Reviews, 2005, 24(20/21): 2173-2179.