Multi-proxy Analysis from Stalagmite of Climate Change During the Ice Age Termination III
-
摘要: 对生长于倒数第三次冰消期(简称“倒三冰消期”)的石笋进行多指标分析,有利于全面认识该时期气候的变化特征和成因机制。通过对湖北永兴洞石笋(编号:YXB)的同位素测试、石笋纹层生长直径和岩性特征分析,重建了倒三冰消期亚洲季风气候变化序列。结果表明:纹层生长直径与δ18O具有基本一致的变化特征,主要表现在δ18O负偏时,纹层生长直径变短,δ18O正偏时,纹层生长直径变长。特别是纹层生长直径变化与石笋δ18O一致,也记录了在倒三冰消期中存在一个明显的弱季风事件(亦称“类YD事件”)。石笋岩性特征对该事件也有明显的响应,表现为在该时段石笋主要发育白色不透光纹层,明显不同于其他时段发育的烟灰色透光纹层,表明纹层生长直径和岩性这类代表洞穴岩溶系统的信号也响应于δ18O指示的气候变化。石笋δ13C在整体上与δ18O变化类似,但对类YD事件响应不明显,说明在亚洲季风区,δ13C代表的局域环境响应于冰消过程,但对冰期向间冰期转换大背景下的季风减弱事件响应不敏感。功率谱分析发现,上述指标存在522 a、223~261 a、130~145 a、73~82 a、64 a、30 a等周期信号,这些次一级的气候变率可能是太阳活动与海气耦合的结果。Abstract: Multi-proxy Analysis from a stalagmite that grew during Ice Age Termination III (referred to as T III) is conducted to comprehensively understand the climate change characteristics and monsoon mechanisms during this period. Based on isotopes, stalagmite laminae growth diameter, and lithologic characteristic analysis of the stalagmite (No: YXB) from Yongxing Cave, Hubei province, the Asian monsoon climate change sequence during the T III was reconstructed. The lamina growth diameter is related to δ18O and has the same variation characteristics, i.e., when stalagmites δ18O is negative, the laminae growth diameter decreases, and when δ18O is positive, the laminae growth diameter increases. When the change of laminae growth diameter is same as stalagmite δ18O, there is an obvious weak monsoon event (known as “YD-like event”) during T III. The lithologic characteristics of stalagmites also have an obvious response to this event. In this period, stalagmites develop white opaque lamina, which is obviously different from the gray transparent lamina developed in other periods. This shows that the karst system signals, such as laminae growth diameter and lithology, also respond to δ18O indications of climate change. Stalagmite δ13C is same as δ18O, but the response to YD-like events is not obvious. It shows that in the Asian monsoon region, the vegetation represented by δ13C responds to the deglaciation process, but is not sensitive to the weakening response of monsoon during the transition from glacial period to interglacial period. Using power spectrum analysis of the above indices, periodic components, such as 522 a, 223⁃261 a, 130⁃145 a, 73⁃82 a, 64 a, and 30 a, are obtained, which may be the result of the coupling of solar activity and ocean-atmosphere interaction.
-
图 4 末次冰消期与倒三冰消期比对图
(a)石笋ZLP2 δ18O[26](紫线);(b)石笋YXB δ18O(蓝线);(c)65° N夏季太阳辐射(红线)[27];(d)石笋YXB纹层生长直径(绿线);(e)Vostok冰芯中CO2含量记录[1];(f)石笋YXB碳同位素(橘线)
Figure 4. Comparison of T I and T III
(a) δ18O (purple curve) of stalagmite (ZLP2)[26]; (b) δ18O (blue curve) of stalagmite (YXB); (c) summer insolation at 65°N (red curve)[27]; (d) laminae growth diameter (green curve) of stalagmite (YXB); (e) CO2 of Vostok ice core (black curve)[1]; (f) δ13C (orange curve) of stalagmite (YXB)
-
[1] Parrenin F, Rémy F, Ritz C, et al. New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D20): D20102. [2] Beck J W, Zhou W J, Li C, et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391): 877-881. [3] Miller K G, Browning J V, Schmelz W J, et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records[J]. Science Advances, 2020, 6(20): eaaz1346. [4] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640-646. [5] 陈仕涛,汪永进,孔兴功,等. 倒数第三次冰消期亚洲季风气候可能的类Younger Dryas事件[J]. 中国科学(D辑):地球科学,2006,36(5):445-452. Chen Shitao, Wang Yongjin, Kong Xinggong, et al. A possible Younger Dryas-type event during Asian monsoonal termination 3[J]. Science China (Seri. D): Earth Sciences, 2006, 36(5): 445-452. [6] Raza W, Ahmad S M, Sarma D S, et al. A 2500 years deglacial record of paleo-vegetation over a cave of southern India as inferred from carbon isotopes of stalagmite[J]. Journal of Earth System Science, 2021, 130(2): 113. [7] Zhang H W, Cai Y J, Tan L C, et al. Large variations of δ 13C values in stalagmites from southeastern China during historical times: Implications for anthropogenic deforestation[J]. Boreas, 2015, 44(3): 511-525. [8] Zhang H W, Cheng H, Sinha A, et al. Collapse of the Liangzhu and other Neolithic cultures in the Lower Yangtze region in response to climate change[J]. Science Advances, 2021, 7(48): eabi9275. [9] 黄俊华,胡超涌,周群峰,等. 长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究[J]. 沉积学报,2002,20(3):442-446. Huang Junhua, Hu Chaoyong, Zhou Qunfeng, et al. Study on high-resolution carbon, oxygen isotope and trace element records and paleoclimate from Heshang Cave, the middle reach of the Yangtse River[J]. Acta Sedimentologica Sinica, 2002, 20(3): 442-446. [10] 张美良,林玉石,覃嘉铭,等. 黔南七星洞石笋古气候变化记录及末次间冰期终止点的确定[J]. 沉积学报,2003,21(3):473-481. Zhang Meiliang, Lin Yushi, Qin Jiaming, et al. The record of paleoclimatic change and the termination of the last interglacial period from a stalagmite of Qingxin Cave in south Guizhou[J]. Acta Sedimentologica Sinica, 2003, 21(3): 473-481. [11] 王权,刘殿兵,汪永进,等. 湖北神农架年纹层石笋记录的YD与8.2 ka事件转型模式研究[J]. 沉积学报,2015,33(6):1140-1148. Wang Quan, Liu Dianbing, Wang Yongjin, et al. Transitional patterns of YD and 8.2 ka event recorded by annually-laminated stalagmites from Qingtian Cave, Mt. Shennongjia[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1140-1148. [12] 张银环,杨琰,杨勋林,等. 早全新世季风演化的高分辨率石笋δ 18O记录研究:以河南老母洞石笋为例[J]. 沉积学报,2015,33(1):134-141. Zhang Yinhuan, Yang Yan, Yang Xunlin, et al. Early Holocene monsoon evolution of high-resolution stalagmite δ 18O records: In Henan Laomu Cave[J]. Acta Sedimentologica Sinica, 2015, 33(1): 134-141. [13] 吴尧,李廷勇,陈朝军,等. 中国石笋微层在古气候重建中的应用研究[J]. 第四纪研究,2020,40(4):1008-1024. Wu Yao, Li Tingyong, Chen Chaojun, et al. Application of stalagmite laminae in paleoclimate reconstructions of China[J]. Quaternary Sciences, 2020, 40(4): 1008-1024. [14] 张伟宏,廖泽波,陈仕涛,等. 湖北高分辨率石笋记录的DO18事件特征[J]. 沉积学报,2018,36(4):674-683. Zhang Weihong, Liao Zebo, Chen Shitao, et al. DO18 event depicted by a high-resolution stalagmite record from Yongxing Cave, Hubei province[J]. Acta Sedimentologica Sinica, 2018, 36(4): 674-683. [15] 张美良,林玉石,覃嘉铭. 洞穴石笋纹(壳)层层组类型研究[J]. 沉积学报,2002,20(3):435-441. Zhang Meiliang, Lin Yushi, Qin Jiaming. Study on laminae or lamella groups and types of stalagmite in caves[J]. Acta Sedimentologica Sinica, 2002, 20(3): 435-441. [16] 张振球,刘殿兵,汪永进,等. 中全新世东亚季风年至10年际气候变率:湖北青天洞5.56~4.84ka B. P. 石笋年层厚度与地球化学证据[J]. 第四纪研究,2014,34(6):1246-1255. Zhang Zhenqiu, Liu Dianbing, Wang Yongjin, et al. Annual-to decadal-scale variability of Asian monsoon climates during mid-Holocene: Evidence from proxies of annual bands and geochemical behaviors of a speleothem from 5.56 ka B. P. to 4.84 ka B. P. in Qingtian Cave, central China[J]. Quaternary Sciences, 2014, 34(6): 1246-1255. [17] 王萌,陈仕涛,黄琬淳,等. 石笋灰度和同位素对末次冰期气候事件的响应[J]. 自然资源学报,2020,35(12):3064-3075. Wang Meng, Chen Shitao, Huang Wanchun, et al. The response of stalagmite gray-level and isotopes to the climatic events during the last glacial Period[J]. Journal of Natural Resources, 2020, 35(12): 3064-3075. [18] 张美良,林玉石,覃嘉铭. 桂林水南洞石笋的沉积学特征[J]. 沉积学报,1999,17(2):233-239. Zhang Meiliang, Lin Yushi, Qin Jiaming. Sedimentological characteristics of a stalagmite from Shuinan Cave, Guilin[J]. Acta Sedimentologica Sinica, 1999, 17(2): 233-239. [19] Franke H W. The theory behind stalagmite shapes[Z]. 1965. [20] Kaufmann G, Dreybrodt W. Stalagmite growth and palaeo-climate: An inverse approach[J]. Earth and Planetary Science Letters, 2004, 224(3/4): 529-545. [21] 高滨升,胡超涌. 石笋生长直径的测定及其在古气候重建中的应用[J]. 中国岩溶,2019,38(3):353-360. Gao Binsheng, Hu Chaoyong. Measurement of a stalagmite diameter and its application for paleoclimate[J]. Carsologica Sinica, 2019, 38(3): 353-360. [22] Liang Y J, Chen S T, Zhang Z Q, et al. Abrupt monsoonal shifts over the precessional cycles documented in Yongxing Cave in China during the antepenultimate glacial period[J]. Environmental Earth Sciences, 2018, 77(6): 228. [23] Wang Q, Wang Y J, Zhao K, et al. The transfer of oxygen isotopic signals from precipitation to drip water and modern calcite on the seasonal time scale in Yongxing Cave, central China[J]. Environmental Earth Sciences, 2018, 77(12): 474. [24] 姜修洋,汪永进,孔兴功,等. 末次间冰期东亚季风气候不稳定的神农架洞穴石笋记录[J]. 沉积学报,2008,26(1):139-143. Jiang Xiuyang, Wang Yongjin, Kong Xinggong, et al. Climate variability in Shennongjia during the last interglacial inferred from a high-resolution stalagmite record[J]. Acta Sedimentologica Sinica, 2008, 26(1): 139-143. [25] Muñoz-García M B, Cruz J, Martín-Chivelet J, et al. Comparison of speleothem fabrics and microstratigraphic stacking patterns in calcite stalagmites as indicators of paleoenvironmental change[J]. Quaternary International, 2016, 407: 74-85. [26] Huang W, Wang Y J, Cheng H, et al. Multi-scale Holocene Asian monsoon variability deduced from a twin-stalagmite record in southwestern China[J]. Quaternary Research, 2016, 86(1): 34-44. [27] Berger A L. Long-term variations of caloric insolation resulting from the earth’s orbital elements[J]. Quaternary Research, 1978, 9(2): 139-167. [28] 黄伟,刘殿兵,王璐瑶,等. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展,2016,31(9):968-983. Huang Wei, Liu Dianbing, Wang Luyao, et al. Research status and advance in carbon isotope (δ 13C) variation from stalagmite[J]. Advances in Earth Science, 2016, 31(9): 968-983. [29] 陈剑舜,张伟宏,陈仕涛,等. 小冰期气候的湖北石笋碳同位素记录[J]. 沉积学报,2020,38(3):497-504. Chen Jianshun, Zhang Weihong, Chen Shitao, et al. Carbon isotope record in stalagmites from Hubei during the little ice age[J]. Acta Sedimentologica Sinica, 2020, 38(3): 497-504. [30] Dorale J A, González L A, Reagan M K, et al. A high-resolution record of Holocene climate change in speleothem calcite from cold water cave, northeast Iowa[J]. Science, 1992, 258(5088): 1626-1630. [31] Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3443-3457. [32] 覃嘉铭,林玉石,张美良,等. 桂林全新世石笋高分辨率δ 13C记录及其古生态意义[J]. 第四纪研究,2000,20(4):351-358. Qin Jiaming, Lin Yushi, Zhang Meiliang, et al. High resolution records of δ 13C and their paleoecological significance from stalagmites formed in Holocene Epoch in Guilin[J]. Quaternary Sciences, 2000, 20(4): 351-358. [33] 李红春,顾德隆, Stott L D,等. 北京石花洞石笋500年来的δ 13C记录与古气候变化及大气CO2浓度变化的关系[J]. 中国岩溶,1997,16(4):285-295. Li Hongchun, Gu Delong, Stott L D, et al. Interannual-resolution δ 13C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in Shihua Cave, Beijing[J]. Carsologica Sinica, 1997, 16(4): 285-295. [34] Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1/2/3/4): 105-153. [35] Li T Y, Shen C C, Li H C, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4140-4156. [36] Lea D W, Pak D K, Spero H J. Climate impact of Late Quaternary equatorial pacific sea surface temperature variations[J]. Science, 2000, 289(5485): 1719-1724. [37] Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from crevice cave, Missouri, USA[J]. Science, 1998, 282(5395): 1871-1874. [38] Saraswat R, Lea D W, Nigam R, et al. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections[J]. Earth and Planetary Science Letters, 2013, 375: 166-175. [39] Fraser N, Kuhnt W, Holbourn A, et al. Precipitation variability within the West Pacific Warm Pool over the past 120ka: Evidence from the Davao Gulf, southern Philippines[J]. Paleoceanography, 2014, 29(11): 1094-1110. [40] Dreybrodt W. Processes in karst systems: Physics, chemistry, and geology[M]. Berlin, Heidelberg: Springer, 1988: 287. [41] Duan W H, Cai B G, Tan M, et al. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave, SW China revealed by cave monitoring[J]. Boreas, 2012, 41(1): 113-123. [42] 潘根兴,曹建华. 表层带岩溶作用:以土壤为媒介的地球表层生态系统过程:以桂林峰丛洼地岩溶系统为例[J]. 中国岩溶,1999,18(4):287-296. Pan Genxing, Cao Jianhua. Karstification in epikarst zone: The earth surface ecosystem processes taking soil as a medium: Case of the Yaji Karst Experiment Site, Guilin[J]. Carsologica Sinica, 1999, 18(4): 287-296. [43] 唐灿,周平根. 北京典型溶洞区土壤中的CO2及其对岩溶作用的驱动[J]. 中国岩溶,1999,18(3):213-217. Tang Can, Zhou Pinggen. The soil CO2 and its driving action on karstification in typical karst area in Beijing[J]. Carsologica Sinica, 1999, 18(3): 213-217. [44] Shang J Y, Flury M, Chen G, et al. Impact of flow rate, water content, and capillary forces on in situ colloid mobilization during infiltration in unsaturated sediments[J]. Water Resources Research, 2008, 44(6): W06411. [45] Ayalon A, Bar-Matthews M, Kaufman A. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel[J]. The Holocene, 1999, 9(6): 715-722. [46] 汪永进,孔兴功,邵晓华,等. 末次盛冰期百年尺度气候变化的南京石笋记录[J]. 第四纪研究,2002,22(3):243-251. Wang Yongjin, Kong Xinggong, Shao Xiaohua, et al. Century-scale climatic oscillations during the last glacial maximum recorded in a stalagmite from Nanjing[J]. Quaternary Sciences, 2002, 22(3): 243-251. [47] 殷自强,刘冬雁,庞重光,等. 全新世气候变化与太阳活动百千年尺度周期分析[J]. 中国海洋大学学报,2017,47(7):112-120. Yin Ziqiang, Liu Dongyan, Pang Chongguang, et al. The centennial to millennial-scale cycles analysis of Holocene climatic variability and solar activity[J]. Periodical of Ocean University of China, 2017, 47(7): 112-120. [48] Hodge E J, Richards D A, Smart P L, et al. Effective precipitation in southern Spain (~ 266 to 46 ka) based on a speleothem stable carbon isotope record[J]. Quaternary Research, 2008, 69(3): 447-457. [49] 曾雅兰,陈仕涛,杨少华,等. 过去640ka亚洲季风变化的多尺度分析[J]. 中国科学(D辑):地球科学,2019,49(5):864-874. Zeng Yalan, Chen Shitao, Yang Shaohua, et al. Multiscale analysis of Asian monsoon over the past 640 ka[J]. Science China (Seri. D): Earth Sciences, 2019, 49(5): 864-874. [50] Chapman M R, Shackleton N J. Evidence of 550-year and 1000-year cyclicities in North Atlantic circulation patterns during the Holocene[J]. The Holocene, 2000, 10(3): 287-291. [51] Wagner G, Beer J, Masarik J, et al. Presence of the solar de Vries cycle (~205 years) during the last Ice Age[J]. Geophysical Research Letters, 2001, 28(2): 303-306. [52] Ogurtsov M G, Nagovitsyn Y A, Kocharov G E, et al. Long-period cycles of the sun's activity recorded in direct solar data and proxies[J]. Solar Physics, 2002, 211(1/2): 371-394. [53] Stuiver M, Grootes P M, Braziunas T F. The GISP2 δ 18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes[J]. Quaternary Research, 1995, 44(3): 341-354. [54] 杨少华,陈仕涛,汪永进,等. 基于EEMD方法的全新世亚洲季风石笋氧碳同位素对比研究[J]. 地理研究,2017,36(8):1455-1466. Yang Shaohua, Chen Shitao, Wang Yongjin, et al. Comparison of oxygen-carbon isotopes from a Holocene stalagmite by EEMD method[J]. Geographical Research, 2017, 36(8): 1455-1466. [55] Huggett R J. Climate, earth processes, and earth history[M]. New York: Springer-Verlag, 1991. [56] Wang Z J, Chen S T, Wang Y J, et al. Sixty-year quasi-period of the Asian monsoon around the Last Interglacial derived from an annually resolved stalagmite δ 18O record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 541: 109545. [57] Nagovitsyn Y A. A nonlinear mathematical model for the solar cyclicity and prospects for reconstructing the solar activity in the past[J]. Astronomy Letters, 1997, 23(6): 742-748. [58] Liu H Y, Lin Z S, Qi X Z, et al. Possible link between Holocene East Asian monsoon and solar activity obtained from the EMD method[J]. Nonlinear Processes in Geophysics, 2012, 19(4): 421-430.