-
现场分样及室内测试数据结果均显示,本柱自底层至表层沉积物类型发生了根本性转变。依据现场分样记录(表1),0~322 cm为硅质软泥,322~342 cm为含黏土和硅质的钙质软泥,342 cm至底部为黏土。
表 1 现场分样描述
深度/cm 沉积物类型 描述 0~322 硅质软泥 0~35 cm 呈褐色至黑色,质软、富含水,无黏性,10~35 cm间见数条褐色条带,分别位于18 cm、20~22 cm,29~30 cm,31~35 cm,近平行分布,35~83 cm颜色较一致,灰黄色、富含水、无黏性,83~104 cm也是呈灰黄色,与下段界限明显,其中83~91 cm含水高于下部相邻层位,略微呈现条带状,91~104 cm含水比较均一,颜色略有加深,104~198 cm段内以灰色为主,可见较多层理,其中106~108 cm,139~141 cm、152~154 cm、188~192 cm为深灰色,126~128 cm、150~152 cm、192~197 cm为灰白色,在121 cm、164 cm处呈褐色,198~228 cm段呈深灰色,也可见明显明暗不一的层状变化,228~233 cm段颜色又变为灰黄色,233~250 cm颜色呈深灰、富含水、无黏性,见少量深色条带。250~322 cm间软泥整体呈灰绿色,混有少量青色斑块,含水一般,基本无黏性,由上而下颜色略有变浅,见部分细条带,近平行分布 322~342 含黏土和硅质的 钙质软泥 主要为黄色钙质砂(有孔虫碎屑),并混有部分深褐色黏土,本段与上下层位界限明显,含水较少,颗粒感突出,黏土质团块分布在322~324 cm及327~332 cm间,团块非平行分布,331~339 cm内黏土成分增加,颜色略浅,含水一般 342~533 黏土 342~383 cm为深褐色黏土,在部分深度混有少量土黄色条带,分布不规则。本段黏土质软,强黏性,383~430 cm段相比下部含水略高,也是深褐色黏土,较为均一,430~476 cm含水一般,致密,强黏性,与底部有明显界限,颜色变化较大,见少量不规则斑团及土黄色细条带,476~484 cm,土黄色,颗粒很细,基本为黏土成分,与下部界线显著,484~533 cm为深褐色黏土,含水较少,强黏性,分布均一 涂片粒度鉴定结果显示,本柱在190 cm以上为硅质软泥,硅质占比达到90%以上;400 cm以下沉积物类型为黏土,无钙质及硅质组分;200~390 cm之间沉积物类型多样化,远洋沉积物中常见的硅质、钙质及黏土组分在各层位大都存在,沉积物类型主要为含黏土的硅质软泥、黏土硅质钙质软泥、硅质软泥、硅质钙质软泥、含黏土和硅质的钙质软泥等,其中硅质主要为成席硅藻Ethmodiscus rex,平均含量达95.8%。
选取XRF扫描结果中沉积物常见的7种元素Si、Ca、Al、Ti、Fe、Mn、Ba进行分析。可以看出,这7种元素强度计数(cnts)的变化存在两个明显的规律性(图2),一是以322~342 cm为界,各元素均出现较大变动,尤其以代表陆源的Al、Ti、Fe、Mn这4种元素变化最为明显,下部均明显高于上部;二是各元素含量与Ca元素含量均成反比的关系,根据分样描述及涂片鉴定,该柱样中Ca元素含量高的层位主要为有孔虫壳体。
结合涂片粒度分析、XRF扫描分析及分样描述,可将本柱样沉积物类型主要划分为3类,底部至340 cm以远洋黏土为主,320 cm至表层以硅质软泥为主,钙质有孔虫主要以层状分布在320~340 cm及470 cm处。
-
本柱样古地磁退磁结果显示,随着交变磁场强度的增大所有样品剩余磁化强度均逐渐降低,90%以上样品在100 mT时,剩磁已降为初始值的10%以下(图3a),表明退磁效果好,获取的特征剩磁参数可靠。
图 3 典型样品古地磁退磁过程(a)及相对偏角、磁倾角、MAD分布图(b)
Figure 3. (a) Vector demagnetization diagrams for typical samples; and (b) (top) maximum angular deviation (MAD); (middle) inclination; (bottom) relative declination
由于样品采集时未能确定采样方位角,因此磁偏角数据为相对偏角。对该柱古地磁相对偏角、倾角及最大角度偏差(MAD)作图(图3b),可以看出,该柱91%以上样品MAD值在5°以下,个别样品大于10°,表明整柱古地磁记录信息较为稳定,MAD相对较高值主要位于柱样上部及底部个别层位。根据国际地磁参考场(IGRF)计算结果,现今(1900年)研究区域地磁场倾角约为6°,偏角为3°,由于重力柱获取的样品表层一般会被扰动,因此,该柱表层部分古地磁样品存在一定失真的情况,12~505 cm,统计倾角平均值为10.5°,略大于现今倾角值,在大多数层位,本柱倾角和相对偏角值变化均较为稳定。在底部507 cm磁倾角发生了持续且稳定的倒转,同时偏角也发生了约180°的转变,转变层位MAD值也出现了升高的现象,因此可以确定,该层位发生了古地磁倒转事件,即为布容—松山(B/M)界限,年代为距今约78万年。
-
磁化率各向异性分析结果显示,本柱磁化率所表征的磁小体短轴(K3)倾角平均值为79.1°,且87%以上样品大于70°,磁小体以“平躺”状分布为主(图4a),说明本柱样磁性颗粒沉积时为正常分异状态,所获得的古地磁数据及磁化率各向异性数据可靠。
对获取的磁化率各向异性参数体积磁化率K、磁线理度L、磁面理度F、磁化率各向异性度P、基质颗粒度q及扁率E进行作图分析(图4b),可以看出,自底部到顶部沉积动力作用过程大致可以分为4个阶段:阶段Ⅰ为底部至380 cm处,磁化率值经历了由高值降低后又升高的趋势,但该阶段磁化率值远高于其他层位,L、F、P三值在本阶段均为低值且几乎无波动,E值也均在1左右,q值在较大范围内波动,说明该阶段磁小体线理、面理特征不发育,水动力极弱,几乎为静水状态沉积。阶段Ⅱ为380~270 cm,该阶段磁化率值逐步降低,线理度L出现了几次小的波动,整体变化不大,F、P值出现了较大波动,均为快速升高后逐步降低,q值表现为快速降低后逐渐升高,E值以大于1即压扁状为主,该阶段主要特征为,面理度F开始发育,P值也开始升高,但线理度L并不高,表明水动力变化已开始影响该区域,但仍然较弱,还不足以促使线理度发育。阶段Ⅲ为270~220 cm,该阶段磁化率值继续降低,L、F、P出现了较一致的大幅升高,q值也出现了一定的升高,E值也由大于1向小于1转变,表明该阶段水动力进一步增强,并出现了较为持续稳定的水流。阶段Ⅳ为220 cm至表层,该阶段,磁化率值始终处于较低的范围,L、F、P、q、E值均在一定范围内波动,表明该区域沉积环境在后期未发生大的变化,水动力始终处于一定范围的波动。
A Study of the Sediment Record for Antarctic Bottom Water in the Southern Mariana Trench During the Mid-Brunhes Event (MBE)
-
摘要: 对马里亚纳海沟南部的柱状样品进行了涂片粒度、岩心扫描(XRF)、古地磁及磁化率各向异性分析。古地磁分析结果表明,该柱底部507 cm处发生了倒转事件(B/M界限),表明该柱至少记录了78万年以来的沉积环境演变,通过对古地磁相对强度及倾角长期变化分析建立了该柱布容时期以来年代框架。涂片粒度分析及XRF扫描结果均显示,该柱样沉积物类型自底部到顶部发生了根本性转变,底部以代表陆源输入的远洋黏土为主,上部以代表生源作用的硅质软泥为主,分析认为造成这种变化的主要原因在于中布容事件(MBE)时南极底层水(AABW)对该区域的影响。结合沉积物类型、磁化率各向异性及古地磁年代学分析,认为中布容事件对该柱样所在区域的影响始于约553 ka,南极底层流开始影响该区域,沉积物类型由陆源向生源转变;到约417 ka时,沉积物类型主要成分已完成由陆源向生源转变,之后,南极底层流进一步增强;到约336 ka时,沉积物类型几乎全由硅质软泥主导,且之后不再发生较大变化,表明MBE对该区域影响的结束。Abstract: A gravity core sample with 533 cm long obtained in the southern Marina Trench was analyzed by grain-size smear tests, XRF scanning, paleomagnetism and magnetic anisotropy. The paleomagnetic analysis revealed the Brunhes-Matuyama reversal event (B-M boundary) at 507 cm, near the bottom of the core, indicating that the sample contains the record of at least 0.78 million years of the depositional environment. The chronological framework was established by analyzing the relative paleomagnetic intensity (RPI) and long-term variation in paleomagnetic inclination. The grain-size analysis and XRF scans indicate that the sediment type in the core underwent a fundamental change from bottom to top: at the bottom it is dominated by pelagic clay with evidence of terrigenous input; at the top it is dominated by siliceous ooze consisting mainly of diatoms. Analysis indicated that this change was mainly because of the appearance of the Antarctic Bottom Water (AABW) during the Mid-Brunhes Event (MBE). The paleomagnetism establishes the age model, and the magnetic anisotropy and sediment composition indicate that the MBE began to influence this area with the appearance of the AABW around 553 ka. The sediment type began to change from terrigenous input to biogenesis, at about 417 ka, by which time the main composition of the sediment was already biogenetic. The AABW enhanced the change until the sediment was almost completely composed of pure siliceous ooze from 336 ka until the present day, indicating the termination of the MBE in this area.
-
Key words:
- Mid-Brunhes Event /
- Antarctic bottom water /
- southern Mariana Trench /
- pelagic sediment
-
图 1 采样位置示意图
图中CJ10⁃18为采样点,WCB来源于文献[10],JL7KGC⁃01A来源于文献[11],右下图中灰色箭头为现代南极底层流流经区域(修改自文献[9]),地形数据来自于www.gebco.net
Figure 1. Sampling location map
CJ10⁃18 is the sample location, WCB from reference [10], JL7KGC⁃01A from reference [11], gray arrows show area affected by modern Antarctic bottom current (modified from reference [9]), bathymetric data from <www.gebco.net>
图 5 古地磁年代框架
(a)古地磁相对强度与SINT⁃800[14]曲线对比结果;(b)古地磁磁倾角与卡罗琳海区WCB磁倾角[10,18]对比结果;(c)古地磁相对强度(RPI)与磁倾角(declination)各自建立的年代框架曲线对比;(d)利用古地磁倾角数据获取的本柱各阶段沉积速率
Figure 5. Paleomagnetic chronological framework
(a) paleomagnetic relative intensity vs. SINT⁃800[14]; (b) declination compared with the West Caroline Basin (WCB) in the Caroline Sea area[10⁃18]; (c) comparison of time⁃frames for relative paleomagnetic intensity (RPI) and declination; (d) deposition rates at each stage inferred from paleomagnetic declination data
表 1 现场分样描述
深度/cm 沉积物类型 描述 0~322 硅质软泥 0~35 cm 呈褐色至黑色,质软、富含水,无黏性,10~35 cm间见数条褐色条带,分别位于18 cm、20~22 cm,29~30 cm,31~35 cm,近平行分布,35~83 cm颜色较一致,灰黄色、富含水、无黏性,83~104 cm也是呈灰黄色,与下段界限明显,其中83~91 cm含水高于下部相邻层位,略微呈现条带状,91~104 cm含水比较均一,颜色略有加深,104~198 cm段内以灰色为主,可见较多层理,其中106~108 cm,139~141 cm、152~154 cm、188~192 cm为深灰色,126~128 cm、150~152 cm、192~197 cm为灰白色,在121 cm、164 cm处呈褐色,198~228 cm段呈深灰色,也可见明显明暗不一的层状变化,228~233 cm段颜色又变为灰黄色,233~250 cm颜色呈深灰、富含水、无黏性,见少量深色条带。250~322 cm间软泥整体呈灰绿色,混有少量青色斑块,含水一般,基本无黏性,由上而下颜色略有变浅,见部分细条带,近平行分布 322~342 含黏土和硅质的 钙质软泥 主要为黄色钙质砂(有孔虫碎屑),并混有部分深褐色黏土,本段与上下层位界限明显,含水较少,颗粒感突出,黏土质团块分布在322~324 cm及327~332 cm间,团块非平行分布,331~339 cm内黏土成分增加,颜色略浅,含水一般 342~533 黏土 342~383 cm为深褐色黏土,在部分深度混有少量土黄色条带,分布不规则。本段黏土质软,强黏性,383~430 cm段相比下部含水略高,也是深褐色黏土,较为均一,430~476 cm含水一般,致密,强黏性,与底部有明显界限,颜色变化较大,见少量不规则斑团及土黄色细条带,476~484 cm,土黄色,颗粒很细,基本为黏土成分,与下部界线显著,484~533 cm为深褐色黏土,含水较少,强黏性,分布均一 -
[1] Jansen J H F, Kuijpers A, Troelstra S R. A Mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation[J]. Science, 1986, 232(4750): 619-622. [2] Crowley T J. Late Quaternary carbonate changes in the North Atlantic and Atlantic/Pacific comparisons[C]// Sundquist E T, Broecker W S. The carbon cycle and atmospheric CO2: Natural variations Archean to present. Geophysical Monograph Series, Washington: AGU, 1985,32:271-284. [3] Wang P X, Li Q Y, Tian J, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea[J]. National Science Review, 2014, 1(1): 119-143. [4] Barth A M, Clark P U, Bill N S, et al. Climate evolution across the Mid-Brunhes Transition[J]. Climate of the Past, 2018, 14(12): 2071-2087. [5] Cronin T M, Dwyer G S, Caverly E K, et al. Enhanced arctic amplification began at the Mid-Brunhes event ~400, 000 years ago[J]. Scientific Reports, 2017, 7(1): 14475. [6] Yin Q Z. Insolation-induced Mid-Brunhes transition in southern ocean ventilation and deep-ocean temperature[J]. Nature, 2013, 494(7436): 222-225. [7] Rice A R, Weihaupt J G, Van d H F. Multiple meteoroid impacts in Antarctica at 481,000ky: a possible cause for the Mid-Brunhes Event/MIS 11 Stage via the disruption of the West Antarctic Ice Sheet?[C]// Agu Fall Meeting. AGU Fall Meeting Abstracts, 2010, NH51C-1249. [8] Johnson G C, Toole J M. Flow of deep and bottom waters in the Pacific at 10°N[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(2): 371-394. [9] Tian J W, Qu T D. Advances in research on the deep South China Sea circulation[J]. Chinese Science Bulletin, 2012, 57(24): 3115-3120. [10] Yamazaki T, Oda H. Orbital influence on Earth's magnetic field: 100, 000-year periodicity in inclination[J]. Science, 2002, 295(5564): 2435-2438. [11] Deng X G, Yi L, Paterson G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the Middle Pleistocene: Potential constraints for Antarctic bottom water circulation[J]. International Geology Review, 2016, 58(1): 49-57. [12] Sagnotti L. Demagnetization Analysis in Excel (DAIE). An open source workbook in Excel for viewing and analyzing demagnetization data from paleomagnetic discrete samples and u-channels[J]. Annals of Geophysics, 2013, 56(1): D0114. [13] Stoner J S, St-Onge G. Chapter three magnetic stratigraphy in paleoceanography: Reversals, excursions, paleointensity, and secular variation[J]. Developments in Marine Geology, 2007, 1: 99-138. [14] Guyodo Y, Valet J P. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr[J]. Nature, 1999, 399(6733): 249-252. [15] Valet J P, Meynadier L, Guyodo Y. Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005, 435(7043): 802-805. [16] Yamazaki T, Ioka N. Long-term secular variation of the geomagnetic field during the last 200 kyr recorded in sediment cores from the western equatorial Pacific[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 527-544. [17] Yamazaki T, Oda H. Intensity-inclination correlation for long-term secular variation of the geomagnetic field and its relevance to persistent non-dipole components[M]//Channell J E T, Kent D V, Lowrie W, et al. Timescales of the paleomagnetic field, Volume 145. Washington: Geophysical Monograph Series, 2004, 145. [18] Yamazaki T. Long-term secular variation in geomagnetic field inclination during Brunhes Chron recorded in sediment cores from Ontong-Java Plateau[J]. Physics of the Earth and Planetary Interiors, 2002, 133(1/2/3/4): 57-72. [19] Roberts A P, Tauxe L, Heslop D. Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: Successes and future challenges[J]. Quaternary Science Reviews, 2013, 61: 1-16. [20] 贾奇. 70万年来西太平洋暖池的热带过程及其对上层水体pH和pCO2的影响[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2018. Jia Qi. Tropical process in the western Pacific warm pool and its influence on pH and pCO2 variations in the upper water since 700 ka[D]. Qingdao: University of Chinese Academy of Sciences (The Institute of Oceanology, Chinese Academy of Sciences), 2018. [21] Nakai S, Halliday A N, Rea D K. Provenance of dust in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1993, 119(1/2): 143-157. [22] Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): PA1003. [23] Owens W B, Warren B A. Deep circulation in the northwest corner of the Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48(4): 959-993. [24] Taira K, Kitagawa S, Yamashiro T, et al. Deep and bottom currents in the challenger deep, mariana trench, measured with super-deep current meters[J]. Journal of Oceanography, 2004, 60(6): 919-926. [25] Pälike H, Lyle M W, Nishi H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7413): 609-614. [26] Barker S, Archer D, Booth L, et al. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11[J]. Quaternary Science Reviews, 2006, 25(23/24): 3278-3293. [27] Rea D K. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind[J]. Reviews of Geophysics, 1994, 32(2): 159-195. [28] Greaves M J, Elderfield H, Sholkovitz E R. Aeolian sources of rare earth elements to the western Pacific Ocean[J]. Marine Chemistry, 1999, 68(1/2): 31-38. [29] Sun Y B, An Z S. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D23): D23101. [30] Hillenbrand C D, Kuhn G, Frederichs T. Record of a mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: An indicator for ice-sheet collapse?[J]. Quaternary Science Reviews, 2009, 28(13/14): 1147-1159. [31] Romero O, Schmieder F. Occurrence of thick Ethmodiscus oozes associated with a terminal mid-Pleistocene Transition event in the oligotrophic subtropical South Atlantic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235(4): 321-329. [32] Gingele F X, Schmieder F. Anomalous South Atlantic lithologies confirm global scale of unusual mid-Pleistocene climate excursion[J]. Earth and Planetary Science Letters, 2001, 186(1): 93-101. [33] 翟滨,李铁刚. 末次冰期低纬度西太平洋硅藻席沉积与生态特征[J]. 海洋地质与第四纪地质,2009,29(4):65-70. Zhai Bin, Li Tiegang. Distribution and ecology of diatom mat deposits in the west low-latitude Pacific Ocean during the last glacial period[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 65-70. [34] 张金鹏,邓希光,朱本铎,等. 西太平洋挑战者深渊海底浅表层的硅藻软泥[J]. 微体古生物学报,2016,33(1):1-8. Zhang Jinpeng, Deng Xiguang, Zhu Benduo, et al. Diatom ooze from the surface sediments in the challenger deep of the western Pacific Ocean[J]. Acta Micropalaeontologica Sinica, 2016, 33(1): 1-8. [35] Villareal T A, Joseph L, Brzezinski M A, et al. Biological and chemical characteristics of the giant diatom Ethmodiscus (bacillariophyceae) in the central North Pacific gyre[J]. Journal of Phycology, 1999, 35(5): 896-902.