-
纵向上,滇东—黔西中二叠统白云岩主要分布在茅口组。在西山和双龙村剖面,栖霞组也发育一定量的白云岩(图5)。其中,茅口组白云化岩石占中二叠统白云化岩石比例的92.58%;栖霞组白云化岩石占中二叠统白云化岩石比例的7.42%。茅口组的白云化比例为54.14%;栖霞组的白云化比例为19.66%。非白云化地层主要为灰色、深灰色灰泥生屑石灰岩(图5)。
平面上,自峨眉地幔柱活动范围的内带区向外带区,滇东—黔西中二叠统白云化岩石的厚度逐渐减小。此外,滇东—黔西中二叠统地层的白云化不受断层的严格控制(图6)。
-
滇东—黔西中二叠统白云岩按单层的产出形态可以分为两类:块状白云岩(完全白云化,白云石含量介于90%~100%)和斑状白云岩(不完全白云化,白云石含量介于50%~90%)。
块状白云岩呈深灰色,白云化彻底,不含石灰岩残余,部分发育刀砍纹。垂向上,块状白云岩经常与石灰岩(以灰泥生屑石灰岩为主)互层(图5,7)。
斑状白云岩呈灰色或深灰色,白云化不彻底,由白云石斑块和石灰岩斑块(交代残余物)组成。其中,白云石斑块含量大于50%,石灰岩斑块主要为灰泥生屑石灰岩。当白云石斑块小于50%时,斑状白云岩将过渡为斑状石灰岩(图8)。
白云石斑块大小不一,从0.5 cm到超过1.5 m不等,形态多种多样(图8)。根据斑块的形态特征,斑状白云岩或斑状石灰岩可以分为4种类型:(1)白云石斑块与层面垂直的斑状白云岩或斑状石灰岩;(2)白云石斑块与层面平行的斑状白云岩或斑状石灰岩;(3)白云石斑块为网状的斑状白云岩或斑状石灰岩;(4)白云石斑块形态不规则的斑状白云岩或斑状石灰岩(图9)。
需要注意的是,块状白云岩和斑状白云岩具有相似的微观结构特征(如白云石晶体结晶大小的分布、晶体大小、晶体形态和阴极发光特征等)和地球化学特征,只是白云化程度不同而已(表1)。
表 1 块状白云岩和斑状白云岩的地球化学特征(平均值)对比
白云岩类型 有序度 均一化温度/℃ 盐度(wt.% NaCleqv.) δ13CPDB‰ δ18OPDB/‰ 87Sr/86Sr δ26/24Mg /‰ 块状白云岩 0.898 4 172.31 5.75 3.83 -9.77 0.707 967±0.000 018 -1.75±0.03 斑状白云岩 0.843 9 166.88 5.26 3.81 -9.00 0.707 654±0.000 017 -1.72±0.03 滇东—黔西中二叠统白云岩属于结晶白云岩。白云石晶体结晶大小的分布主要为单峰类型,晶体较污浊,以细晶(100~250 μm)、中晶(250~500 μm)和粗晶(500~1 000 μm)白云石为主。白云石晶体形态主要为平直晶面半自形晶和非平直晶面他形晶(图10a)。在少量样品中,可以观察到非平直晶面鞍形白云石胶结物(图10b)。
研究区铁白云石非常少见。对斑状白云岩和斑状石灰岩而言,白云石斑块和石灰岩斑块的接触面是突变的。此外,在白云石斑块内,白云石的晶体大小和形态特征没有明显的变化(图10c,d)。
需要注意的是,一些样品中的白云石主要集中在两个部位:(1)灰泥基质含量相对较低的区域(图10c~e);(2)粒间孔隙和粒内孔隙中(图10f~h)。在部分样品中,新月形方解石胶结物集中在颗粒接触处及附近,而其他方解石胶结物则分布在白云石和方解石颗粒之间(图10g,h)。
-
研究区不同样品中白云石的阴极发光特征总体一致,包括微弱的阴极发光强度和相对均匀的阴极发光颜色,只是具体的阴极发光颜色有细微的差别。例如,一些白云石具深红色阴极发光,而另一些白云石具深紫色阴极发光。此外,研究区的方解石不具阴极发光(图11)。
研究区的白云石晶体具有环带结构。其中,晶核主要为均匀的深红色(图11b,d,f,l)或深紫色(图11h,j)阴极发光,晶边(生长环带)则为颜色更亮、厚度更薄的阴极发光(图11b,d,f,h,j)。
-
研究区白云石晶体的有序度介于0.724 0~0.997 6,平均值为0.889 2。茅口组白云石晶体和栖霞组白云石晶体具有相似的有序度特征(表2)。
表 2 滇东—黔西中二叠统白云石晶体有序度值
组 采样剖面 样品数量 范围/值 平均值 茅口组 西山剖面 1 0.938 6 0.938 6 丰乐村剖面 15 0.770 7~0.978 1 0.884 5 小黄坡剖面 5 0.933 5~0.997 6 0.960 7 石林剖面 2 0.845 1~0.900 7 0.872 9 浑水塘剖面 1 0.965 7 0.965 7 师宗剖面 1 0.835 3 0.835 3 双龙村剖面 3 0.724 0~0.741 5 0.734 3 织金剖面 1 0.950 5 0.950 5 栖霞组 西山剖面 1 0.860 3 0.860 3 -
用于显微测温的原生流体包裹体(直径大于2 μm)分散在白云石晶体中,没有观察到拉长现象或定向性特征。这些包裹体为气液两相包裹体,无色透明,具有清晰的边界和规则的形状。包裹体的大小介于2.5~9 μm,平均值为4.7 μm(图12)。
白云岩流体包裹体的均一化温度介于101 ℃~192 ℃,平均值为169.52 ℃。均一化温度主要集中在164 ℃~185 ℃。白云岩流体包裹体的盐度为4.49~8.41 wt.%NaCleqv.,平均值为5.50 wt.%NaCleqv.。盐度主要集中于4.49~5.59 wt.%NaCleqv.(图12)。
需要注意的是,与斑状白云岩相比,块状白云岩具有更高的流体包裹体均一化温度和盐度(表1、图13)。此外,流体包裹体的均一化温度和盐度具有轻微的线性关系,随着温度的升高,盐度也同样增高(图13)。茅口组白云岩和栖霞组白云岩具有相似的流体包裹体特征(表3)。
表 3 滇东—黔西中二叠统白云岩流体包裹体均一化温度和盐度
组 采样剖面 包裹体数量 均一化温度/℃ 盐度/wt.% NaCleqv. 范围 平均值 范围 平均值 茅口组 西山剖面 6 168~186 172.67 4.65~5.41 5.03 丰乐村剖面 6 178~188 183.17 4.49~8.41 5.88 小黄坡剖面 1 134 134 4.8 4.8 石林剖面 4 168~182 175.25 5.11~7.31 5.74 师宗剖面 7 154~185 174.71 5.26~6.01 5.75 双龙村剖面 1 121 121 5.41 5.41 织金剖面 2 187~192 189.5 5.56~5.71 5.64 栖霞组 浑水塘剖面 5 156~164 160 4.65~7.02 5.18 双龙村剖面 1 101 101 5.33 5.33 -
研究区白云岩的δ13CPDB值介于2.247‰~5.27‰,平均值为3.82‰;δ18OPDB值介于-6.3‰~-13.75‰,平均值为-9.43‰(图14)。需要注意的是,与斑状白云岩相比,块状白云岩具有更低的δ18OPDB值(表1、图14)。茅口组白云岩和栖霞组白云岩具有相似的碳氧同位素特征(表4)。
表 4 滇东—黔西中二叠统白云岩碳氧同位素值
组 采样剖面 样品数量 δ13CPDB平均值/‰ δ18OPDB平均值/‰ 茅口组 西山剖面 1 4.345 -10.189 丰乐村剖面 5 3.218 -9.970 小黄坡剖面 4 3.955 -10.711 石林剖面 3 3.641 -7.374 浑水塘剖面 2 3.895 -11.236 师宗剖面 2 2.603 -12.140 双龙村剖面 3 5.025 -7.352 织金剖面 1 5.274 -7.719 栖霞组 西山剖面 2 4.005 -8.364 浑水塘剖面 2 3.514 -8.735 -
研究区白云岩的87Sr/86Sr值介于0.707 354~0.708 522,平均值为0.707 841。研究共收集了三组二叠纪海水的87Sr/86Sr值数据,用来和滇东—黔西中二叠统白云岩的87Sr/86Sr值进行对比[36⁃38](表5)。
表 5 中二叠统白云岩与二叠纪海水锶同位素值对比
采样剖面 87Sr/86Sr Stderr. 小黄坡剖面 0.708 522 0.000 016 丰乐村剖面 0.707 783 0.000 011 丰乐村剖面 0.707 473 0.000 020 丰乐村剖面 0.707 716 0.000 021 石林剖面 0.707 762 0.000 017 石林剖面 0.708 506 0.000 026 双龙村剖面 0.707 837 0.000 017 双龙村剖面 0.707 354 0.000 020 浑水塘剖面 0.707 590 0.000 013 织金剖面 0.707 871 0.000 016 二叠纪/中二叠世海水 0.706 72~0.708 21/0.707 30~0.708 21(据卢武长等[36]) 0.705 89~0.708 68/0.705 89~0.708 68(据黄思静[37]) 0.706 72~0.708 21/0.707 30~0.708 21(据黄思静等[38])
Characteristics, Origin and Main Controlling Factors of Mid-Permian Dolostones in Eastern Yunnan and Western Guizhou, China
-
摘要: 目的 中国滇东—黔西地区中二叠统广泛发育白云岩。针对这些白云岩的成因,前人开展了一系列研究,并提出了多种白云岩形成机理。然而,关于镁离子的来源、白云化的主控因素等关键问题,至今仍无定论。这些问题严重制约了滇东—黔西地区的油气扩展勘探。 方法 综合利用露头、岩心和钻井等资料,对滇东—黔西地区中二叠统白云岩的分布规律、岩相学特征和地球化学特征进行了详细分析。 结果与结论 (1)研究区白云岩的形成机理为开放热对流白云化模式。白云化流体的镁离子主要来自海水,少部分来自深部热液流体;(2)白云化流体主要通过亮晶生屑石灰岩中的孔隙,以及断层和裂缝系统运移。在温度空间差异的驱动下,白云化流体沿循环流动路径运移,导致中二叠统石灰岩迅速且广泛的白云化;(3)白云岩发育的主控因素为滩相沉积和峨眉地幔柱(活动范围)。Abstract: Objective Dolostones are widely developed in the mid-Permian rocks in eastern Yunnan and western Guizhou (China). A series of studies have previously been conducted on their genesis,and various formation mechanisms have been proposed. However,the source of Mg ions and the main controlling influences of the dolomitization process remain controversial. These problems severely hinder further exploration for oil and gas in the region. Methods This study analyzed in detail the regularity of the distribution of dolostone and its petrographic and geochemical characteristics,using outcrop and core observation as well as drilling data. [Results and Conclusions] (1) The formation mechanism of dolostone in the study area is the open thermal convection dolomitization. Mg2+ in dolomitizing fluids originates mostly from seawater,with a minor component coming from deep hydrothermal fluids. (2) The dolomitizing fluid mainly migrates through pores in bioclastic grainstone and faults and fracture systems. Driven by spatial variations in temperature,the fluid migrates along the circulation flow pathways,resulting in fast and pervasive dolomitization of Middle Permian limestone. (3) The main controlling factors of dolostone development are shoal facies and Emei mantle plume (active area).
-
Key words:
- eastern Yunnan /
- western Guizhou /
- mid-Permian /
- dolostone /
- thermal convection
-
图 14 滇东—黔西中二叠统白云岩碳氧同位素散点图
The dotted box represents the δ13CPDB and δ18OPDB ranges for mid⁃Permian low⁃Mg calcitic shells (after Veizer et al.[35])
表 1 块状白云岩和斑状白云岩的地球化学特征(平均值)对比
白云岩类型 有序度 均一化温度/℃ 盐度(wt.% NaCleqv.) δ13CPDB‰ δ18OPDB/‰ 87Sr/86Sr δ26/24Mg /‰ 块状白云岩 0.898 4 172.31 5.75 3.83 -9.77 0.707 967±0.000 018 -1.75±0.03 斑状白云岩 0.843 9 166.88 5.26 3.81 -9.00 0.707 654±0.000 017 -1.72±0.03 表 2 滇东—黔西中二叠统白云石晶体有序度值
组 采样剖面 样品数量 范围/值 平均值 茅口组 西山剖面 1 0.938 6 0.938 6 丰乐村剖面 15 0.770 7~0.978 1 0.884 5 小黄坡剖面 5 0.933 5~0.997 6 0.960 7 石林剖面 2 0.845 1~0.900 7 0.872 9 浑水塘剖面 1 0.965 7 0.965 7 师宗剖面 1 0.835 3 0.835 3 双龙村剖面 3 0.724 0~0.741 5 0.734 3 织金剖面 1 0.950 5 0.950 5 栖霞组 西山剖面 1 0.860 3 0.860 3 表 3 滇东—黔西中二叠统白云岩流体包裹体均一化温度和盐度
组 采样剖面 包裹体数量 均一化温度/℃ 盐度/wt.% NaCleqv. 范围 平均值 范围 平均值 茅口组 西山剖面 6 168~186 172.67 4.65~5.41 5.03 丰乐村剖面 6 178~188 183.17 4.49~8.41 5.88 小黄坡剖面 1 134 134 4.8 4.8 石林剖面 4 168~182 175.25 5.11~7.31 5.74 师宗剖面 7 154~185 174.71 5.26~6.01 5.75 双龙村剖面 1 121 121 5.41 5.41 织金剖面 2 187~192 189.5 5.56~5.71 5.64 栖霞组 浑水塘剖面 5 156~164 160 4.65~7.02 5.18 双龙村剖面 1 101 101 5.33 5.33 表 4 滇东—黔西中二叠统白云岩碳氧同位素值
组 采样剖面 样品数量 δ13CPDB平均值/‰ δ18OPDB平均值/‰ 茅口组 西山剖面 1 4.345 -10.189 丰乐村剖面 5 3.218 -9.970 小黄坡剖面 4 3.955 -10.711 石林剖面 3 3.641 -7.374 浑水塘剖面 2 3.895 -11.236 师宗剖面 2 2.603 -12.140 双龙村剖面 3 5.025 -7.352 织金剖面 1 5.274 -7.719 栖霞组 西山剖面 2 4.005 -8.364 浑水塘剖面 2 3.514 -8.735 表 5 中二叠统白云岩与二叠纪海水锶同位素值对比
采样剖面 87Sr/86Sr Stderr. 小黄坡剖面 0.708 522 0.000 016 丰乐村剖面 0.707 783 0.000 011 丰乐村剖面 0.707 473 0.000 020 丰乐村剖面 0.707 716 0.000 021 石林剖面 0.707 762 0.000 017 石林剖面 0.708 506 0.000 026 双龙村剖面 0.707 837 0.000 017 双龙村剖面 0.707 354 0.000 020 浑水塘剖面 0.707 590 0.000 013 织金剖面 0.707 871 0.000 016 二叠纪/中二叠世海水 0.706 72~0.708 21/0.707 30~0.708 21(据卢武长等[36]) 0.705 89~0.708 68/0.705 89~0.708 68(据黄思静[37]) 0.706 72~0.708 21/0.707 30~0.708 21(据黄思静等[38]) -
[1] 金振奎,余宽宏,潘怡,等. 全球显生宙碳酸盐岩时空分布规律及其控制因素[J]. 现代地质,2013,27(3):637-643. Jin Zhenkui,Yu Kuanhong,Pan Yi,et al. Global distribution of Phanerozoic carbonates and controlling factors[J]. Geoscience,2013,27(3): 637-643. [2] 余宽宏,金振奎,潘怡,等. 全球显生宇碳酸盐岩储层及油气资源量分布特征[J]. 天然气地球科学,2012,23(4):748-755. Yu Kuanhong,Jin Zhenkui,Pan Yi,et al. Phanerozoic carbonate reservoir characteristics and petroleum resource distribution in the world[J]. Natural Gas Geoscience,2012,23(4): 748-755. [3] Zenger D H,Dunham J B. Concepts and models of dolomitization:An introduction[M]//Zenger D H,Dunham J B,Ethington R L. Concepts and models of dolomitization. Tulsa: SEPM Society for Sedimentary Geology,1980: 285-286. [4] Sun S Q. Dolomite reservoirs: Porosity evolution and reservoir characteristics[J]. AAPG Bulletin,1995,79(2): 186-204. [5] 金振奎,王金艺,梁婷,等. 沉积地质学[M]. 北京:石油工业出版社,2021:281-342. Jin Zhenkui,Wang Jinyi,Liang Ting,et al. Sedimentary geology[M]. Beijing: Petroleum Industry Press,2021: 281-342. [6] 金振奎,石良,高白水,等. 碳酸盐岩沉积相及相模式[J]. 沉积学报,2013,31(6):965-979. Jin Zhenkui,Shi Liang,Gao Baishui,et al. Carbonate facies and facies models[J]. Acta Sedimentologica Sinica,2013,31(6): 965-979. [7] 余宽宏,金振奎,苏奎,等. 中、上扬子地台北缘寒武纪沉积特征及油气勘探意义[J]. 中国科学(D辑):地球科学,2013,43(9):1418-1435. Yu Kuanhong,Jin Zhenkui,Su Kui,et al. The Cambrian sedimentary characteristics and their implications for oil and gas exploration in north margin of Middle-Upper Yangtze Plate[J]. Science China (Seri. D): Earth Sciences,2013,43(9): 1418-1435. [8] 金振奎,冯增昭. 华北地台东部下古生界白云岩的类型及储集性[J]. 沉积学报,1993,11(2):11-19. Jin Zhenkui,Feng Zengzhao. Types and reservoiring performance of dolostones of the Lower Paleozoic in eastern North-China Platform[J]. Acta Sedimentologica Sinica,1993,11(2): 11-19. [9] Feng Z Z,Jin Z K. Types and origin of dolostones in the Lower Palaeozoic of the North China Platform[J]. Sedimentary Geology,1994,94(3/4): 279-290. [10] 金振奎,余宽宏. 白云岩储集层埋藏溶蚀作用特征及意义:以塔里木盆地东部下古生界为例[J]. 石油勘探与开发,2011,38(4):428-434. Jin Zhenkui,Yu Kuanhong. Characteristics and significance of the burial dissolution of dolomite reservoirs: Taking the Lower Palaeozoic in eastern Tarim Basin as an example[J]. Petroleum Exploration and Development,2011,38(4): 428-434. [11] 余宽宏,金振奎,周勇,等. 塔里木盆地东部地区寒武纪海盆局限期深水准同生白云岩化作用研究[J]. 沉积学报,2011,29(6):1041-1047. Yu Kuanhong,Jin Zhenkui,Zhou Yong,et al. Deep water penecontemporaneous dolomitization during restriction of Cambrian marine basin in east Tarim Basin[J]. Acta Sedimentologica Sinica,2011,29(6): 1041-1047. [12] 张永生,金振奎,谭健. 鄂尔多斯地区奥陶系马四组麦粒状白云石的发现及其成因探讨[J]. 岩石矿物学杂志,1999,18(1):18-25. Zhang Yongsheng,Jin Zhenkui,Tan Jian. The discovery and genetic study of wheat dolomite crystals in the Ordovician Majiagou 4th formation,Ordos area[J]. Acta Petrrologica et Mineralogica,1999,18(1): 18-25. [13] 郑和荣,吴茂炳,邬兴威,等. 塔里木盆地下古生界白云岩储层油气勘探前景[J]. 石油学报,2007,28(2):1-8. Zheng Herong,Wu Maobing,Wu Xingwei,et al. Oil-gas exploration prospect of dolomite reservoir in the Lower Paleozoic of Tarim Basin[J]. Acta Petrolei Sinica,2007,28(2): 1-8. [14] 郑荣才,史建南,罗爱君,等. 川东北地区白云岩储层地球化学特征对比研究[J]. 天然气工业,2008,28(11):16-21. Zheng Rongcai,Shi Jiannan,Luo Aijun,et al. Comparative study on geochemical behaviors of dolomite reservoirs in northeast Sichuan Basin[J]. Natural Gas Industry,2008,28(11): 16-21. [15] 李安华. 滇东二叠系阳新统白云岩的成因[J]. 天然气工业,1987,7(4):27-29. Li Anhua. Origin of Yangxin dolomite of Permian in eastern Yunnan[J]. Natural Gas Industry,1987,7(4): 27-29. [16] 赵锡奎. 黔中下二叠统碳酸盐岩中的构造—埋藏热液白云化作用[J]. 岩相古地理,1991(6):41-47. Zhao Xikui. Structural-burial hydrothermal dolomitization in the Lower Permian carbonate rocks in central Guizhou[J]. Sedimentary Facies and Palaeogeography,1991(6): 41-47. [17] 何幼斌,冯增昭. 四川盆地及其周缘下二叠统细—粗晶白云岩成因探讨[J]. 江汉石油学院学报,1996,18(4):15-20. He Youbin,Feng Zengzhao. Origin of fine- to coarse-grained dolostones of Lower Permian in Sichuan Basin and its peripheral regions[J]. Journal of Jianghan Petroleum Institute,1996,18(4): 15-20. [18] 金振奎,冯增昭. 滇东—川西下二叠统白云岩的形成机理:玄武岩淋滤白云化[J]. 沉积学报,1999,17(3):383-389. Jin Zhenkui,Feng Zengzhao. Origin of dolostones of the Lower Permian in east Yunnan-west Sichuan:Dolomitization through leaching of basalts[J]. Acta Sedimentologica Sinica,1999,17(3): 383-389. [19] 冯增昭,金振奎. 滇黔桂地区二叠纪岩相古地理[M]. 北京:地质出版社,1994:5-16. Feng Zengzhao,Jin Zhenkui. Lithofacies paleogeography of Permian of Yunnan-Guizhou-Guangxi[M]. Beijing: Geological Publishing House,1994: 5-16. [20] 冯增昭,杨玉卿,金振奎,等. 中国南方二叠纪岩相古地理[M]. 东营:石油大学出版社,1997:7-18. Feng Zengzhao,Yang Yuqing,Jin Zhenkui,et al. Lithofacies paleogeography of South China[M]. Dongying: Petroleum University Press,1997: 7-18. [21] 云南省地质矿产局. 云南省区域地质志[M]. 北京:地质出版社,1990:160-178. Yunnan Bureau of Geology and Mineral Resources. Regional geology of Yunnan province[M]. Beijing: Geological Publishing House,1990: 160-178. [22] 贵州省地质矿产局. 贵州省区域地质志[M]. 北京:地质出版社,1987:227-276. Guizhou Bureau of Geology and Mineral Resources. Regional geology of Guizhou province[M]. Beijing: Geological Publishing House,1987: 227-276. [23] 李国辉,李翔,宋蜀筠,等. 四川盆地二叠系三分及其意义[J]. 天然气勘探与开发,2005,28(3):20-25. Li Guohui,Li Xiang,Song Shujun,et al. Dividing Permian into 3 series and its significance in Sichuan Basin[J]. Natural Gas Exploration and Development,2005,28(3): 20-25. [24] 陈洪德,张成弓,黄福喜,等. 中上扬子克拉通海西—印支期(泥盆纪—中三叠世)沉积层序充填过程与演化模式[J]. 岩石学报,2011,27(8):2281-2298. Chen Hongde,Zhang Chenggong,Huang Fuxi,et al. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze Craton in Hercynian-Indosinian (Devonian-Middle Triassic)[J]. Acta Petrologica Sinica,2011,27(8): 2281-2298. [25] 何斌,徐义刚,王雅玫,等. 东吴运动性质的厘定及其时空演变规律[J]. 地球科学:中国地质大学学报,2005,30(1):89-96. He Bin,Xu Yigang,Wang Yamei,et al. Nature of the Dongwu movement and its temporal and spatial evolution[J]. Earth Science: Journal of China University of Geosciences,2005,30(1): 89-96. [26] 何斌,徐义刚,肖龙,等. 峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J]. 地质学报,2003,77(2):194-202. He Bin,Xu Yigang,Xiao Long,et al. Generation and spatial distribution of the Emeishan large igneous province: New evidence from stratigraphic records[J]. Acta Geologica Sinica,2003,77(2): 194-202. [27] 何斌,徐义刚,王雅玫,等. 用沉积记录来估计峨眉山玄武岩喷发前的地壳抬升幅度[J]. 大地构造与成矿学,2005,29(3):316-320. He Bin,Xu Yigang,Wang Yamei,et al. The magnitude of crustal uplift prior to the eruption of the Emeishan basalt: Inferred from sedimentary records[J]. Geotectonica et Metallogenia,2005,29(3): 316-320. [28] 罗志立,孙玮,韩建辉,等. 峨眉地幔柱对中上扬子区二叠纪成藏条件影响的探讨[J]. 地学前缘,2012,19(6):144-154. Luo Zhili,Sun Wei,Han Jianhui,et al. Effect of Emei mantle plume on the conditions of Permian accumulation in Middle-Upper Yangtze area[J]. Earth Science Frontiers,2012,19(6): 144-154. [29] 罗志立,金以钟,朱夔玉,等. 试论上扬子地台的峨眉地裂运动[J]. 地质论评,1988,34(1):11-24. Luo Zhili,Jin Yizhong,Zhu Kuiyu,et al. On Emei taphrogenesis of the Upper Yangtze Platform[J]. Geological Review,1988,34(1): 11-24. [30] 刘成英,朱日祥. 试论峨眉山玄武岩的地球动力学含义[J]. 地学前缘,2009,16(2):52-69. Liu Chengying,Zhu Rixiang. Discussion on geodynamic significance of the Emeishan basalts[J]. Earth Science Frontiers,2009,16(2): 52-69. [31] 冯增昭,杨玉卿,金振奎,等. 中国南方二叠纪岩相古地理[J]. 沉积学报,1996,14(2):1-11. Feng Zengzhao,Yang Yuqing,Jin Zhenkui,et al. Lithofacies paleogeography of the Permian of South China[J]. Acta Sedimentologica Sinica,1996,14(2): 1-11. [32] Füchtbauer H. Sediments and sedimentary rocks[M]. New York: E. Schweizerbartsche Verlagsbuchhandlung,1974: 303-305. [33] Goldstein R H,Reynolds T J. Systematics of fluid inclusions in diagenetic minerals[M]. Tulsa: SEPM Society for Sedimentary Geology,1994: 199. [34] Rosenbaum J,Sheppard S M F. An isotopic study of siderites,dolomites and ankerites at high temperatures[J]. Geochimica et Cosmochimica Acta,1986,50(6): 1147-1150. [35] Veizer J,Eizer J,Ala D,et al. 87Sr/86Sr,δ 13C and δ 18O evolution of Phanerozoic seawater[J]. Chemical Geology,1999,161: 59-88. [36] 卢武长,崔秉荃,杨绍全,等. 二叠纪海相碳酸盐的锶同位素演化及其意义[J]. 矿物岩石,1992,12(4):80-87. Lu Wuchang,Cui Bingquan,Yang Shaoquan,et al. Strontium isotopic evolution of the Permian marine carbonates and implications[J]. Mineralogy and Petrology,1992,12(4): 80-87. [37] 黄思静. 上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J]. 地质学报,1997,71(1):45-53. Huang Sijing. A study on carbon and strontium isotopes of Late Paleozoic carbonate rocks in the Upper Yangtze Platform[J]. Acta Geologica Sinica,1997,71(1): 45-53. [38] 黄思静,石和,张萌,等. 上扬子石炭—二叠纪海相碳酸盐的锶同位素演化与全球海平面变化[J]. 沉积学报,2001,19(4):481-487. Huang Sijing,Shi He,Zhang Meng,et al. Strontium isotope evolution and global sea-level changes of Carboniferous and Permian marine carbonate,Upper Yangtze Platform[J]. Acta Sedimentologica Sinica,2001,19(4): 481-487. [39] Warthmann R,van Lith Y,Vasconcelos C,et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology,2000,28(12): 1091-1094. [40] Wright D T,Wacey D. Sedimentary dolomite: A reality check[J]. Geological Society,London,Special Publications,2004,235(1): 65-74. [41] Gregg J M,Sibley D F. Epigenetic dolomitization and the origin of xenotopic dolomite texture[J]. Journal of Sedimentary Research,1984,54(3): 908-931. [42] Vasconcelos C,McKenzie J A,Warthmann R,et al. Calibration of the δ 18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology,2005,33(4): 317-320. [43] Sharp Z. Principles of stable isotope geochemistry[M]. Upper Saddle River,New Jersey: Pearson Education,2007. [44] Machel H G. Cathodoluminescence in calcite and dolomite and its chemical interpretation[J]. Geoscience Canada,1985,12(4): 139-147. [45] 黄思静. 碳酸盐矿物的阴极发光性与其Fe,Mn含量的关系[J]. 矿物岩石,1992,12(4):74-79. Huang Sijing. Relationship between cathodoluminescence and concentration of iron and manganese in carbonate minerals[J]. Mineralogy and Petrology,1992,12(4): 74-79. [46] Machel H G. Concepts and models of dolomitization: A critical reappraisal[J]. Geological Society,London,Special Publications,2004,235(1): 7-63. [47] 胡文瑄,朱井泉,王小林,等. 塔里木盆地柯坪地区寒武系微生物白云岩特征、成因及意义[J]. 石油与天然气地质,2014,35(6):860-869. Hu Wenxuan,Zhu Jingquan,Wang Xiaolin,et al. Characteristics,origin and geological implications of the Cambrian microbial dolomite in Keping area,Tarim Basin[J]. Oil & Gas Geology,2014,35(6): 860-869. [48] 黄思静. 四川渠县龙门峡三叠系嘉陵江组第三、四段白云石有序度及其形成条件探讨[J]. 矿物岩石,1985,5(4):57-62. Huang Sijing. The degree of order and forming conditions of the dolomite of the Third and Fourth members of Lower Triassic Jialingjiang Formation in Longmenxia,Quxian,Sichuan[J]. Minerals and Rocks,1985,5(4): 57-62. [49] 张杰,寿建峰,张天付,等. 白云石成因研究新方法:白云石晶体结构分析[J]. 沉积学报,2014,32(3):550-559. Zhang Jie,Shou Jianfeng,Zhang Tianfu,et al. New approach on the study of dolomite origin: The crystal structure analysis of dolomite[J]. Acta Sedimentologica Sinica,2014,32(3): 550-559. [50] 李厚民,毛景文,张长青. 滇黔交界地区玄武岩铜矿流体包裹体地球化学特征[J]. 地球科学与环境学报,2011,33(1):14-23,33. Li Houmin,Mao Jingwen,Zhang Changqing. Geochemistry of fluid inclusions of the basalt copper deposits in adjacent area of northeastern Yunnan and western Guizhou,China[J]. Journal of Earth Sciences and Environment,2011,33(1): 14-23, 33. [51] 侯明才,王文楷,张本健,等. 四川周公山—汉王场地区峨眉山玄武岩中流体类型及活动期次[J]. 岩石学报,2013,29(8):2709-2718. Hou Mingcai,Wang Wenkai,Zhang Benjian,et al. Fluid types and activities of Emeishan basalt in Zhougong mountain-Hanwang field of Sichuan province[J]. Acta Petrologica Sinica,2013,29(8): 2709-2718. [52] Meade F. Igneous rocks and processes: A practical guide-by robin gill[J]. The Geographical Journal,2010,176(4): 375-376. [53] 江青春,胡素云,汪泽成,等. 四川盆地中二叠统中—粗晶白云岩成因[J]. 石油与天然气地质,2014(4):503-510. Jiang Qingchun,Hu Suyun,Wang Zecheng,et al. Genesis of medium-macro-crystalline dolomite in the Middle Permian of Sichuan Basin[J]. Oil & Gas Geology,2014(4): 503-510. [54] 毛德明. 贵州西部峨嵋山玄武岩微量元素地球化学[J]. 贵州工学院学报,1991,20(4):82-91,108. Mao Deming. Trace element geochemistry of the Emeishan basalt in western Guizhou[J]. Journal of Guizhou Institute of Technology,1991,20(4): 82-91, 108. [55] Raffensperger J P,Vlassopoulos D. The potential for free and mixed convection in sedimentary basins[J]. Hydrogeology Journal,1999,7(6): 505-520. [56] Wang J,Huang S Y,Huang G S,et al. Basic characteristics of the earth’s temperature distribution in southern China[J]. Acta Geologica Sinica,1986,60(3): 91-106. [57] 袁玉松,马永生,胡圣标,等. 中国南方现今地热特征[J]. 地球物理学报,2006,49(4):1118-1126. Yuan Yusong,Ma Yongsheng,Hu Shengbiao,et al. Present-day geothermal characteristics in South China[J]. Chinese Journal of Geophysics,2006,49(4): 1118-1126. [58] 沃玉进,周雁,肖开华. 中国南方海相层系埋藏史类型与生烃演化模式[J]. 沉积与特提斯地质,2007,27(3):94-100. Yujin Wo,Zhou Yan,Xiao Kaihua. The burial history and models for hydrocarbon generation and evolution in the marine strata in southern China[J]. Sedimentary Geology and Tethyan Geology,2007,27(3): 94-100. [59] 黄思静,兰叶芳,黄可可,等. 四川盆地西部中二叠统栖霞组晶洞充填物特征与热液活动记录[J]. 岩石学报,2014,30(3):687-698. Huang Sijing,Lan Yefang,Huang Keke,et al. Vug fillings and records of hydrothermal activity in the Middle Permian Qixia Formation,western Sichuan Basin[J]. Acta Petrologica Sinica,2014,30(3): 687-698. [60] 田景春,林小兵,张翔,等. 四川盆地中二叠统栖霞组滩相白云岩多重成因机理及叠加效应[J]. 岩石学报,2014,30(3):679-686. Tian Jingchun,Lin Xiaobing,Zhang Xiang,et al. The genetic mechanism of shoal facies dolomite and its additive effect of Permian Qixia Formation in Sichuan Basin[J]. Acta Petrologica Sinica,2014,30(3): 679-686. [61] 陈轩,赵宗举,高阳,等. 四川盆地北部中二叠统茅口组碳酸盐岩斜坡沉积及其油气勘探意义[J]. 海相油气地质,2013,18(4):9-14. Chen Xuan,Zhao Zongju,Gao Yang,et al. Middle Permian Maokou carbonate slope deposition and its significances for petroleum exploration in northern part of Sichuan Basin[J]. Marine Origin Petroleum Geology,2013,18(4): 9-14. [62] James N P,Choquette P W. Diagenesis 9. Limestones: The meteoric diagenetic environment[J]. Geoscience Canada,1984,11: 160-194. [63] Longman M W. Carbonate diagenetic textures from nearsurface diagenetic environments[J]. AAPG Bulletin,1980,64(4): 461-487.