-
北冰洋因其被欧亚大陆和北美大陆围绕,仅通过白令海峡和弗拉姆海峡分别与太平洋和北大西洋相连,也称“北极地中海”[18]。北冰洋沉积物主要通过河流、冰山、海冰、沿岸崩塌、粉尘等形式输入[19],周边大陆岩性很大程度上决定了北冰洋表层沉积物的矿物组成。环北冰洋陆地由波罗的(Baltica)、北美、西伯利亚三个克拉通及其相间的褶皱带组成,三个克拉通为前寒武结晶基底和其上的沉积岩组成,其中,北美加拿大极地群岛区以古生代碳酸盐为主,而波罗的和东西伯利亚区以碎屑岩为主。褶皱带区,如楚科奇半岛、阿拉斯加等地分布火山碎屑岩和变质岩[20⁃23]。叶尼塞河和哈坦加河流经西伯利亚火成岩省(图1)。
河流输入是北冰洋沉积物的一个重要来源。其中,以位于美洲大陆的马更些河输沙量最大,其次为欧亚大陆的勒拿河、鄂毕河、科雷马河和叶尼塞河等(表1)。流入白令海的育空河,有1/3的泥沙被洋流带入属于北冰洋的楚科奇海[27]。其他一些较小的北极河流,如哈坦加河和亚纳河,其输沙量较上述河流的输沙量低一个量级。各河流流域内的岩性差异导致沉积物中矿物的区域性差异(表1)。
表 1 北冰洋周边大陆河流输沙量及流域内主要岩性
北冰洋受多个洋流的控制(图1),其中,太平洋水经白令海峡后,在楚科奇海陆架向北流,最终汇入加拿大海盆[34];发源于拉普捷夫海的穿极流向北经过北冰洋中部,并经弗拉姆海峡汇入北欧海;波弗特旋回位于美亚海盆,呈顺时针方向流动。受进入北冰洋的北大西洋流的影响,在北冰洋俄罗斯陆架形成自西向东的西伯利亚沿岸流,其在楚科奇海转向北流[35]。海冰和冰山在洋流的作用下漂流并释放沉积物。陆架和陆坡沉积物可在波浪、涡旋、重力流的作用下再次搬运[36⁃37]。
-
研究区位于西北冰洋及白令海。本次研究所使用样品为2010年“中国第四次北极科学考察”以及2019年“中俄联合北极考察(AMK78航次)”的82个站位的表层沉积物样品(图1)。所有样品用箱式取样器采集,取最表层5 cm的沉积物装入自封袋中4 ℃冷藏保存,用于实验室分析。
样品冷冻干燥后,用玛瑙研钵将样品研磨细至200目以下。将研磨好的粉末样品装入XRD样品台凹槽中,用光滑的平板玻璃将凹槽表面压实,确保测试样品表面平整且不会产生明显的择优取向。在自然资源部第三海洋研究所用X’Pert Pro MPD多晶X射线衍射仪进行XRD全岩测试。测试条件:Cu-Kα辐射;工作电压和电流分别为40 kV和40 mA;发散狭缝与散射狭缝均为1°,接收狭缝5.5 mm;采用连续扫描方式,扫描范围:5~80°(2θ),扫描时间29.845 s;扫描步长0.016 7113°。所有样品测试条件相同。
得到的XRD图谱,用HighScore Plus软件进行矿物相检索,并用“三强线”法[38]补充与检测定性结果。得到矿物定性信息后,用Rietveld全谱拟合法进行半定量分析。单个矿物含量表示为其在全岩矿物中的占比。Rwp与Rp为反映计算图谱与实测图谱拟合程度的两个因子。R值越小,拟合效果越好[38]。本次所有样品的Rwp(平均值为9.5%)与Rp(平均值为6.4%)均小于15%(表2),说明拟合谱线重现性较好,结果可信[38]。
-
在所有82个站点沉积物中均检测到石英、斜长石、钾长石、云母和绿泥石;另在63个站点检测到白云石;在32个站点检测到辉石;在60个站点检测出角闪石(矿物卡片峰位置信息见表2,样品定相结果见图2)。所有识别出来的矿物含量以百分制表示(表3)。
表 3 西北冰洋及白令海表层样品矿物含量
站位点 区域 经度/(°) 纬度/(°) 石英/% 斜长石/% 钾长石/% 云母/% 绿泥石/% 白云石/% 辉石/% 角闪石/% Rp Rwp ARC4-B02 阿留申岛弧 169.958 2 53.331 2 27.5 40.9 8.2 11.0 2.4 0.5 7.7 1.8 6.8 9.8 ARC4-B04 阿留申海盆 171.404 8 54.591 8 15.4 27.7 14.8 33.6 8.5 — — — 6.2 9.9 ARC4-B06 阿留申海盆 174.493 8 57.005 0 19.1 24.8 17.1 27.1 11.9 — — — 4.1 6.2 ARC4-B11 阿留申海盆 179.917 3 59.992 5 28.4 23.3 16.0 24.5 7.6 — — 0.2 6.6 10.1 ARC4-B14 白令海陆架 -177.692 2 60.921 2 36.1 27.6 11.2 17.5 6.5 0.6 — 0.5 5.9 8.7 ARC4-BB01 白令海陆架 -177.476 3 61.287 5 39.2 32.5 7.0 16.6 4.1 0.4 — 0.2 6.7 9.6 ARC4-BB05 白令海陆架 -175.331 2 62.544 0 36.5 31.7 14.5 11.1 5.5 0.4 — 0.3 7.5 11.0 ARC4-BB06 白令海陆架 -174.380 8 63.008 0 34.0 28.5 11.4 19.9 5.4 0.5 — 0.3 6.0 9.0 ARC4-BN03 加拿大海盆 -158.899 8 78.499 3 41.6 5.2 5.9 30.9 9.1 6.9 — 0.4 6.2 9.5 ARC4-BN04 加拿大海盆 -159.039 2 79.471 2 28.6 6.0 7.6 30.1 9.4 13.9 3.8 0.6 5.6 8.1 ARC4-BN06 加拿大海盆 -164.939 5 81.461 5 32.8 3.0 9.4 27.0 8.8 15.5 3.5 — 6.2 8.8 ARC4-BN07 加拿大海盆 -166.471 3 82.482 5 28.2 8.1 5.6 33.8 10.1 9.2 4.6 0.4 5.3 7.9 ARC4-BN09 加拿大海盆 -167.126 8 84.186 8 29.3 6.8 13.1 27.0 5.6 11.2 6.8 0.2 5.9 8.6 ARC4-BN10 加拿大海盆 -178.643 3 85.503 5 27.9 13.2 6.4 34.4 8.1 4.8 4.8 0.4 5.4 7.9 ARC4-BN12 马克洛夫海盆 -170.488 5 87.071 2 27.0 13.1 9.1 32.6 8.3 6.4 3.2 0.3 5.3 7.6 ARC4-BN13 马克洛夫海盆 -176.629 5 88.394 3 25.8 5.2 7.8 45.9 13.4 1.6 — 0.3 5.2 7.3 ARC4-BS02 白令海陆架 -171.000 5 64.335 7 52.4 21.4 14.9 6.5 0.7 0.5 2.7 0.9 8.4 11.6 ARC4-BS05 白令海陆架 -169.502 8 64.333 3 64.2 20.2 7.2 2.6 0.7 — 5.1 — 8.8 12.8 ARC4-BS08 白令海陆架 -168.018 8 64.328 5 67.5 15.4 9.5 5.5 0.9 0.1 1.1 — 8.9 12.9 ARC4-C02 楚科奇海陆架 -167.335 8 69.123 3 49.2 19.8 3.5 18.5 6.2 2.2 0.2 0.4 6.0 8.9 ARC4-C04 楚科奇海陆架 -167.029 8 71.011 8 45.3 23.1 5.2 18.5 6.0 1.7 — 0.2 6.0 9.0 ARC4-C05 楚科奇海陆架 -164.728 3 70.760 0 82.0 10.3 1.9 3.7 1.5 — 0.3 0.3 8.5 12.0 ARC4-C06 楚科奇海陆架 -162.763 3 70.516 7 81.3 7.0 2.8 6.1 0.8 1.6 0.2 0.2 8.9 12.9 ARC4-C07 楚科奇海陆架 -165.325 7 72.541 2 33.0 19.5 8.0 29.9 9.2 0.3 — 0.1 4.6 6.4 ARC4-C09 楚科奇海陆架 -159.714 7 71.813 8 44.4 16.8 9.5 19.5 7.6 2.1 — 0.1 7.0 10.3 ARC4-CC1 楚科奇海陆架 -168.956 2 67.672 2 41.1 19.9 14.0 17.1 6.0 1.3 0.2 0.4 7.2 10.2 ARC4-CC4 楚科奇海陆架 -167.863 5 68.133 8 70.3 11.2 5.4 9.3 3.0 0.6 — 0.2 7.5 11.8 ARC4-CC8 楚科奇海陆架 -166.963 3 68.300 0 73.6 8.1 1.3 8.3 3.5 4.5 0.5 0.2 7.4 11.2 ARC4-CO-5 楚科奇海陆架 -157.492 7 71.415 8 47.5 8.5 8.1 23.5 6.0 6.1 — 0.3 6.0 8.6 ARC4-CO-10 楚科奇海陆架 -157.926 8 71.620 2 36.0 18.6 7.4 27.8 8.5 1.3 — 0.4 5.3 7.7 ARC4-M02 加拿大海盆 -171.988 8 76.999 0 28.7 9.0 9.7 31.6 7.0 6.5 7.3 0.2 5.7 8.5 ARC4-M03 加拿大海盆 -171.832 7 76.502 3 30.0 9.4 6.3 31.2 4.7 10.3 7.8 0.3 5.9 8.6 ARC4-M05 加拿大海盆 -172.127 7 75.651 7 29.5 13.2 7.0 35.7 11.7 2.7 — 0.2 4.5 6.5 ARC4-M06 楚科奇海陆架 -171.997 5 75.330 0 30.1 12.9 10.2 35.4 9.8 1.6 — — 4.8 7.1 ARC4-M07 楚科奇海陆架 -172.031 2 74.994 7 26.3 18.3 0.8 42.2 11.3 0.2 — 0.9 5.4 9.4 ARC4-MOR2 加拿大海盆 -158.985 8 74.547 2 40.3 8.1 6.1 22.5 4.6 15.1 3.2 0.1 5.7 8.0 ARC4-MS01 加拿大海盆 -154.707 3 73.174 7 30.1 11.9 5.8 38.6 11.5 2.0 — 0.1 4.9 7.7 ARC4-MS02 加拿大海盆 -156.367 5 73.675 2 30.7 12.5 7.8 36.6 10.5 1.7 — 0.2 4.9 7.0 ARC4-MS03 加拿大海盆 -157.298 7 74.067 5 24.6 21.0 8.2 32.3 8.8 2.3 2.8 — 5.8 8.6 ARC4-NB01 白令海陆架 -175.075 8 61.233 7 32.0 26.8 11.5 21.7 7.4 0.2 — 0.4 5.3 8.0 ARC4-NB02 白令海陆架 -173.686 3 61.378 2 40.9 31.5 4.9 16.6 5.0 0.8 — 0.3 5.7 8.8 ARC4-NB03 白令海陆架 -172.197 0 61.506 8 39.0 5.9 12.5 27.7 8.2 6.7 — 0.0 6.4 8.5 ARC4-NB06 白令海陆架 -167.511 2 61.827 7 52.2 24.6 9.6 7.7 2.7 — 2.5 0.7 8.3 12.2 ARC4-NB08 白令海陆架 -167.342 0 62.658 7 45.3 32.2 6.6 7.0 5.4 1.1 1.8 0.6 8.1 12.0 ARC4-NB-A 白令海陆架 -171.002 2 62.833 3 49.2 28.3 8.6 7.6 3.5 0.7 1.3 0.8 7.4 10.6 ARC4-R06 楚科奇海陆架 -168.983 3 69.500 0 41.9 22.0 6.3 21.7 6.3 1.7 — 0.1 6.3 9.3 ARC4-R08 楚科奇海陆架 -168.980 2 71.003 2 44.7 24.0 8.5 16.1 5.4 0.9 0.1 0.3 6.3 9.0 ARC4-R09 楚科奇海陆架 -168.940 0 71.963 3 34.6 20.9 11.5 23.5 7.8 1.0 — 0.7 5.4 8.3 ARC4-S21 楚科奇海陆架 -154.722 2 71.623 5 50.1 12.0 3.0 20.8 6.5 7.2 0.4 — 6.4 9.1 ARC4-S23 楚科奇海陆架 -153.763 5 71.929 2 39.5 4.9 9.5 31.0 9.2 3.5 2.1 0.3 5.6 8.1 ARC4-S24 加拿大海盆 -153.212 0 72.250 5 31.0 9.0 3.9 36.9 10.5 8.7 — — 4.0 5.9 ARC4-S25 加拿大海盆 -152.500 0 72.342 2 32.1 12.0 8.6 35.2 10.2 1.6 — 0.3 5.2 8.0 ARC4-S26 加拿大海盆 -153.552 0 72.700 7 30.9 13.7 6.1 37.8 11.5 — — — 4.9 7.2 ARC4-SR01 楚科奇海陆架 -168.970 0 67.004 0 61.6 20.6 5.4 7.5 2.3 0.6 1.4 0.6 6.2 8.8 ARC4-SR02 楚科奇海陆架 -168.981 2 67.499 0 46.0 26.8 8.2 12.8 4.1 0.7 — 1.4 6.4 9.7 ARC4-SR03 楚科奇海陆架 -169.015 3 67.997 5 40.1 29.4 5.6 17.6 5.9 1.2 — 0.2 5.7 8.6 ARC4-SR04 楚科奇海陆架 -168.996 5 68.498 0 40.5 29.0 3.9 18.3 6.5 1.8 — — 5.8 8.3 ARC4-SR05 楚科奇海陆架 -168.997 7 69.001 7 38.9 24.9 8.0 21.0 6.4 0.8 — — 5.4 7.9 ARC4-SR10 楚科奇海陆架 -169.000 8 73.000 7 37.3 20.7 9.0 23.7 7.7 0.8 — 0.8 5.6 8.7 ARC4-SR11 楚科奇海陆架 -168.987 5 73.994 8 25.6 17.5 6.3 38.7 10.8 0.7 — 0.4 5.3 7.9 ARC4-SR12 楚科奇海陆架 -169.001 3 74.497 7 32.6 13.7 9.5 34.5 7.6 1.4 — 0.7 4.7 7.1 AMK78-01 俄罗斯极地海 149.065 9 76.595 5 29.2 24.6 15.0 23.5 7.6 — — 0.1 6.2 8.7 AMK78-02 俄罗斯极地海 160.940 2 74.904 5 31.5 23.4 9.0 27.0 8.4 0.7 — — 6.7 9.7 AMK78-03 俄罗斯极地海 160.888 1 74.914 3 31.6 26.7 7.3 24.8 9.6 — — — 6.7 10.1 AMK78-04 俄罗斯极地海 160.942 5 74.922 8 30.2 21.1 8.0 29.5 10.9 — — 0.3 5.7 8.0 AMK78-05 俄罗斯极地海 160.531 6 74.937 7 32.3 20.4 7.5 31.0 8.5 — — 0.3 6.5 9.5 AMK78-06 俄罗斯极地海 130.499 2 73.122 7 28.3 22.6 12.4 24.0 11.6 1.1 — — 6.0 8.7 AMK78-07 俄罗斯极地海 130.345 6 73.108 7 28.8 26.6 7.0 22.6 13.2 1.7 0.1 — 5.5 7.5 AMK78-08 俄罗斯极地海 130.367 2 73.113 7 30.3 23.3 11.4 24.3 10.7 — — — 6.2 8.8 AMK78-09 俄罗斯极地海 130.279 9 73.092 5 29.8 21.0 19.2 18.5 9.0 2.2 0.1 0.2 5.9 8.2 AMK78-10 俄罗斯极地海 129.143 0 75.199 8 27.5 23.1 14.8 26.9 7.2 0.5 — — 6.9 10.7 AMK78-11 俄罗斯极地海 128.645 5 75.226 4 23.7 20.6 14.2 31.8 9.2 0.4 — 0.1 5.8 8.7 AMK78-12 俄罗斯极地海 125.424 7 76.394 6 39.5 26.5 8.9 18.1 7.0 — — — 7.6 11.2 AMK78-13 俄罗斯极地海 125.536 0 76.781 6 32.1 21.9 8.8 28.0 8.9 — 0.1 0.2 6.1 8.5 AMK78-14 俄罗斯极地海 127.792 6 76.892 9 39.5 23.9 15.0 17.3 4.1 — 0.1 0.1 8.5 13.0 AMK78-15 俄罗斯极地海 127.805 3 76.892 5 40.2 27.7 10.1 18.7 3.2 — 0.1 — 7.8 11.4 AMK78-16 俄罗斯极地海 120.668 1 77.311 6 24.2 19.0 7.7 36.4 12.6 — — 0.1 4.5 6.7 AMK78-17 俄罗斯极地海 104.010 8 77.949 6 30.3 23.7 3.8 28.6 13.6 — — — 5.5 8.1 AMK78-18 俄罗斯极地海 104.234 4 77.949 6 28.7 17.8 5.9 31.1 16.5 — — — 4.2 5.5 AMK78-19 俄罗斯极地海 73.179 3 73.333 5 29.0 20.0 5.4 31.7 13.8 — — 0.1 4.5 6.2 AMK78-20 俄罗斯极地海 73.339 9 73.576 7 32.2 20.0 11.7 25.6 10.3 — — 0.2 5.7 8.1 AMK78-21 俄罗斯极地海 73.250 0 73.832 5 33.7 23.0 7.0 25.9 10.3 — — 0.1 5.6 7.8 续表 注: “—”表示未检测到该矿物。研究区沉积物中石英的相对含量介于15.4%~82.0%,平均为37.5%。其中,白令海东北部、白令海峡、楚科奇海阿拉斯加近岸海域沉积物中石英含量整体较高,自阿拉斯加近岸向远海、白令海北部向南,石英含量呈递减的趋势(图3a)。俄罗斯极地海(东西伯利亚海、拉普捷夫海、喀拉海)一侧,沉积物中石英含量整体偏低。
图 3 西北冰洋及白令海表层沉积物全岩矿物含量分布
Figure 3. Distribution patterns of minerals in surface sediments from the western Arctic Ocean and Bering Sea
斜长石相对含量介于3.0%~40.9%,均值为19.0%。阿留申岛弧上的ARC4-B02站点斜长石含量最高。白令海陆架斜长石含量整体较高,尤其是在白令海东北部育空河口附近、圣劳伦斯岛周边的沉积物样品,斜长石平均含量高达32.5%(图3b)。楚科奇海阿拉斯加沿岸斜长石含量较低,但在楚科奇海中部,斜长石含量升高,并呈自南向北含量降低的趋势。加拿大海盆斜长石相对含量整体偏低,均小于15%。俄罗斯极地海一侧(22.7%)沉积物中斜长石含量显著高于加拿大海盆的(10.1%)。钾长石相对含量介于0.8%~19.2%,均值为8.6%。阿留申海盆中的钾长石含量高于白令海陆架。拉普捷夫海东侧和新西伯利亚群岛附近,钾长石含量最高可达19.2%(图3c)。
云母的相对含量介于2.6%~45.9%,均值为23.9%。云母含量在加拿大海盆中最高,均值为32.6%;俄罗斯极地海云母含量次之,均值为26.0%;楚科奇海(21.0%)及白令海(12.9%)云母含量显著偏低,最小为2.6%(图3d)。绿泥石相对含量分布趋势与云母相似(图3e)。绿泥石相对含量呈自楚科奇海陆架中部向加拿大海盆随着纬度增加而增加的趋势。俄罗斯极地海一侧,喀拉海沉积物中绿泥石含量较高,最高为13.8%,均值为11.5%。白云石的相对含量介于0~15.5%,均值为2.3%。
白云石主要分布于加拿大海盆,其余海域几乎未检测到白云石(图3f)。辉石在沉积物中的相对含量介于0~7.8%,均值为0.9%。阿留申岛弧上沉积物中辉石含量可达7.7%,白令海峡附近辉石含量也较高,介于1.1%~5.1%(图3g)。角闪石的相对含量介于0~1.8%,均值为0.3%。除阿留申岛弧上沉积物中角闪石含量全区最高外,仅在育空河口的少数站点、楚科奇海中北部站位检测到角闪石碎屑(图3h)。
以82个站点各矿物相的相对含量为变量,进行Q型聚类分析。测量区间采用欧式距离,聚类方法为组间联接。根据Q型聚类分析结果(图4),选取距离8将研究区划分为六个矿物区(分别命名为A~F),以便更直观地呈现成果对比。其中A、B、D又细分为两个亚区(图5),因位于阿留申岛弧上的ARC4-B02站位自成一类,且只有一个站位,因此不进行分区,区域A~F中各矿物的平均含量见表4。
表 4 Q型聚类分区中矿物平均含量(%)
区域 石英 斜长石 钾长石 云母 绿泥石 白云石 辉石 角闪石 A1 30.8 21.9 10.0 26.6 10.0 0.5 0 0.2 A2 17.3 26.3 16.0 30.4 10.2 0 0 0 B1 29.2 8.7 7.6 32.0 8.1 9.5 4.6 0.3 B2 28.3 13.8 7.3 36.5 10.0 2.4 1.5 0.3 C 43.8 7.7 6.5 25.7 7.1 7.8 1.1 0.2 D1 49.0 26.7 9.6 8.3 3.3 0.6 1.7 0.9 D2 40.2 24.8 9.0 18.6 5.9 1.2 0 0.2 E 64.4 18.7 7.4 5.2 1.3 0.2 2.5 0.2 F 76.8 9.2 2.9 6.9 2.2 1.7 0.3 0.2 所有区域 37.4 19.0 8.6 23.8 7.5 2.4 1.1 0.3 A区细分为A1和A2两个亚区,A1亚区位于俄罗斯极地海一侧,包括喀拉海、拉普捷夫海、东西伯利亚海以及楚科奇海陆架的北部的部分区域,以较高云母(26.6%)与绿泥石(10.0%)含量为特征,几乎不含白云石(0.5%)和辉石(0);A2亚区位于阿留申海盆处,其沉积物中斜长石(26.3%)、钾长石(16.0%)、云母(30.4%)、绿泥石(10.2%)含量高,不含白云石和辉石。B区主要位于北冰洋洋盆区,包括马克洛夫海盆与加拿大海盆,根据矿物特征,将B区分为B1和B2两个亚区,B1亚区主要位于楚科奇海台和海盆,以较高的云母(32.0%)、白云石(9.5%)、辉石(4.6%)含量以及较低的斜长石含量(8.7%)为特征;B2亚区位于B1南北两侧,少部分位于拉普捷夫海陆架,以云母(36.5%)、绿泥石(10.0%)含量高为特征。C区位于北风脊,以白云石含量高(7.8%)、石英、云母、绿泥石含量中等、长石类矿物(7.7%)极低为特征。D区位于白令海陆架以及楚科奇海陆架的西侧,D区细分为D1和D2两个亚区,其中D1位于白令海陆架的西侧与楚科奇海陆架的西侧,D2位于白令海陆架东侧。D1亚区石英与斜长石含量均高于D2区域,且D2亚区不含辉石。E区位于圣劳伦斯岛以北、楚科奇海南端海域,除极高的石英含量(64.4%)外,也含有较高的辉石(2.5%)。F位于楚科奇海阿拉斯加近岸海域,以极高的石英含量为特征(76.8%),其他矿物的含量均较低。
XRD Bulk Mineral Distribution Patterns of Surface Sediments in the Western Arctic Ocean and Bering Sea
-
摘要: 为了探明北极地区沉积物矿物的组成、分布、来源及运输途径,对西北冰洋及白令海82个站位的表层沉积物进行XRD(X射线衍射)全岩矿物分析。结果表明,石英、斜长石、钾长石、云母和绿泥石等为主要矿物,白云石、辉石、角闪石区域性分布。沉积物中矿物含量区域性差异明显,指示了不同的物质来源。其中,拉普捷夫海接收了西伯利亚地台沉积物以及新西伯利亚群岛花岗岩碎屑,其中部分在穿极流与波弗特旋回作用下通过海冰输送至加拿大海盆;楚科奇海阿拉斯加近岸水域沉积物中富含的石英,为海岸侵蚀和河流搬运进入楚科奇海;育空河搬运来自阿拉斯加大陆的富含长石、云母、绿泥石等矿物的沉积物到白令海,其中部分在洋流的作用下进一步搬运至楚科奇海—加拿大海盆;加拿大海盆沉积物中广泛分布的白云石,来自北极群岛和马更些流域。
-
关键词:
- 西北冰洋 /
- 白令海 /
- 全岩矿物 /
- XRD(X射线衍射) /
- 沉积物来源
Abstract: X-Ray Diffraction (XRD) bulk mineral analysis was conducted for 82 surface sediments from the western Arctic Ocean and Bering Sea, with an attempt to elucidate the distribution patterns of minerals, as well as the provenance and transportation of the surface sediments in the Arctic region. The results show that quartz, plagioclase feldspar, potassium feldspar, mica, and chlorite are dominant minerals in sediments, and dolomite, pyroxene, amphibole occur in sediments regionally. The Laptev Sea receives sediments from the Siberian and granites from the New Siberian Islands, several of which are transported to the Canadian Basin by sea ice under the Transpolar Drift and Beaufort Gyre. Sediments rich in quartz in the offshore of Chukchi Sea result from coastal erosion and transportation by local rivers. The Yukon River transport larger amounts of sediments rich in minerals, such as feldspar, mica, chlorite, etc., from the Alaska continent into the Bering Sea shelf, and a portion of it was further transported to the Chukchi Sea and Canadian Basin by currents. The dolomite occurring in the Canadian Basin is from the Arctic Islands and the watershed of the Mackenzie River.-
Key words:
- western Arctic Ocean /
- Bering Sea /
- bulk minerals /
- X-Ray Diffraction /
- sediment provenance
-
表 1 北冰洋周边大陆河流输沙量及流域内主要岩性
表 2 矿物衍射数据
表 3 西北冰洋及白令海表层样品矿物含量
站位点 区域 经度/(°) 纬度/(°) 石英/% 斜长石/% 钾长石/% 云母/% 绿泥石/% 白云石/% 辉石/% 角闪石/% Rp Rwp ARC4-B02 阿留申岛弧 169.958 2 53.331 2 27.5 40.9 8.2 11.0 2.4 0.5 7.7 1.8 6.8 9.8 ARC4-B04 阿留申海盆 171.404 8 54.591 8 15.4 27.7 14.8 33.6 8.5 — — — 6.2 9.9 ARC4-B06 阿留申海盆 174.493 8 57.005 0 19.1 24.8 17.1 27.1 11.9 — — — 4.1 6.2 ARC4-B11 阿留申海盆 179.917 3 59.992 5 28.4 23.3 16.0 24.5 7.6 — — 0.2 6.6 10.1 ARC4-B14 白令海陆架 -177.692 2 60.921 2 36.1 27.6 11.2 17.5 6.5 0.6 — 0.5 5.9 8.7 ARC4-BB01 白令海陆架 -177.476 3 61.287 5 39.2 32.5 7.0 16.6 4.1 0.4 — 0.2 6.7 9.6 ARC4-BB05 白令海陆架 -175.331 2 62.544 0 36.5 31.7 14.5 11.1 5.5 0.4 — 0.3 7.5 11.0 ARC4-BB06 白令海陆架 -174.380 8 63.008 0 34.0 28.5 11.4 19.9 5.4 0.5 — 0.3 6.0 9.0 ARC4-BN03 加拿大海盆 -158.899 8 78.499 3 41.6 5.2 5.9 30.9 9.1 6.9 — 0.4 6.2 9.5 ARC4-BN04 加拿大海盆 -159.039 2 79.471 2 28.6 6.0 7.6 30.1 9.4 13.9 3.8 0.6 5.6 8.1 ARC4-BN06 加拿大海盆 -164.939 5 81.461 5 32.8 3.0 9.4 27.0 8.8 15.5 3.5 — 6.2 8.8 ARC4-BN07 加拿大海盆 -166.471 3 82.482 5 28.2 8.1 5.6 33.8 10.1 9.2 4.6 0.4 5.3 7.9 ARC4-BN09 加拿大海盆 -167.126 8 84.186 8 29.3 6.8 13.1 27.0 5.6 11.2 6.8 0.2 5.9 8.6 ARC4-BN10 加拿大海盆 -178.643 3 85.503 5 27.9 13.2 6.4 34.4 8.1 4.8 4.8 0.4 5.4 7.9 ARC4-BN12 马克洛夫海盆 -170.488 5 87.071 2 27.0 13.1 9.1 32.6 8.3 6.4 3.2 0.3 5.3 7.6 ARC4-BN13 马克洛夫海盆 -176.629 5 88.394 3 25.8 5.2 7.8 45.9 13.4 1.6 — 0.3 5.2 7.3 ARC4-BS02 白令海陆架 -171.000 5 64.335 7 52.4 21.4 14.9 6.5 0.7 0.5 2.7 0.9 8.4 11.6 ARC4-BS05 白令海陆架 -169.502 8 64.333 3 64.2 20.2 7.2 2.6 0.7 — 5.1 — 8.8 12.8 ARC4-BS08 白令海陆架 -168.018 8 64.328 5 67.5 15.4 9.5 5.5 0.9 0.1 1.1 — 8.9 12.9 ARC4-C02 楚科奇海陆架 -167.335 8 69.123 3 49.2 19.8 3.5 18.5 6.2 2.2 0.2 0.4 6.0 8.9 ARC4-C04 楚科奇海陆架 -167.029 8 71.011 8 45.3 23.1 5.2 18.5 6.0 1.7 — 0.2 6.0 9.0 ARC4-C05 楚科奇海陆架 -164.728 3 70.760 0 82.0 10.3 1.9 3.7 1.5 — 0.3 0.3 8.5 12.0 ARC4-C06 楚科奇海陆架 -162.763 3 70.516 7 81.3 7.0 2.8 6.1 0.8 1.6 0.2 0.2 8.9 12.9 ARC4-C07 楚科奇海陆架 -165.325 7 72.541 2 33.0 19.5 8.0 29.9 9.2 0.3 — 0.1 4.6 6.4 ARC4-C09 楚科奇海陆架 -159.714 7 71.813 8 44.4 16.8 9.5 19.5 7.6 2.1 — 0.1 7.0 10.3 ARC4-CC1 楚科奇海陆架 -168.956 2 67.672 2 41.1 19.9 14.0 17.1 6.0 1.3 0.2 0.4 7.2 10.2 ARC4-CC4 楚科奇海陆架 -167.863 5 68.133 8 70.3 11.2 5.4 9.3 3.0 0.6 — 0.2 7.5 11.8 ARC4-CC8 楚科奇海陆架 -166.963 3 68.300 0 73.6 8.1 1.3 8.3 3.5 4.5 0.5 0.2 7.4 11.2 ARC4-CO-5 楚科奇海陆架 -157.492 7 71.415 8 47.5 8.5 8.1 23.5 6.0 6.1 — 0.3 6.0 8.6 ARC4-CO-10 楚科奇海陆架 -157.926 8 71.620 2 36.0 18.6 7.4 27.8 8.5 1.3 — 0.4 5.3 7.7 ARC4-M02 加拿大海盆 -171.988 8 76.999 0 28.7 9.0 9.7 31.6 7.0 6.5 7.3 0.2 5.7 8.5 ARC4-M03 加拿大海盆 -171.832 7 76.502 3 30.0 9.4 6.3 31.2 4.7 10.3 7.8 0.3 5.9 8.6 ARC4-M05 加拿大海盆 -172.127 7 75.651 7 29.5 13.2 7.0 35.7 11.7 2.7 — 0.2 4.5 6.5 ARC4-M06 楚科奇海陆架 -171.997 5 75.330 0 30.1 12.9 10.2 35.4 9.8 1.6 — — 4.8 7.1 ARC4-M07 楚科奇海陆架 -172.031 2 74.994 7 26.3 18.3 0.8 42.2 11.3 0.2 — 0.9 5.4 9.4 ARC4-MOR2 加拿大海盆 -158.985 8 74.547 2 40.3 8.1 6.1 22.5 4.6 15.1 3.2 0.1 5.7 8.0 ARC4-MS01 加拿大海盆 -154.707 3 73.174 7 30.1 11.9 5.8 38.6 11.5 2.0 — 0.1 4.9 7.7 ARC4-MS02 加拿大海盆 -156.367 5 73.675 2 30.7 12.5 7.8 36.6 10.5 1.7 — 0.2 4.9 7.0 ARC4-MS03 加拿大海盆 -157.298 7 74.067 5 24.6 21.0 8.2 32.3 8.8 2.3 2.8 — 5.8 8.6 ARC4-NB01 白令海陆架 -175.075 8 61.233 7 32.0 26.8 11.5 21.7 7.4 0.2 — 0.4 5.3 8.0 ARC4-NB02 白令海陆架 -173.686 3 61.378 2 40.9 31.5 4.9 16.6 5.0 0.8 — 0.3 5.7 8.8 ARC4-NB03 白令海陆架 -172.197 0 61.506 8 39.0 5.9 12.5 27.7 8.2 6.7 — 0.0 6.4 8.5 ARC4-NB06 白令海陆架 -167.511 2 61.827 7 52.2 24.6 9.6 7.7 2.7 — 2.5 0.7 8.3 12.2 ARC4-NB08 白令海陆架 -167.342 0 62.658 7 45.3 32.2 6.6 7.0 5.4 1.1 1.8 0.6 8.1 12.0 ARC4-NB-A 白令海陆架 -171.002 2 62.833 3 49.2 28.3 8.6 7.6 3.5 0.7 1.3 0.8 7.4 10.6 ARC4-R06 楚科奇海陆架 -168.983 3 69.500 0 41.9 22.0 6.3 21.7 6.3 1.7 — 0.1 6.3 9.3 ARC4-R08 楚科奇海陆架 -168.980 2 71.003 2 44.7 24.0 8.5 16.1 5.4 0.9 0.1 0.3 6.3 9.0 ARC4-R09 楚科奇海陆架 -168.940 0 71.963 3 34.6 20.9 11.5 23.5 7.8 1.0 — 0.7 5.4 8.3 ARC4-S21 楚科奇海陆架 -154.722 2 71.623 5 50.1 12.0 3.0 20.8 6.5 7.2 0.4 — 6.4 9.1 ARC4-S23 楚科奇海陆架 -153.763 5 71.929 2 39.5 4.9 9.5 31.0 9.2 3.5 2.1 0.3 5.6 8.1 ARC4-S24 加拿大海盆 -153.212 0 72.250 5 31.0 9.0 3.9 36.9 10.5 8.7 — — 4.0 5.9 ARC4-S25 加拿大海盆 -152.500 0 72.342 2 32.1 12.0 8.6 35.2 10.2 1.6 — 0.3 5.2 8.0 ARC4-S26 加拿大海盆 -153.552 0 72.700 7 30.9 13.7 6.1 37.8 11.5 — — — 4.9 7.2 ARC4-SR01 楚科奇海陆架 -168.970 0 67.004 0 61.6 20.6 5.4 7.5 2.3 0.6 1.4 0.6 6.2 8.8 ARC4-SR02 楚科奇海陆架 -168.981 2 67.499 0 46.0 26.8 8.2 12.8 4.1 0.7 — 1.4 6.4 9.7 ARC4-SR03 楚科奇海陆架 -169.015 3 67.997 5 40.1 29.4 5.6 17.6 5.9 1.2 — 0.2 5.7 8.6 ARC4-SR04 楚科奇海陆架 -168.996 5 68.498 0 40.5 29.0 3.9 18.3 6.5 1.8 — — 5.8 8.3 ARC4-SR05 楚科奇海陆架 -168.997 7 69.001 7 38.9 24.9 8.0 21.0 6.4 0.8 — — 5.4 7.9 ARC4-SR10 楚科奇海陆架 -169.000 8 73.000 7 37.3 20.7 9.0 23.7 7.7 0.8 — 0.8 5.6 8.7 ARC4-SR11 楚科奇海陆架 -168.987 5 73.994 8 25.6 17.5 6.3 38.7 10.8 0.7 — 0.4 5.3 7.9 ARC4-SR12 楚科奇海陆架 -169.001 3 74.497 7 32.6 13.7 9.5 34.5 7.6 1.4 — 0.7 4.7 7.1 AMK78-01 俄罗斯极地海 149.065 9 76.595 5 29.2 24.6 15.0 23.5 7.6 — — 0.1 6.2 8.7 AMK78-02 俄罗斯极地海 160.940 2 74.904 5 31.5 23.4 9.0 27.0 8.4 0.7 — — 6.7 9.7 AMK78-03 俄罗斯极地海 160.888 1 74.914 3 31.6 26.7 7.3 24.8 9.6 — — — 6.7 10.1 AMK78-04 俄罗斯极地海 160.942 5 74.922 8 30.2 21.1 8.0 29.5 10.9 — — 0.3 5.7 8.0 AMK78-05 俄罗斯极地海 160.531 6 74.937 7 32.3 20.4 7.5 31.0 8.5 — — 0.3 6.5 9.5 AMK78-06 俄罗斯极地海 130.499 2 73.122 7 28.3 22.6 12.4 24.0 11.6 1.1 — — 6.0 8.7 AMK78-07 俄罗斯极地海 130.345 6 73.108 7 28.8 26.6 7.0 22.6 13.2 1.7 0.1 — 5.5 7.5 AMK78-08 俄罗斯极地海 130.367 2 73.113 7 30.3 23.3 11.4 24.3 10.7 — — — 6.2 8.8 AMK78-09 俄罗斯极地海 130.279 9 73.092 5 29.8 21.0 19.2 18.5 9.0 2.2 0.1 0.2 5.9 8.2 AMK78-10 俄罗斯极地海 129.143 0 75.199 8 27.5 23.1 14.8 26.9 7.2 0.5 — — 6.9 10.7 AMK78-11 俄罗斯极地海 128.645 5 75.226 4 23.7 20.6 14.2 31.8 9.2 0.4 — 0.1 5.8 8.7 AMK78-12 俄罗斯极地海 125.424 7 76.394 6 39.5 26.5 8.9 18.1 7.0 — — — 7.6 11.2 AMK78-13 俄罗斯极地海 125.536 0 76.781 6 32.1 21.9 8.8 28.0 8.9 — 0.1 0.2 6.1 8.5 AMK78-14 俄罗斯极地海 127.792 6 76.892 9 39.5 23.9 15.0 17.3 4.1 — 0.1 0.1 8.5 13.0 AMK78-15 俄罗斯极地海 127.805 3 76.892 5 40.2 27.7 10.1 18.7 3.2 — 0.1 — 7.8 11.4 AMK78-16 俄罗斯极地海 120.668 1 77.311 6 24.2 19.0 7.7 36.4 12.6 — — 0.1 4.5 6.7 AMK78-17 俄罗斯极地海 104.010 8 77.949 6 30.3 23.7 3.8 28.6 13.6 — — — 5.5 8.1 AMK78-18 俄罗斯极地海 104.234 4 77.949 6 28.7 17.8 5.9 31.1 16.5 — — — 4.2 5.5 AMK78-19 俄罗斯极地海 73.179 3 73.333 5 29.0 20.0 5.4 31.7 13.8 — — 0.1 4.5 6.2 AMK78-20 俄罗斯极地海 73.339 9 73.576 7 32.2 20.0 11.7 25.6 10.3 — — 0.2 5.7 8.1 AMK78-21 俄罗斯极地海 73.250 0 73.832 5 33.7 23.0 7.0 25.9 10.3 — — 0.1 5.6 7.8 续表 注: “—”表示未检测到该矿物。表 4 Q型聚类分区中矿物平均含量(%)
区域 石英 斜长石 钾长石 云母 绿泥石 白云石 辉石 角闪石 A1 30.8 21.9 10.0 26.6 10.0 0.5 0 0.2 A2 17.3 26.3 16.0 30.4 10.2 0 0 0 B1 29.2 8.7 7.6 32.0 8.1 9.5 4.6 0.3 B2 28.3 13.8 7.3 36.5 10.0 2.4 1.5 0.3 C 43.8 7.7 6.5 25.7 7.1 7.8 1.1 0.2 D1 49.0 26.7 9.6 8.3 3.3 0.6 1.7 0.9 D2 40.2 24.8 9.0 18.6 5.9 1.2 0 0.2 E 64.4 18.7 7.4 5.2 1.3 0.2 2.5 0.2 F 76.8 9.2 2.9 6.9 2.2 1.7 0.3 0.2 所有区域 37.4 19.0 8.6 23.8 7.5 2.4 1.1 0.3 -
[1] Novigatsky A N, Lisitzin A P. Concentration, composition, and fluxes of dispersed sedimentary material in the snow and ice cover of the polar arctic[J]. Oceanology, 2019, 59(3): 406-410. [2] Dethleff D. Entrainment and export of Laptev Sea ice sediments, Siberian Arctic[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07009. [3] Osadchiev A A, Pisareva M N, Spivak E A, et al. Freshwater transport between the Kara, Laptev, and East-Siberian seas[J]. Scientific Reports, 2020, 10(1): 13041. [4] Phillips R L, Grantz A. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: Implications for the configuration of Late Quaternary oceanic and atmospheric circulation in the Arctic[J]. Marine Geology, 2001, 172(1/2): 91-115. [5] Viscosi-Shirley C, Pisias N, Mammone K. Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic's Chukchi and Laptev shelves[J]. Continental Shelf Research, 2003, 23(11/12/13): 1201-1225. [6] Darby D A. Sources of sediment found in sea ice from the western Arctic Ocean, new insights into processes of entrainment and drift patterns[J]. Journal of Geophysical Research: Oceans, 2003, 108(C8): 3257. [7] Middleton G V. Hydraulic interpretation of sand size distributions[J]. The Journal of Geology, 1976, 84(4): 405-426. [8] Flemming B W. The influence of grain-size analysis methods and sediment mixing on curve shapes and textural parameters: Implications for sediment trend analysis[J]. Sedimentary Geology, 2007, 202(3): 425-435. [9] Vogt C. Bulk mineralogy in surface sediments from the eastern central Arctic Ocean[M]//Stein R; Ivanov G I; Levitan M A, et al. Surface-sediment composition and sedimentary processes in the central Arctic Ocean and along the Eurasian Continental Margin. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1996: 159-171. [10] Dong L S, Shi X F, Liu Y G, et al. Mineralogical study of surface sediments in the western Arctic Ocean and their implications for material sources[J]. Advances in Polar Science, 2014, 25(3): 192-203. [11] Wang R, Biskaborn B K, Ramisch A, et al. Modern modes of provenance and dispersal of terrigenous sediments in the North Pacific and Bering Sea: Implications and perspectives for palaeoenvironmental reconstructions[J]. Geo-Marine Letters, 2016, 36(4): 259-270. [12] Kobayashi D, Yamamoto M, Irino T, et al. Distribution of detrital minerals and sediment color in western Arctic Ocean and northern Bering Sea sediments: Changes in the provenance of western Arctic Ocean sediments since the last glacial Period[J]. Polar Science, 2016, 10(4): 519-531. [13] Vogt C, Knies J, Spielhagen R F, et al. Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years[J]. Global and Planetary Change, 2001, 31(1/2/3/4): 23-44. [14] Fagel N, Not C, Gueibe J, et al. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: Mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the northern Mendeleev Ridge[J]. Quaternary Science Reviews, 2014, 92: 140-154. [15] Gamboa A, Montero-Serrano J C, St-Onge G, et al. Mineralogical, geochemical, and magnetic signatures of surface sediments from the Canadian Beaufort Shelf and Amundsen Gulf (Canadian Arctic)[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(2): 488-512. [16] Ortiz J D, Polyak L, Grebmeier J M, et al. Provenance of Holocene sediment on the Chukchi-Alaskan margin based on combined diffuse spectral reflectance and quantitative X-Ray Diffraction analysis[J]. Global and Planetary Change, 2009, 68(1/2): 73-84. [17] 马礼敦. X射线粉末衍射的新起点:Rietveld全谱拟合[J]. 物理学进展,1996,16(2):115-135. Ma Lidun. New starting of X ray powder diffraction rietveld whole pattern fitting[J]. Progress in Physics, 1996, 16(2): 115-135. [18] 国家海洋局极地专项办公室. 北极海域海洋地质考察[M]. 北京:海洋出版社,2016:1-12. Polar Special Office of the State Oceanic Administration. Arctic marine geological investigation[M]. Beijing: China Ocean Press, 2016: 1-12. [19] Darby D A, Ortiz J, Polyak L, et al. The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi-Alaskan margin sediments[J]. Global and Planetary Change, 2009, 68(1/2): 58-72. [20] Ganelin V G, Biakov A S. The Permian biostratigraphy of the Kolyma-Omolon region, northeast Asia[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 225-234. [21] Parfenov L M. Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics[J]. Tectonophysics, 1991, 199(2/3/4): 319-342. [22] Sharma M, Basu A R, Nesterenko G V. Nd-Sr isotopes, petrochemistry, and origin of the Siberian flood basalts, USSR[J]. Geochimica et Cosmochimica Acta, 1991, 55(4): 1183-1192. [23] Tikhomirov P L, Akinin V V, Ispolatov V O, et al. The Okhotsk-Chukotka volcanic belt: Age of its northern part according to new Ar-Ar and U-Pb geochronological data[J]. Stratigraphy and Geological Correlation, 2006, 14(5): 524-537. [24] Hartmann J, Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12): Q12004. [25] Zhang S X, Jowett D M S, Barnes C R. Hirnantian (Ordovician) through Wenlock (Silurian) conodont biostratigraphy, bioevents, and integration with graptolite biozones, Cape Phillips Formation slope facies, Cornwallis Island, Canadian Arctic Islands[J]. Canadian Journal of Earth Sciences, 2017, 54(9): 936-960. [26] Macdonald R W, Harner T, Fyfe J, et al. The influence of global change on contaminant pathways to, within, and from the Arctic[M]. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2003: xii+65. [27] Asahara Y, Takeuchi F, Nagashima K, et al. Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as derived from Sr and Nd isotopes: Implications for recent climate change in the Arctic regions[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 155-171. [28] Gordeev V V, Martin J M, Sidorov I S, et al. A reassessment of the Eurasian River input of water, sediment, major elements, and nutrients to the Arctic Ocean[J]. American Journal of Science, 1996, 296(6): 664-691. [29] Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2): 1038. [30] Holmes R M, McClelland J W, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean[J]. Global Biogeochemical Cycles, 2002, 16(4): 1098. [31] Are F, Reimnitz E. An overview of the Lena River delta setting: Geology, tectonics, geomorphology, and hydrology[J]. Journal of Coastal Research, 2000, 16(4): 1083-1093. [32] Burn C R, Kokelj S V. The environment and permafrost of the Mackenzie Delta area[J]. Permafrost and Periglacial Processes, 2009, 20(2): 83-105. [33] Brabets T P, Wang B, Meade R H. Environmental and hydrologic overview of the Yukon River Basin, Alaska and Canada[R]. Anchorage: U.S. Geological Survey, 2000: 106-106. [34] Roach A T, Aagaard K, Pease C H, et al. Direct measurements of transport and water properties through the Bering Strait[J]. Journal of Geophysical Research: Oceans, 1995, 100(C9): 18443-18457. [35] Weingartner T J, Danielson S, Sasaki Y, et al. The Siberian coastal current: A wind- and buoyancy-forced Arctic coastal current[J]. Journal of Geophysical Research: Oceans, 1999, 104(C12): 29697-29713. [36] Nagashima K, Asahara Y, Takeuchi F, et al. Contribution of detrital materials from the Yukon River to the continental shelf sediments of the Bering Sea based on the electron spin resonance signal intensity and crystallinity of quartz[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2012, 61-64: 145-154. [37] Watanabe E, Onodera J, Harada N, et al. Enhanced role of eddies in the Arctic marine biological pump[J]. Nature Communications, 2014, 5: 3950. [38] 黄继武,李周. 多晶材料X射线衍射:实验原理、方法与应用[M]. 北京:冶金工业出版社,2012:1-117. Huang Jiwu, Li Zhou. Experimental principles, methods and applications of X-ray diffraction for polycrystalline materials[M]. Beijing: Metallurgical Industry Press, 2012: 1-117. [39] Ikuta D, Kawame N, Banno S, et al. First in situ X-ray identification of coesite and retrograde quartz on a glass thin section of an ultrahigh-pressure metamorphic rock and their crystal structure details[J]. American Mineralogist, 2007, 92(1): 57-63. [40] Fitz Gerald J D, Parise J B, MacKinnon I D R. Average structure of an An48 plagioclase from the Hogarth ranges[J]. American Mineralogist, 1986, 71(11/12): 1399-1408. [41] Ribbe P H. The structure of a strained intermediate microcline in cryptoperthitic association with twinned plagioclase[J]. American Mineralogist, 1979, 64(3/4): 402-408. [42] Brigatti M F, Frigieri P, Poppi L. Crystal chemistry of Mg-, Fe-bearing muscovites-2M1 [J]. American Mineralogist, 1998, 83(7/8): 775-785. [43] Zanazzi P F, Montagnoli M, Nazzareni S, et al. Structural effects of pressure on monoclinic chlorite: A single-crystal study[J]. American Mineralogist, 2007, 92(4): 655-661. [44] Steinfink H, Sans F J. Refinement of the crystal structure of dolomite[J]. American Mineralogist, 1959, 44(5/6): 679-682. [45] Peacor D R. Refinement of the crystal structure of a pyroxene of formula MⅠ MⅡ (Si1.5Al0.5)O6 1 [J]. American Mineralogist, 1967, 52(1/2): 31-41. [46] Oberti R, Ungaretti L, Cannillo E, et al. The mechanism of Cl incorporation in amphibole[J]. American Mineralogist, 1993, 78(7/8): 746-752. [47] 李秋玲. 北极东西伯利亚陆架沉积物特征及物源分析[D]. 青岛:自然资源部第一海洋研究所,2020. Li Qiuling. Sediment characteristics and provenance analysis of the east siberian arctic shelf[D]. Qingdao: The First Institute of Oceanography, MNR, 2020. [48] Peregovich B, Hoops E, Rachold V. Sediment transport to the Laptev Sea (Siberian Arctic) during the Holocene: Evidence from the heavy mineral composition of fluvial and marine sediments[J]. Boreas, 1999, 28(1): 205-214. [49] 陈志华. 北冰洋西部沉积物地球化学特征及环境指示意义[D]. 青岛:中国海洋大学,2004. Chen Zhihua. Geochemistry of sediments in the western arctic ocean and implications of spatial and temporal changes of sedimentary environments[D]. Qingdao: Ocean University of China, 2004. [50] Kyzs’michev A B, Soloviev A V, Gonikberg V E, et al. Mesozoic syncollision siliciclastic sediments of the Bols’shoi Lyakhov Island (New Siberian Islands)[J]. Stratigraphy and Geological Correlation, 2006, 14(1): 30-48. [51] Viscosi-Shirley C, Mammone K, Pisias N, et al. Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: Implications for sediment provenance and grain size sorting[J]. Continental Shelf Research, 2003, 23(11/12/13): 1175-1200. [52] Eicken H, Kolatschek J, Freitag J, et al. A key source area and constraints on entrainment for basin-scale sediment transport by Arctic sea ice[J]. Geophysical Research Letters, 2000, 27(13): 1919-1922. [53] Darby D A, Myers W B, Jakobsson M, et al. Modern dirty sea ice characteristics and sources: The role of anchor ice[J]. Journal of Geophysical Research: Oceans, 2011, 116(C9): C09008. [54] Byers F M. Geology of umnak and bogoslof islands, aleutian islands, alaska[R]. Washington: United States Government Printing Office, 1959: 267-369. [55] 汪卫国,戴霜,陈莉莉,等. 白令海和西北冰洋表层沉积物磁化率特征初步研究[J]. 海洋学报,2014,36(9):121-131. Wang Weiguo, Dai Shuang, Chen Lili, et al. Magnetic susceptibility characteristics of surface sediments in Bering Sea and western Arctic Ocean: Preliminary results[J]. Acta Oceanologica Sinica, 2014, 36(9): 121-131. [56] 赵蒙维,汪卫国,方建勇,等. 白令海北部悬浮体含量分布及其颗粒组分特征[J]. 海洋学报,2016,38(1):82-93. Zhao Mengwei, Wang Weiguo, Fang Jianyong, et al. The distribution and composition of suspended particles in the northern Bering Sea[J]. Acta Oceanologica Sinica, 2016, 38(1): 82-93. [57] Naidu A S, Han M W, Mowatt T C, et al. Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic[J]. Marine Geology, 1995, 127(12/3/4): 87-104. [58] Darby D A, Naidu A S, Mowatt T C, et al. Sediment composition and sedimentary processes in the Arctic Ocean[M]//Herman Y. The arctic seas: Climatology, oceanography, geology, and biology. Boston: Springer, 1989: 657-720. [59] Eberl D D. Quantitative mineralogy of the Yukon River system: Changes with reach and season, and determining sediment provenance[J]. American Mineralogist, 2004, 89(11/12): 1784-1794. [60] Zhang T L, Wang R J, Xiao W S, et al. Characteristics of terrigenous components of Amerasian Arctic Ocean surface sediments: Implications for reconstructing provenance and transport modes[J]. Marine Geology, 2021, 437: 106497. [61] Wang W G, Yang J C, Zhao M W, et al. Spatial variation in grain-size population of surface sediments from northern Bering Sea and western Arctic Ocean: Implications for provenance and depositional mechanisms[J]. Advances in Polar Science, 2020, 31(3): 192-204. [62] Stein R, Matthießen J, Frank N, et al. Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean)[J]. Polarforschung, 2010, 79(2): 97-121. [63] 董红梅,宋友桂. 黏土矿物在古环境重建中的应用[J]. 海洋地质与第四纪地质,2009,29(6):119-130. Dong Hongmei, Song Yougui. Clay mineralogy and its application to paleo-environmental reconstruction[J]. Marine Geology & Quaternary Geology, 2009, 29(6): 119-130. [64] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670. [65] Moros M, McManus J F, Rasmussen T, et al. Quartz content and the quartz-to-plagioclase ratio determined by X-ray diffraction: A proxy for ice rafting in the northern North Atlantic?[J]. Earth and Planetary Science Letters, 2004, 218(3/4): 389-401.