-
在使用AnalySize进行非参数化端元分析时,线性相关性(R2)越高,角度偏差越小,非参数化粒度端元与粒度分布曲线的拟合程度越好[35]。拟合结果(图3)显示,当端元数为4时,R2为0.976(大于0.9),但是角度偏差远大于5;当端元数为5时,R2已经达到0.986,但角度偏差仍大于5;当端元数为6时,R2为0.994,角度偏差为3.37(小于5),此时端元相关性为0.311。本着端元最少、拟合效果最佳的原则,这里将端元数确定为6个。在进行端元分析时,不同的算法可能产生不同的结果,为了使端元分析结果更加可靠,本文同时运用基于神经网络的端元分析模型(Neural Network Based End-Member Modeling Analysis, NNEMMA)进行验证[36],发现二者的拟合结果基本一致(图4)。
图 3 Bryce峡谷Claron组非参数化粒度端元选取
Figure 3. Determination of number of non⁃parametric end members in Claron Formation in Bryce Canyon
图 4 基于AnalySize和NNEMMA两种非参数化算法的端元拟合结果比较
Figure 4. Comparison of fitted results for end members based on non⁃parametric AnalySize and NNEMMA algorithms
端元分析结果如图5所示,端元粒度参数信息见表1。端元1呈正偏态、单峰分布,众数粒径位于0.75 μm(图5a);端元2呈单峰对称分布,众数粒径位于2.38 μm(图5b);端元3呈双峰对称分布、尖峰形态,第一众数粒径位于5.33 μm,第二众数粒径位于33.63 μm,沉积物分选一般(图5c);端元4呈单峰非对称分布,众数粒径位于11.93 μm(图5d);端元5呈三峰分布,峰高从高到低分别位于21.22 μm、4.23 μm和0.85 μm,且在100~200 μm呈现粗尾(图5e);端元6呈双峰、负偏态,第一众数粒径位于42.34 μm,第二众数粒径位于8.45 μm(图5f)。
图 5 Bryce峡谷Claron组端元粒度分布
Figure 5. End member grain⁃size distribution of the Claron Formation in Bryce Canyon
表 1 Bryce峡谷Claron组端元粒度参数
端元数 端元模态/μm 平均粒径(Mz)/μm 分选系数/d 偏度/Sk 峰态/Kg 端元1 0.75 1.31 2.48 0.26 1.06 端元2 2.38 2.01 1.88 -0.06 0.95 端元3 5.33; 33.63 5.07 2.4 0.06 1.69 端元4 11.93 8.38 2.29 -0.38 1.50 端元5 21.22; 4.23; 0.85 8.79 3.69 -0.46 0.82 端元6 42.34; 8.45 17.53 3.71 -0.41 0.89 注: 端元模态/μm分别按第一众数粒径、第二众数粒径、第三众数粒径进行排列。 -
Claron组的石英颗粒从棱角状到次圆状,表面多发育蝶形坑、撞击坑、圆麻点和阶梯状断口(图6)。许多石英颗粒表面平坦光滑,为SiO2在表面形成沉淀[37];而且在蝶形坑和撞击坑中多见圆形鼓包凸起(图6a),呈葡萄状,为葡萄状SiO2沉淀[37]。呈锯齿状、高度参差不齐且与颗粒表面之间存在一定夹角的翻卷解理薄片[38]在地层中十分常见,边缘有SiO2溶蚀沉淀加厚(图6a,b)。
Eolian Deposition and Its Significance in the Claron Formation Indicated by Grain-size End Members in the Bryce Canyon, Utah, USA
-
摘要: 美国犹他州西南部广泛出露的古新世—始新世Claron组是研究该时期气候环境变化的优质材料。已有研究认为Claron组为河湖相沉积地层,但是野外考察结果显示一些层位存在显著的风尘沉积特征,因此有必要对该地层的沉积环境进行重新探讨。以Bryce峡谷国家公园的Claron组为研究对象,野外沉积特征和石英颗粒表面结构特征均指示地层红色层以风尘沉积为主。采用非参数粒度端元分析模型对其进行粒度组分分解,得到6个具有不同沉积意义的端元,分别代表成土组分、积水洼地/临时性湖泊静水沉降组分、冲—洪积组分以及风尘沉积组分。其中端元3、4、6(第一众数粒径分别为5.33 μm、11.93 μm、42.34 μm)均被识别为风尘沉积组分,在地层中的平均含量近50%,表明地层一半以上物质来自风尘沉积,且风尘沉积组分在各时期均占有较大比例,是该地层稳定的物质来源。各端元在地层中的比例变化表明地层由风尘沉积、冲—洪积和积水洼地/临时性湖泊交替沉积形成。在冲—洪积和积水洼地/临时性湖泊沉积为主的时期,气候环境湿润;而风尘沉积和成土占据主导的时期,气候相对干旱。Abstract: The Cenozoic Claron Formation spanning the Paleocene to Eocene, which is widely exposed in the western United States, is suitable for studying climatic and environmental change in this period. The Claron Formation has generally been interpreted as a fluvial-lacustrine deposit, but eolian deposit features are evident from field observations. Therefore, identifying eolian components in the strata and discussing their significance is of vital importance for interpreting the sedimentary environment of the Claron Formation. The area of the Claron Formation covered by this study was the Bryce Canyon National Park. The eolian deposits in the strata were firstly identified by field observation of the sedimentary characteristics and the surface textures of quartz grains. Then the eolian components of the rock were determined by non-parametric grain-size end-member analysis to unmix the grain-size components. It was found that most of layers are red in color, and the deep-to-light variation of the red color of the strata and the off-white color vary overall with the bedding/horizon. The sediments were found to be homogeneous, mainly composed of silt and clay and rich in carbonate, with well developed vertical joints. Aggradational deposit properties were clearly observed in the red layers, evidence that the sedimentation and weathering processes were simultaneous. These field sedimentary characteristics indicate that the red layers are mainly eolian deposits. The quartz grains in the red samples were found to have surfaces characterized by large and small mechanical saucer-shaped pits, deep troughs, round pits, upturned plates and precipitation of SiO2, all of which are indicative of an eolian environment. This provides further evidence of eolian deposition in the red layers. Six end members with different sedimentary significance were obtained from the non-parametric grain-size end-member analysis model: soil-forming components; components of hydrostatic sedimentation formed in soak/ephemeral lake; components transported by high altitude air streams over long distances; components of dust settling after storms; alluvial-diluvial components; and near-source or far-source components transported by storms. End members 3, 4 and 6 (first mode grain size 5.33, 11.93 and 42.34 μm, respectively) were identified as eolian components, with an average content of approximately 50% in the strata. This indicates that eolian deposition accounted for more than half of the sediments in the strata. Moreover, the eolian components were found to occupy a large proportion in each layer, indicating that they were a stable strata component. Obvious variation of the content of each end member in the strata indicates inconsistent sedimentary environments at different times. The strata consist of alternate layers of eolian sediments, alluvial-diluvial deposition and soak/ephemeral lake deposition. The climate was humid during the periods of alluvial-diluvial and soak/ephemeral lake sedimentation, and arid during eolian deposition and soil formation.
-
Key words:
- grain-size end member /
- eolian deposit /
- Claron Formation /
- grain-size distribution
-
图 2 采样区地层特征
(a)剖面宏观特征,深—浅不同的红色层与灰白色层互层(黄色虚线为上部粉红色层与下部褐红色层的大致界线,并非不整合接触面);(b)顶部灰白色层,其间含浅褐色层;(c)钙结核不规则发育,总体上成层分布;(d)粉红色层发育彩色花斑状网纹;(e)褐红色层发育彩色花斑状网纹;(f)褐红色层发育灰白色斑点和浅色淋溶带
Figure 2. Strata characteristics in the sampling area
(a) alternating different shades of reddish layers and off⁃white layers on a macro scale (yellow dotted line represents only the approximate boundary between the upper pink layer and the lower maroon layer, not an unconformable contact); (b) an off⁃white layer at the top of the strate, interspersed with light brown layers; (c) calcium nodules developed irregularly but generally stratified; (d) colorful porphyritic reticulation in pink layer; (e) colorful porphyritic reticulation in maroon layer; (f) off⁃white spots and pale leached zones developed in maroon layer
图 6 Bryce峡谷Claron组石英颗粒表面结构特征
(a)A.蝶形撞击坑,表面葡萄状SiO2沉淀;B.翻卷解理薄片,表面SiO2沉淀;(b)C.圆麻点;(c)D.撞击深坑;(d)E.阶梯状断口
Figure 6. Surface textures of quartz grains of the Claron Formation in Bryce Canyon
(a) A. mechanical saucer⁃shaped pit with grape⁃like SiO2 precipitated on the surface; B. upturned plate with SiO2 precipitated on surface; (b) C. round pit; (c) D. deep trough; (d) E. step⁃like fracture
表 1 Bryce峡谷Claron组端元粒度参数
端元数 端元模态/μm 平均粒径(Mz)/μm 分选系数/d 偏度/Sk 峰态/Kg 端元1 0.75 1.31 2.48 0.26 1.06 端元2 2.38 2.01 1.88 -0.06 0.95 端元3 5.33; 33.63 5.07 2.4 0.06 1.69 端元4 11.93 8.38 2.29 -0.38 1.50 端元5 21.22; 4.23; 0.85 8.79 3.69 -0.46 0.82 端元6 42.34; 8.45 17.53 3.71 -0.41 0.89 注: 端元模态/μm分别按第一众数粒径、第二众数粒径、第三众数粒径进行排列。 -
[1] Tierney J E, Poulsen C J, Montañez I P, et al. Past climates inform our future[J]. Science, 2020, 370(6517): eaay3701. [2] Bowen G J, Bowen B B. Mechanisms of PETM global change constrained by a new record from central Utah[J]. Geology, 2008, 36(5): 379-382. [3] Sanjuan J, Eaton J G. Charophyte flora from the Claron Formation (Aquarius Plateau, southwestern Utah)-biostratigraphic implications[J]. Micropaleontology, 2016, 62(4): 323-330. [4] Sanjuan J, Vicente A, Eaton J G. New charophyte flora from the Pine Hollow and Claron formations (southwestern Utah). Taxonomic, biostratigraphic, and paleobiogeographic implications[J]. Review of Palaeobotany and Palynology, 2020, 282: 104289. [5] Eaton J G, Korth W W, Brinkman D B. Vertebrate fossils from the Claron Formation, Sweetwater Creek area, Garfield county, Utah, U.S.A.[J]. Rocky Mountain Geology, 2018, 53(2): 113-127. [6] DeCourten F. Shadows of time: The geology of Bryce canyon national park[M]. Utah: Bryce Canyon Natural History Association, 1994. [7] Taylor W J. Stratigraphic and lithologic analysis of the Claron Formation in southwestern Utah[M]. Salt Lake City: Utah Geological Survey Miscellaneous Publication, 1993. [8] Goldstrand P M. Tectonostratigraphy, petrology, and paleogeography of Upper Cretaceous to Eocene rocks of southwest Utah[D]. Reno: University of Nevada, 1991. [9] Bown T M, Hasiotis S T, Genise J F, et al. Trace fossils of Hymenoptera and other insects and paleoenvironments of the Claron Formation (Paleocene and Eocene), southwestern Utah[M]. Washington: US Geological Survey Bulletin, 1997, 2153: 41-58. [10] 丁仲礼,孙继敏,朱日祥,等. 黄土高原红黏土成因及上新世北方干旱化问题[J]. 第四纪研究,1997(2):147-157. Ding Zhongli, Sun Jimin, Zhu Rixiang, et al. Eolian origin of the red clay deposits in the Loess Plateau and implications for Pliocene climatic changes[J]. Quaternary Sciences, 1997(2): 147-157. [11] Tate S E, Greene R S B, Scott K M, et al. Recognition and characterisation of the aeolian component in soils in the Girilambone region, north western New South Wales, Australia[J]. CATENA, 2007, 69(2): 122-133. [12] Vandenberghe J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121: 18-30. [13] Liu X X, Sun Y B, Vandenberghe J, et al. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau[J]. Aeolian Research, 2018, 32: 202-209. [14] Zhang X N, Zhou A F, Zhang C, et al. High-resolution records of climate change in arid eastern central Asia during MIS 3 (51600-25300 cal a BP) from Wulungu Lake, north-western China[J]. Journal of Quaternary Science, 2016, 31(6): 577-586. [15] Zhang X N, Zhang H C, Chang F Q, et al. Sedimentary grain-size record of Holocene runoff fluctuations in the Lake Lugu watershed, SE Tibetan Plateau[J]. The Holocene, 2021, 31(3): 346-355. [16] Ghosh J K, Mazumder B S. Size distribution of suspended particles—unimodality, symmetry and lognormality[M]//Taillie C, Patil G P, Baldessari B A. Statistical distribution in scientific Work: Applications in physical, social and life sciences. Berlin: Springer Science & Business Media, 1981: 21-32. [17] McLaren P, Bowles D. The effects of sediment transport on grain-size distributions[J]. Journal of Sedimentary Research, 1985, 55(4): 457-470. [18] Yang F, Zhang G L, Yang F, et al. Pedogenetic interpretations of particle-size distribution curves for an alpine environment[J]. Geoderma, 2016, 282: 9-15. [19] 孙东怀,安芷生,苏瑞侠,等. 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展,2001,11(3):269-276. Sun Donghuai, An Zhisheng, Su Ruixia, et al. Mathematical approach to sedimentary component partitioning of polymodal sediments and its applications[J]. Progress in Natural Science, 2001, 11(3): 269-276. [20] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3/4): 263-277. [21] Prins M A, Vriend M, Nugteren G, et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 2007, 26(1/2): 230-242. [22] Heslop D, von Dobeneck T, Höcker M. Using non-negative matrix factorization in the “unmixing” of diffuse reflectance spectra[J]. Marine Geology, 2007, 241(1/2/3/4): 63-78. [23] Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180. [24] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506. [25] Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741. [26] van Hateren J A, Prins M A, van Balen R T. On the genetically meaningful decomposition of grain-size distributions: A comparison of different end-member modelling algorithms[J]. Sedimentary Geology, 2018, 375: 49-71. [27] Blakey R C, Ranney W D. Flat-slab subduction, the Laramide orogeny, uplift of the Colorado Plateau and rocky mountains: Paleocene and Eocene: Ca. 65-35 Ma[M]//Blakey R C, Ranney W D. Ancient landscapes of western North America. Cham: Springer, 2018: 131-148. [28] Lawton T F. Laramide sedimentary basins and sediment-dispersal systems[M]//Miall A D. The sedimentary basins of the United States and Canada. Amsterdam: Elsevier, 2019: 529-557. [29] DeCelles P G. Late Jurassic to Eocene evolution of the cordilleran thrust belt and foreland basin system, western U.S.A.[J]. American Journal of Science, 2004, 304(2): 105-168. [30] Sprinkel D A, Chidsey T C, Anderson P B. Geology of Utah's parks and monuments[M]. 3rd ed. Salt Lake City: Utah Geological Association, 2010. [31] Bowers W E. The Canaan peak, pine hollow, and Wasatch formations in the table cliff region, Garfield county, Utah[M]. Washington: US Government Printing Office, 1972. [32] Blott S J, Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26(11): 1237-1248. [33] Xiao J L, Porter S C, An Z S, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130, 000 yr[J]. Quaternary Research, 1995, 43(1): 22-29. [34] 孙有斌. 黄土样中石英单矿物的分离[J]. 岩矿测试,2001,20(1):23-26. Sun Youbin. Separation of quartz minerals from loess samples[J]. Rock and Mineral Analysis, 2001, 20(1): 23-26. [35] 李越,宋友桂,宗秀兰,等. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报,2019,74(1):162-177. Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin[J]. Acta Geographica Sinica, 2019, 74(1): 162-177. [36] Liu Y M, Liu X X, Sun Y B. QGrain: An open-source and easy-to-use software for the comprehensive analysis of grain size distributions[J]. Sedimentary Geology, 2021, 423: 105980. [37] 卢演俦,文启忠,黄伯钧,等. 中国黄土物质来源的初步探讨:石英粉砂颗粒表面结构的电子显微镜研究[J]. 地球化学,1976(1):47-53. Lu Yanchou, Wen Qizhong, Huang Bojun, et al. A prelimilary discussion on the source of loessic materials in China: A study of the surface textures of silt quartz grains by transmission electron microscope[J]. Geochimica, 1976(1): 47-53. [38] Margolis S V, Krinsley D H. Processes of formation and environmental occurrence of microfeatures on detrital quartz grains[J]. American Journal of Science, 1974, 274(5): 449-464. [39] 刘秀铭,吉金平,章涛,等. 湖南古丈奥陶纪红石林地层特征与石灰岩沉积环境分析[J]. 地球环境学报,2021,12(1):1-18. Liu Xiuming, Ji Jinping, Zhang Tao, et al. Analysis on sedimentary environment of the red stone forest strata in Guzhang, Hunan province[J]. Journal of Earth Environment, 2021, 12(1): 1-18. [40] Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and characterisation[M]. 2nd ed. New York: Wiley-VCH, 2008. [41] 沈吉,薛滨,吴敬禄,等. 湖泊沉积与环境演化[M]. 北京:科学出版社,2010:1-575. Shen Ji, Xue Bin, Wu Jinglu, et al. Lake sediments and environmental evolution[M]. Beijing: Science Press, 2010: 1-575. [42] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985:191-277. Liu Tungsheng. Loess and environment[M]. Beijing: Science Press, 1985: 191-277. [43] 朱丽东. 中亚热带加积型红土及其所记录的第四纪环境变化探讨[D]. 兰州:兰州大学,2007. Zhu Lidong. Aggradation red earth sediments in mid-subtropics of China and their recorded environmental changes during Quaternary[D]. Lanzhou: Lanzhou University, 2007. [44] 孙有斌,安芷生. 风尘堆积物中石英颗粒表面微结构特征及其沉积学指示[J]. 沉积学报,2000,18(4):506-509. Sun Youbin, An Zhisheng. Sedimentary interpretation of surface textures of quartz grains from the eolian deposits[J]. Acta Sedimentologica Sinica, 2000, 18(4): 506-509. [45] 谢又予. 中国石英砂表面结构特征图谱[M]. 北京:海洋出版社,1984:4-10. Xie Youyu. Atlas of quartz sand surface textural features of China micrographs[M]. Beijing: Ocean Press, 1984: 4-10. [46] Mahaney W. Atlas of sand grain surface textures and applications[M]. Oxford: Oxford University Press, 2002. [47] Krinsley D, Cavallero L. Scanning electron microscopic examination of periglacial eolian sands from Long Island, New York[J]. Journal of Sedimentary Research, 1970, 40(4): 1345-1350. [48] 江新胜,徐金沙,潘忠习. 鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积学报,2003,21(3):416-422. Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. Microscopic features on quartz sand grain surface in the Cretaceous desert of Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(3): 416-422. [49] Guo Z T, Peng S Z, Hao Q Z, et al. Origin of the Miocene-Pliocene red-earth formation at Xifeng in northern China and implications for paleoenvironments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 170(1/2): 11-26. [50] 鹿化煜,安芷生. 黄土高原红黏土与黄土古土壤粒度特征对比:红黏土风成成因的新证据[J]. 沉积学报,1999,17(2):226-232. Lu Huayu, An Zhisheng. Comparison of grain-size distribution of red clay and loess-paleosol deposits in Chinese Loess Plateau[J]. Acta Sedimentologica Sinica, 1999, 17(2): 226-232. [51] Bronger A, Heinkele T. Mineralogical and clay mineralogical aspects of loess research[J]. Quaternary International, 1990, 7-8: 37-51. [52] 李徐生,杨达源,鹿化煜,等. 皖南第四纪风尘堆积序列粒度特征及其意义[J]. 海洋地质与第四纪地质,1997,17(4):74-78,80-81. Li Xusheng, Yang Dayuan, Lu Huayu, et al. The grain size features of Quaternary aeolian dust deposition sequence in south Anhui and their significance[J]. Marine Geology & Quaternary Geology, 1997, 17(4): 74-78, 80-81. [53] 朱丽东,叶玮,周尚哲,等. 中亚热带第四纪红黏土的粒度特征[J]. 地理科学,2006,26(5):586-591. Zhu Lidong, Ye Wei, Zhou Shangzhe, et al. Grain-size features of red earth in mid-subtropics[J]. Scientia Geographica Sinica, 2006, 26(5): 586-591. [54] Wang X, Sun D H, Wang F, et al. A high-resolution multi-proxy record of Late Cenozoic environment change from central Taklimakan Desert, China[J]. Climate of the Past, 2013, 9(6): 2731-2739. [55] Liu X X, Vandenberghe J, An Z S, et al. Grain size of Lake Qinghai sediments: Implications for riverine input and Holocene monsoon variability[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 41-51. [56] Xiao J L, Fan J W, Zhai D Y, et al. Testing the model for linking grain-size component to lake level status of modern clastic lakes[J]. Quaternary International, 2015, 355: 34-43. [57] Vandenberghe J, Sun Y, Wang X, et al. Grain-size characterization of reworked fine-grained aeolian deposits[J]. Earth-Science Reviews, 2018, 177: 43-52. [58] Tsoar H, Pye K. Dust transport and the question of desert loess formation[J]. Sedimentology, 1987, 34(1): 139-153. [59] Chen F H, Qiang M R, Zhou A F, et al. A 2000-year dust storm record from Lake Sugan in the dust source area of arid China[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2149-2160. [60] Lin Y C, Mu G J, Xu L S, et al. The origin of bimodal grain-size distribution for aeolian deposits[J]. Aeolian Research, 2016, 20: 80-88. [61] 孙东怀,鹿化煜, Rea D,等. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报,2000,18(3):327-335. Sun Donghuai, Lu Huayu, Rea D, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication[J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335. [62] 刘秀铭,吕镔,毛学刚,等. 风积地层中铁矿物随环境变化及其启示[J]. 第四纪研究,2014,34(3):443-457. Liu Xiuming, Bin Lü, Mao Xuegang, et al. Iron minerals of aeolian deposits vary with environment and its significances[J]. Quaternary Sciences, 2014, 34(3): 443-457.