-
25个样品全岩XRD测试数据显示(图3),中侏罗统上沙溪庙组泥岩及砂质泥岩主要由石英和黏土矿物组成,石英含量可达58.4%(平均42.6%),黏土矿物含量为12.0%~46.9%,方解石、钾长石和斜长石平均含量分别为11.5%、2.4%和12.2%。不同颜色的岩石样品矿物组成具有较为明显的差异,灰绿色样品中方解石平均含量为20.8%,黏土矿物平均含量为17.5%,赤铁矿平均含量为0.2%;红色样品中相同矿物的平均含量则分别为9.0%、28.4%、3.5%;灰色样品中相同矿物的平均含量则分别为12.7%、27.3%、1.9%。不同颜色的样品具有相对不同的矿物组成,尤其是致色矿物赤铁矿含量具有较为明显的差异性(图3d)。
-
分析结果显示,所有样品普遍以SiO2的含量最高,平均值为57.89wt%,Al2O3、CaO、TFe2O3平均值分别为15.56wt%、3.94wt%和6.39wt%,MgO、K2O、Na2O平均值分别为2.94wt%、2.88wt%、1.25wt%,这几种常量元素可占总量的90.82wt%(表1)。其中非红层样品与红层样品中的SiO2含量相差不大(红层样品平均含量58.86wt%,非红层样品为54.05wt%),非红层样品中的Al2O3与TFe2O3含量相对较低(红层Al2O3平均值为16.16wt%,TFe2O3=6.43wt%;非红层样品Al2O3平均值为12.99wt%,TFe2O3=6.24wt%)。岩石风化强度研究中常用基本未风化的上地壳(UCC)平均化学成分[36]含量进行标准化来分析地层元素淋溶迁移特征。将不同颜色的样品计算平均值再标准化后的计算结果曲线(图4)显示:上沙溪庙组沉积物除Si、Al元素与上地壳平均化学成分相近之外,其他元素均出现了不同程度的偏移,Fe、Mg相对富集,Ca、K、Na元素相对亏损;同时,不同颜色的样品偏移程度也有所不同。红色样品与全岩样品元素含量特征基本一致,灰绿色样品的Al、Mg、K元素明显亏损且小于红色样品,Na元素亏损但高于红色样品,灰绿色及灰色样品中的Ca元素明显富集。
表 1 上沙溪庙组沉积物主量元素含量(wt%)及地球化学指标计算结果
No. 样品编号 颜色 SiO2 Al2O3 TFe2O3 CaO MgO K2O Na2O CIA CIW Ba 退碱指数 Al/Si 残积系数 1 CTC13 红色 58.27 16.29 6.69 1.13 2.89 3.13 0.89 72.09 84.80 0.87 0.12 0.28 3.14 2 CTC12B 灰绿色 51.97 15.62 6.43 7.24 2.34 2.79 2.52 57.99 65.32 1.68 0.63 0.30 1.41 3 CTC12 灰色 56.19 10.16 6.13 8.13 2.83 1.61 1.37 61.93 69.30 2.55 0.93 0.18 0.97 4 CTC11 红色 59.27 16.45 8.06 0.96 3.02 3.73 0.95 69.69 84.06 0.91 0.12 0.28 2.83 5 CTC10 红色 58.49 13.96 4.54 5.34 2.69 2.84 1.23 66.18 77.48 1.55 0.47 0.24 1.61 6 CTC9 红色 60.26 15.95 5.54 4.34 3.48 2.83 1.28 68.74 79.17 1.37 0.35 0.26 1.71 7 CTC8 红色 53.51 14.80 5.51 7.29 2.93 3.09 1.06 68.41 80.92 1.74 0.56 0.28 1.55 8 CTC7 红色 58.30 15.75 6.27 3.49 2.98 3.17 1.13 68.75 80.86 1.22 0.29 0.27 2.04 9 CTC6 红色 53.65 14.93 4.60 7.81 3.01 2.88 1.08 69.17 80.82 1.79 0.59 0.28 1.45 10 CTC5 红色 61.39 16.14 6.63 1.19 3.18 3.10 1.33 67.63 78.69 0.98 0.16 0.26 2.59 11 CTC4 灰绿色 50.90 13.26 6.15 10.30 1.38 1.98 1.94 60.89 67.53 2.08 0.92 0.26 1.24 12 CTC3 灰绿色 58.45 12.57 6.32 7.49 2.24 1.92 2.29 56.62 62.49 2.00 0.78 0.21 1.35 13 CTC2B 灰色 52.48 14.19 6.17 6.36 3.86 2.69 1.61 63.36 72.82 1.89 0.56 0.27 1.40 14 CTC2 红色 58.96 16.09 6.99 2.14 3.11 3.46 1.18 67.87 80.60 1.08 0.21 0.27 2.33 15 CTC1 红色 58.13 16.97 8.33 1.08 3.32 3.41 1.12 69.74 82.19 0.94 0.13 0.29 2.84 16 STC11 红色 62.69 16.11 6.00 1.78 3.27 2.66 1.21 70.10 80.14 1.02 0.19 0.26 2.48 17 STC9 红色 53.60 14.50 4.80 7.69 3.00 2.49 1.12 69.49 79.80 1.80 0.61 0.27 1.43 18 STC8 红色 58.41 16.95 7.44 3.05 3.00 3.30 0.88 72.38 85.41 1.07 0.23 0.29 2.38 19 STC7 红色 59.74 16.74 6.01 2.86 3.01 2.80 1.10 71.62 82.29 1.05 0.24 0.28 2.33 20 STC6 红色 60.10 17.20 7.31 0.89 3.04 3.44 0.93 71.74 84.91 0.85 0.11 0.29 2.96 21 STC5 红色 62.18 16.72 5.61 1.53 2.97 2.83 1.09 71.52 82.31 0.91 0.16 0.27 2.65 22 STC4 红色 61.57 15.78 5.31 2.54 2.83 2.50 1.20 70.35 80.01 1.04 0.24 0.26 2.32 23 STC3 红色 58.88 17.22 8.26 1.05 2.91 3.35 0.88 72.55 85.62 0.83 0.11 0.29 3.11 24 STC2 红色 59.93 17.05 7.90 0.96 2.99 3.16 0.97 72.09 84.28 0.84 0.11 0.28 3.09 25 STC1 红色 59.87 17.71 6.85 1.77 3.28 2.84 0.83 75.31 86.61 0.90 0.15 0.30 2.82 通过一些广泛应用于评估化学风化强度的地球化学指数来对样品进行计算分析,如化学蚀变指数[37⁃38](CIA=molar(Al2O3)/molar(CaO*+Al2O3+Na2O+K2O)*100%,CaO*代表硅酸盐矿物中的CaO,采用文献[39]提出的方法进行校正)、化学风化指数[40](CIW=molar(Al2O3)/molar(CaO*+Al2O3+Na2O)*100%)、风化淋溶系数[18](Ba=(CaO+K2O+Na2O+MgO)/Al2O3,氧化物同为分子摩尔数)、退碱指数[41]((NaO+CaO)/Al2O3)、黏土化指数[42](Al2O3/SiO2)、残积指数[36]((Al2O3+Fe2O3)/(CaO+Na2O+MgO))。计算结果显示(表1):四川盆地上沙溪庙组剖面CIA指数具有从下至上逐渐降低的趋势,变化范围为56.6~75.3,红色泥岩为66.2~75.3,平均值为70.3,灰绿色泥岩平均值为58.5,灰色泥岩平均值为62.6;CIW指数和CIA指数特征相似,红色泥岩平均值为0.82,灰绿色样品为0.65,灰色样品为0.71;Ba指数和退碱指数具有从下向上逐渐增大的特征,红色样品Ba指数最低(1.14),灰绿色样品为1.92,灰色样品为2.22。退碱指数同样红色样品最低,为0.26,灰绿色样品为0.78,灰色样品为0.75。由下至上剖面黏土化指数和残积指数逐渐降低,红色样品(黏土化指数平均值为0.27,残积系数平均值为2.38)均略大于灰绿色(黏土化指数平均值为0.26,残积系数平均值为1.34)和灰色样品(黏土化指数平均值为0.23,残积系数平均值为1.19)。
-
挑选新鲜的红层泥岩样品以及不同颜色的岩石样品进行穆斯堡尔谱测试,测试结果见图5,在灰色与红色泥岩样品中均出现了两组双线峰(D1、D2)和一组六线峰(Sextet),但绿色样品中仅出现了两组双线峰。详细的穆斯堡尔谱数据见表2。
图 5 四川盆地中侏罗统沉积岩样品穆斯堡尔谱图及不同颜色样品铁元素化学种含量
Figure 5. The Mössbauer spectra of pyrolysis experiment samples analyzed at room temperature (293 K) and contents of iron species in different color samples
表 2 不同颜色样品铁元素化学种穆斯堡尔谱参数(室温293 K)
样品编号 岩性 Iron species Relative content % IS/ mm s-1 QS/ mm s-1 LW/ mm s-1 Bhf/T CTC-2 红色泥岩 para⁃Fe2+ 24 1.14±0.04 2.75±0.09 0.51±0.15 para⁃Fe3+ 37 0.37±0.02 0.56±0.03 0.45±0.06 mag⁃Fe3+ 39 0.48±0.08 -0.04±0.07 0.27±0.17 50.7±0.2 CTC2B 灰色泥岩 para⁃Fe2+ 31 1.14±0.00 2.68±0.01 0.38±0.01 para⁃Fe3+ 37 0.37±0.01 0.61±0.01 0.59±0.01 mag⁃Fe3+ 32 0.38±0.01 -0.22±0.02 0.37±0.02 51.0±0.1 CTC3 灰绿色砂岩 para⁃Fe2+ 55 1.10±0.01 2.63±0.03 0.29±0.04 para⁃Fe3+ 45 0.36±0.02 0.61±0.01 0.31±0.03 mag⁃Fe3+ — — — — — CTC08 红色泥岩 para⁃Fe2+ 15 1.13±0.01 2.68±0.03 0.39±0.04 para⁃Fe3+ 26 0.34±0.01 0.64±0.02 0.52±0.04 mag⁃Fe3+ 59 0.35±0.01 -0.26±0.02 0.35±0.03 51.1±0.1 CTC10 红色泥岩 para⁃Fe2+ 15 1.14±0.02 2.59±0.05 0.32±0.07 para⁃Fe3+ 34 0.34±0.03 0.59±0.04 0.57±0.08 mag⁃Fe3+ 51 0.35±0.03 -0.16±0.06 0.40±0.14 50.8±0.5 CTC12B 灰绿色泥岩 para⁃Fe2+ 60 1.16±0.01 2.65±0.02 0.36±0.03 para⁃Fe3+ 40 0.32±0.04 0.49±0.06 0.61±0.13 mag⁃Fe3+ — — — — — STC06 红色泥岩 para⁃Fe2+ 13 1.12±0.03 2.63±0.06 0.41±0.09 para⁃Fe3+ 42 0.35±0.02 0.59±0.02 0.54±0.05 mag⁃Fe3+ 45 0.36±0.02 -0.23±0.04 0.28±0.09 51.5±0.1 如图5所示,D1双峰具有较小的同质异能位移(IS=0.32~0.37 mm/s)和四级分裂(QS=0.49~0.64 mm/s),其参数特征应属于顺磁性高自旋三价铁para-Fe3+或低价态含Fe硫化物(黄铁矿)[43]。前人研究表明para-Fe3+可能为黏土矿物或水合氧化铁中的三价铁[35,44],结合XRD数据则应代表蒙脱石或其他黏土矿物中的Fe;D2双峰具有较大的四级分裂(QS=2.59~2.75 mm/s)和同质异能位移(IS=1.10~1.16 mm/s),这个双线分裂是由于八面体配位的顺磁性高自旋二价铁para-Fe2+的贡献,其参数值与黏土矿物(绿泥石和富含绿泥石的沉积物)的穆斯堡尔谱参数值十分相近[45⁃47];六线峰Sextet的IS值为(0.35~0.48 mm/s)、QS值为(-0.26~-0.04 mm/s),结合超精细场(Bhf)为(50.7~51.5T),同时常温下只有赤铁矿可以产生磁分裂,结合其穆斯堡尔谱参数可以判定六线吸收峰代表赤铁矿中的三价铁[48⁃49]。
样品中铁元素化学种的含量略有不同(图5h),红色、灰色岩石样品中以氧化态三价铁为主(红色样品为76%~87%;灰色样品为69%),灰绿色泥岩中则主要为还原态的二价铁(55%~60%)。红色泥岩样品中的三价铁主要为赤铁矿中的三价铁(39%~59%),颜色越深的岩石样品中代表赤铁矿中的铁元素化学种含量越高。
Weathering Intensity and Color Genesis of Continental Sediments: A case study from the Shangshaximiao Formation of the Middle Jurassic in the Sichuan Basin
-
摘要: 沉积物/岩的新鲜色是其内部成分、组构的直观响应,记载着丰富的气候、环境、构造和成岩改造信息。四川盆地侏罗系中统上沙溪庙组是一套河湖相沉积的碎屑地层,剖面出露好、颜色新鲜且连续多变,是研究沉积物/岩颜色成因及其气候环境指示意义的良好对象。通过对上沙溪庙组灰绿色、灰色、红色等颜色的岩石样品矿物成分、元素含量和Fe化学种的测试和分析,发现上沙溪庙组泥岩的颜色差异是由赤铁矿含量变化直接引起的。红色泥岩,CIA、CIW、Ba指数、退碱指数、黏土化指数、残积系数平均值分别为70.27、82.05、1.14、0.26、0.27、2.38,指示化学风化作用最强;灰色样品相对应的地球化学指标分别为62.65、71.06、2.22、0.75、0.23、1.19,在三种颜色的样品中受到中等化学风化作用;灰绿色样品则分别为58.50、65.11、1.92、0.78、0.26、1.34,受到的化学风化作用最弱。红色样品中代表赤铁矿中的铁含量最高,灰绿色样品以代表黏土矿物中的顺磁性亚铁为主,灰色样品中三种铁元素化学种含量相差不大,总体以三价铁为主。不同颜色样品的铁元素化学种含量变化显示红层样品中形成赤铁矿的Fe元素可能不只来源于源岩风化,还可能来自受二次风化作用的黏土矿物。样品呈现不同颜色的成因目前可确认与源岩受到不同程度的风化作用相关,不能简单归因于炎热干旱的气候条件,需要结合其他指标进行综合判别。Abstract: The fresh color of sediment/rock is the intuitive response of its internal composition and fabric and records the rich climate, environment, structure, and diagenetic transformation. The Shangshaximiao Formation of the Middle Jurassic in the Sichuan Basin is a set of clastic strata from river lake facies. The profile is well exposed, fresh, and continuously changeable. It is an excellent object for studying the origin of sediment/rock color and its indicative significance of climate and environment. Through test and analysis of mineral composition, element content, and iron speciation of mudstone samples with gray-green, gray, and red colors in the Shangshaximiao Formation, we found that the change of hematite content directly causes the color difference in the mudstone in Shaximiao Formation. For red mudstone, the average values of chemical index of alteration (CIA), chemical Index of Weathering (CIW), weather eluviation index (Ba), regression index, clayization index, and residual coefficient are 70.27, 82.05, 1.14, 0.26, 0.27, and 2.38, respectively, indicating the strongest chemical weathering intensity. The corresponding geochemical indexes of gray samples are 62.65, 71.06, 2.22, 0.75, 0.23 and 1.19, respectively. The grey-green samples were 58.50, 65.11, 1.92, 0.78, 0.26 and 1.34 respectively, and the chemical weathering was the weakest. The red sample contains the highest hematite iron content. The gray-green sample mainly represents paramagnetic ferrous in clay minerals. The geochemical contents of the three iron elements in the gray sample have a slight difference, mainly trivalent iron. The change of iron chemical species content in samples with different colors shows that the Fe element forming hematite in red bed samples may come from the weathering of source rock and clay minerals subjected to secondary weathering. At present, the causes of the different colors can only be confirmed to be related to the weathering of source rocks to varying degrees, which cannot be attributed to the hot and arid climate conditions. It is necessary to distinguish the climate type in combination with other indicators.
-
Key words:
- continental red beds /
- weathering intensity /
- iron speciation /
- Sichuan Basin
-
图 1 四川盆地侏罗纪地层分布及构造格架图(底图据文献[28])
(a)四川盆地位置;(b)四川盆地侏罗纪地层分布图;(c)四川盆地侏罗纪地层岩性特征
Figure 1. Jurassic stratigraphic distribution and tectonic framework of Sichuan Basin (base map from reference [28])
(a) location of Sichuan Basin; (b) Jurassic stratigraphic distribution map of Sichuan Basin; (c) lithologic characteristics of Jurassic strata in Sichuan Basin
图 3 不同颜色典型样品的X射线衍射图及赤铁矿含量变化图
(a)红色样品CTC06衍射图;(b)灰绿色样品CTC03;(c)灰色样品CTC12;(d)样品赤铁矿含量变化图;Q.石英;F.长石;Hem.赤铁矿;C.方解石;K.高岭石;I⁃S.伊蒙混层;Chl:绿泥石
Figure 3. X⁃ray diffraction patterns of typical samples with different colors
(a) red sample CTC06; (b) grayish⁃green sample CTC03; (c) gray sample CTC12; and (d) variation diagram of hematite content in samples; Q.quartz; F.feldspar; Hem.hematite; C.calcite; K.kaolinite; I⁃S.illite and/or smectite; Chl.chlorite
图 5 四川盆地中侏罗统沉积岩样品穆斯堡尔谱图及不同颜色样品铁元素化学种含量
D1.顺磁性高自旋三价铁para⁃Fe3+;D2.顺磁性高自旋二价铁para⁃Fe2+;Sextet.赤铁矿中的三价铁CTC⁃02B为灰色样品,CTC⁃03、CTC⁃12B为灰绿色样品,其余为红色样品
Figure 5. The Mössbauer spectra of pyrolysis experiment samples analyzed at room temperature (293 K) and contents of iron species in different color samples
D1.doublet for ferric iron (para⁃Fe3+) in ferric hydroxide or clay minerals; D2.doublet for ferrous iron (para⁃Fe2+) in clay minerals; Sextet. magnetic iron in hematite (mag⁃Fe3+)CTC⁃2B is gray, CTC⁃03 and CTC⁃12B are grayish green, and the rest are red samples
表 1 上沙溪庙组沉积物主量元素含量(wt%)及地球化学指标计算结果
No. 样品编号 颜色 SiO2 Al2O3 TFe2O3 CaO MgO K2O Na2O CIA CIW Ba 退碱指数 Al/Si 残积系数 1 CTC13 红色 58.27 16.29 6.69 1.13 2.89 3.13 0.89 72.09 84.80 0.87 0.12 0.28 3.14 2 CTC12B 灰绿色 51.97 15.62 6.43 7.24 2.34 2.79 2.52 57.99 65.32 1.68 0.63 0.30 1.41 3 CTC12 灰色 56.19 10.16 6.13 8.13 2.83 1.61 1.37 61.93 69.30 2.55 0.93 0.18 0.97 4 CTC11 红色 59.27 16.45 8.06 0.96 3.02 3.73 0.95 69.69 84.06 0.91 0.12 0.28 2.83 5 CTC10 红色 58.49 13.96 4.54 5.34 2.69 2.84 1.23 66.18 77.48 1.55 0.47 0.24 1.61 6 CTC9 红色 60.26 15.95 5.54 4.34 3.48 2.83 1.28 68.74 79.17 1.37 0.35 0.26 1.71 7 CTC8 红色 53.51 14.80 5.51 7.29 2.93 3.09 1.06 68.41 80.92 1.74 0.56 0.28 1.55 8 CTC7 红色 58.30 15.75 6.27 3.49 2.98 3.17 1.13 68.75 80.86 1.22 0.29 0.27 2.04 9 CTC6 红色 53.65 14.93 4.60 7.81 3.01 2.88 1.08 69.17 80.82 1.79 0.59 0.28 1.45 10 CTC5 红色 61.39 16.14 6.63 1.19 3.18 3.10 1.33 67.63 78.69 0.98 0.16 0.26 2.59 11 CTC4 灰绿色 50.90 13.26 6.15 10.30 1.38 1.98 1.94 60.89 67.53 2.08 0.92 0.26 1.24 12 CTC3 灰绿色 58.45 12.57 6.32 7.49 2.24 1.92 2.29 56.62 62.49 2.00 0.78 0.21 1.35 13 CTC2B 灰色 52.48 14.19 6.17 6.36 3.86 2.69 1.61 63.36 72.82 1.89 0.56 0.27 1.40 14 CTC2 红色 58.96 16.09 6.99 2.14 3.11 3.46 1.18 67.87 80.60 1.08 0.21 0.27 2.33 15 CTC1 红色 58.13 16.97 8.33 1.08 3.32 3.41 1.12 69.74 82.19 0.94 0.13 0.29 2.84 16 STC11 红色 62.69 16.11 6.00 1.78 3.27 2.66 1.21 70.10 80.14 1.02 0.19 0.26 2.48 17 STC9 红色 53.60 14.50 4.80 7.69 3.00 2.49 1.12 69.49 79.80 1.80 0.61 0.27 1.43 18 STC8 红色 58.41 16.95 7.44 3.05 3.00 3.30 0.88 72.38 85.41 1.07 0.23 0.29 2.38 19 STC7 红色 59.74 16.74 6.01 2.86 3.01 2.80 1.10 71.62 82.29 1.05 0.24 0.28 2.33 20 STC6 红色 60.10 17.20 7.31 0.89 3.04 3.44 0.93 71.74 84.91 0.85 0.11 0.29 2.96 21 STC5 红色 62.18 16.72 5.61 1.53 2.97 2.83 1.09 71.52 82.31 0.91 0.16 0.27 2.65 22 STC4 红色 61.57 15.78 5.31 2.54 2.83 2.50 1.20 70.35 80.01 1.04 0.24 0.26 2.32 23 STC3 红色 58.88 17.22 8.26 1.05 2.91 3.35 0.88 72.55 85.62 0.83 0.11 0.29 3.11 24 STC2 红色 59.93 17.05 7.90 0.96 2.99 3.16 0.97 72.09 84.28 0.84 0.11 0.28 3.09 25 STC1 红色 59.87 17.71 6.85 1.77 3.28 2.84 0.83 75.31 86.61 0.90 0.15 0.30 2.82 表 2 不同颜色样品铁元素化学种穆斯堡尔谱参数(室温293 K)
样品编号 岩性 Iron species Relative content % IS/ mm s-1 QS/ mm s-1 LW/ mm s-1 Bhf/T CTC-2 红色泥岩 para⁃Fe2+ 24 1.14±0.04 2.75±0.09 0.51±0.15 para⁃Fe3+ 37 0.37±0.02 0.56±0.03 0.45±0.06 mag⁃Fe3+ 39 0.48±0.08 -0.04±0.07 0.27±0.17 50.7±0.2 CTC2B 灰色泥岩 para⁃Fe2+ 31 1.14±0.00 2.68±0.01 0.38±0.01 para⁃Fe3+ 37 0.37±0.01 0.61±0.01 0.59±0.01 mag⁃Fe3+ 32 0.38±0.01 -0.22±0.02 0.37±0.02 51.0±0.1 CTC3 灰绿色砂岩 para⁃Fe2+ 55 1.10±0.01 2.63±0.03 0.29±0.04 para⁃Fe3+ 45 0.36±0.02 0.61±0.01 0.31±0.03 mag⁃Fe3+ — — — — — CTC08 红色泥岩 para⁃Fe2+ 15 1.13±0.01 2.68±0.03 0.39±0.04 para⁃Fe3+ 26 0.34±0.01 0.64±0.02 0.52±0.04 mag⁃Fe3+ 59 0.35±0.01 -0.26±0.02 0.35±0.03 51.1±0.1 CTC10 红色泥岩 para⁃Fe2+ 15 1.14±0.02 2.59±0.05 0.32±0.07 para⁃Fe3+ 34 0.34±0.03 0.59±0.04 0.57±0.08 mag⁃Fe3+ 51 0.35±0.03 -0.16±0.06 0.40±0.14 50.8±0.5 CTC12B 灰绿色泥岩 para⁃Fe2+ 60 1.16±0.01 2.65±0.02 0.36±0.03 para⁃Fe3+ 40 0.32±0.04 0.49±0.06 0.61±0.13 mag⁃Fe3+ — — — — — STC06 红色泥岩 para⁃Fe2+ 13 1.12±0.03 2.63±0.06 0.41±0.09 para⁃Fe3+ 42 0.35±0.02 0.59±0.02 0.54±0.05 mag⁃Fe3+ 45 0.36±0.02 -0.23±0.04 0.28±0.09 51.5±0.1 -
[1] 陈涛,王河锦,张祖青,等. 浅谈利用黏土矿物重建古气候[J]. 北京大学学报(自然科学版),2005,41(2):309-316. Chen Tao, Wang Hejin, Zhang Zuqing, et al. An approach to paleoclimate-reconstruction by clay minerals[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2005, 41(2): 309-316. [2] Sheldon N D, Tabor N J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols[J]. Earth-Science Reviews, 2009, 95(1/2): 1-52. [3] 陈留勤,刘鑫,李鹏程. 古土壤:沉积环境和古气候变化的灵敏指针[J]. 沉积学报,2018,36(3):510-520. Chen Liuqin, Liu Xin, Li Pengcheng. Paleosols: Sensitive indicators of depositional environments and paleoclimate[J]. Acta Sedimentologica Sinica, 2018, 36(3): 510-520. [4] Sun G Q, Wang M, Guo J J, et al. Geochemical significance of clay minerals and elements in Paleogene sandstones in the center of the northern margin of the Qaidam Basin, China[J]. Minerals, 2020, 10(6): 505. [5] Stumm W, Sulzberger B. The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes[J]. Geochimica et Cosmochimica Acta, 1992, 56(8): 3233-3257. [6] Luther III G W, Kostka J E, Church T M, et al. Seasonal iron cycling in the salt-marsh sedimentary environment: The importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively[J]. Marine Chemistry, 1992, 40(1/2): 81-103. [7] Raiverman V. Foreland sedimentation in Himalayan tectonic regime: A relook at the orogenic process[M]. Dehradun: Bishen Singh Mahendra Pal Singh Publishers, 2002. [8] Zheng G D, Fu B H, Duan Y, et al. Iron speciation related to color of Jurassic sedimentary rocks in Turpan Basin, Northwest China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2004, 261(2): 421-427. [9] Valle R G, Friedman J D, Gawarecki S J, et al. Photogeologic and thermal infrared reconnaissance surveys of the Los Negritos-Ixtlan de los Hervores geothermal area, Michoacan, Mexico[J]. Geothermics, 1970, 2(1): 381-398. [10] Cudennec Y, Lecerf A. The transformation of ferrihydrite into goethite or hematite, revisited[J]. Journal of Solid State Chemistry, 2006, 179(3): 716-722. [11] Bankole O M, El Albani A, Meunier A, et al. Origin of red beds in the Paleoproterozoic Franceville Basin, Gabon, and implications for sandstone-hosted uranium mineralization[J]. American Journal of Science, 2016, 316(9): 839-872. [12] Blodgett R H, Crabaugh J P, McBride E F. The color of red beds—A geologic perspective[J]. Soil Color, 1993, 31: 127-159. [13] Tmlinson C W. The origin of red beds: A study of the conditions of origin of the permo-Carboniferous and Triassic red beds of the western United States[J]. The Journal of Geology, 1916, 24(2): 153-179. [14] Eren M, Kadir S. Colour origin of red sandstone beds within the Hüdai Formation (Early Cambrian), Aydıncık (Mersin), southern Turkey[J]. Turkish Journal of Earth Sciences, 2013, 22: 563-573. [15] Parcerisa D, Gómez-Gras D, Travé A, et al. Fe and Mn in calcites cementing red beds: A record of oxidation-reduction conditions: Examples from the Catalan Coastal Ranges (NE Spain)[J]. Journal of Geochemical Exploration, 2006, 89(1/2/3): 318-321. [16] Perri F, Ohta T. Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds from western-central Mediterranean Alpine Chains[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 144-157. [17] 蔡元峰,李响,潘宇观,等. Mn2+和Fe3+的致色作用:来自意大利白垩纪远洋红色灰岩的启示[J]. 地质学报,2008,82(1):133-138. Cai Yuanfeng, Li Xiang, Pan Yuguan, et al. The color-causing mechanism of Mn2+ and Fe3+: Evidence from the Italian Cretaceous pelagic red limestones[J]. Acta Geologica Sinica, 2008, 82(1): 133-138. [18] Li J, Wen X Y, Huang C M. Lower and Upper Cretaceous paleosols in the western Sichuan Basin, China: Implications for regional paleoclimate[J]. Geological Journal, 2020, 55(1): 390-408. [19] Zhang M Z, Hou X W, Du B X, et al. The first palynological records from the Lower Cretaceous of the northern Sichuan Basin, China: Palynostratigraphical and paleoenvironmental significance[J]. Journal of Asian Earth Sciences, 2019, 174: 177-188. [20] Turner P. Continental red beds: Developments in sedimentology[M]. Amsterdam: Elsevier, 1980. [21] Singh S, Awasthi A K, Khanna Y, et al. Sediment colour as recorder of climate and tectonics: Cenozoic continental red beds of the Himalayan foreland basin in NW India[J]. Catena, 2021, 203: 105298. [22] Sheldon N D. Do red beds indicate paleoclimatic conditions?: A Permian case study[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 228(3/4): 305-319. [23] Soreghan G S, Benison K C, Foster T M, et al. The paleoclimatic and geochronologic utility of coring red beds and evaporites: A case study from the RKB core (Permian, Kansas, USA)[J]. International Journal of Earth Sciences, 2015, 104(6): 1589-1603. [24] Yan L B, Peng H, Zhang S Y, et al. The spatial patterns of red beds and danxia landforms: Implication for the formation factors-China[J]. Scientific Reports, 2019, 9(1): 1961. [25] Jiang L T, Chen G N, Grapes R, et al. Thermal origin of continental red beds in SE China: An experiment study[J]. Journal of Asian Earth Sciences, 2015, 101: 14-19. [26] Ma Y S, Guo X S, Guo T L, et al. The Puguang gas field: New giant discovery in the mature Sichuan Basin, southwest China[J]. AAPG Bulletin, 2007, 91(5): 627-643. [27] Liu S G, Yang Y, Deng B, et al. Tectonic evolution of the Sichuan Basin, southwest China[J]. Earth-Science Reviews, 2021, 213: 103470. [28] Li Y Q, He D F, Li D, et al. Sedimentary provenance constraints on the Jurassic to Cretaceous paleogeography of Sichuan Basin, SW China[J]. Gondwana Research, 2018, 60: 15-33. [29] 钱利军,陈洪德,林良彪,等. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J]. 沉积学报,2012,30(6):1061-1071. Qian Lijun, Chen Hongde, Lin Liangbiao, et al. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1061-1071. [30] 李朝辉. 四川盆地侏罗纪岩相古地理研究[D]. 成都:成都理工大学,2016. Li Chaohui. Study on the Jurassic lithofacies and paleogeography of Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2016. [31] Zhong S Q, Han Z, Du J, et al. Relationships between the lithology of purple rocks and the pedogenesis of purple soils in the Sichuan Basin, China[J]. Scientific Reports, 2019, 9(1): 13272. [32] 文竹. 四川盆地米仓山前大两会背斜构造几何学与成因机制的研究[D]. 北京:中国地质大学(北京),2010. Wen Zhu. Geometry and mechanism of Daliangshan anticline in Micangshan foreland, thrust belt, northern Sichuan Basin[D]. Beijing: China University of Geosciences (Beijing), 2010. [33] 李瑞保,裴先治,刘战庆,等. 大巴山及川东北前陆盆地盆山物质耦合:来自LA-ICP-MS碎屑锆石U-Pb年代学证据[J]. 地质学报,2010,84(8):1118-1134. Li Ruibao, Pei Xianzhi, Liu Zhanqing, et al. Basin-mountain coupling relationship of foreland basins between dabashan and northeastern Sichuan: The Evidence from LA-ICP-MS U-Pb dating of the detrital zircons[J]. Acta Geologica Sinica, 2010, 84(8): 1118-1134. [34] Matsuo M, Kobayashi T, Tsurumi M. Mössbauer spectroscopic characterization of iron compounds in paddy soil[J]. Hyperfine Interactions, 1994, 84(1): 533-537. [35] Kuno A, Zheng G D, Matsuo M, et al. Mössbauer spectroscopic study on vertical distribution of iron species in sediments from Qinghai Lake, China[J]. Hyperfine Interactions, 2002, 141(1/2/3/4): 321-326. [36] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72. [37] Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542. [38] Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. The Journal of Geology, 1989, 97(2): 129-147. [39] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295-303. [40] Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322. [41] 袁海军,赵兵. 川西雅安—名山地区白垩系泥岩的地球化学特征及古气候探讨[J]. 沉积与特提斯地质,2012,32(1):78-83. Yuan Haijun, Zhao Bing. Geochemical and palaeoclimatic approaches to the Cretaceous mudstones in the Ya’an-Mingshan zone, western Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(1): 78-83. [42] Ruxton B P. Measures of the degree of chemical weathering of rocks[J]. The Journal of Geology, 1968, 76(5): 518-527. [43] Dyar M D, Agresti D G, Schaefer M W, et al. Mössbauer spectroscopy of earth and planetary materials[J]. Annual Review of Earth and Planetary Sciences, 2006, 34: 83-125. [44] Murad E, Wagner U. Clays and clay minerals: The firing process[J]. Hyperfine Interactions, 1998, 117(1/2/3/4): 337-356. [45] Ram S, Patel K R, Sharma S K, et al. Distribution of iron in siderite in sub-surface sediments of Jaisalmer Basin (India) using Mössbauer spectroscopy[J]. Fuel, 1998, 77(13): 1507-1512. [46] Zachara J M, Kukkadapu R K, Gassman P L, et al. Biogeochemical transformation of Fe minerals in a petroleum-contaminated aquifer[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1791-1805. [47] Medina G, Tabares J A, Alcázar G A P, et al. A methodology to evaluate coal ash content using Siderite Mössbauer spectral area[J]. Fuel, 2006, 85(5/6): 871-873. [48] Irshinskiĭ A L, Cherepanov V M. Mössbauer study of the critical behavior of hematite[J]. Journal of Experimental & Theoretical Physics, 1980, 51(3): 644-646. [49] Zheng G, Suzuki K, Takahashi Y, et al. Identification of pyrite using 57Fe Mössbauer spectroscopy in core sediments from Erhai Lake, SW China combined with a series of acidic pre-treatments[J]. Journal of Radioanalytical and Nuclear Chemistry, 2006, 269(1): 43-50. [50] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717. [51] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. [52] 刘树根. 大巴山前陆盆地—冲断带的形成演化[M]. 北京:地质出版社,2006:1-247. Liu Shugen. Formation and evolution of Dabashan foreland basin and fold-and-thrust belt, Sichuan, China[M]. Beijing: Geological Publishing House, 2006: 1-247. [53] 汪泽成. 四川盆地构造层序与天然气勘探[M]. 北京:地质出版社,2002:1-287. Wang Zecheng. Tectonic sequence and gas exploration in Sichuan Basin[M]. Beijing: Geological Publishing House, 2002: 1-287. [54] 应立朝,梁斌,王全伟,等. 成都黏土地球化学特征及其对物源和风化强度的指示[J]. 中国地质,2013,40(5):1666-1674. Ying Lichao, Liang Bin, Wang Quanwei, et al. Geochemical characteristics of Chengdu clay and their implications for provenance and weathering intensity[J]. Geology in China, 2013, 40(5): 1666-1674. [55] Coey M J D. Iron in a post-glacial lake sediment core; a Mössbauer effect study[J]. Geochimica et Cosmochimica Acta, 1975, 3(4): 401-415. [56] Zhu Y Q, Wang X Z, Feng M Y, et al. Palaeo-redox environment analysis of Longmaxi Formation shale in southern Sichuan Basin by XRF and ICP-MS[J]. ScienceAsia, 2018, 44(2): 109-117. [57] Du J, Luo Y J, Zhang W H, et al. Major element geochemistry of purple soils/rocks in the red Sichuan Basin, China: Implications of their diagenesis and pedogenesis[J]. Environmental Earth Sciences, 2013, 69(6): 1831-1844. [58] 胡修棉,王成善,李祥辉,等. 藏南上白垩统大洋红层:岩石类型、沉积环境与颜色成因[J]. 中国科学(D辑):地球科学,2006,36(9):811-821. Hu Xiumian, Wang Chengshan, Li Xianghui, et al. Upper Cretaceous oceanic red beds in southern Tibet: Lithofacies, environments and colour origin[J]. Science China (Seri. D): Earth Sciences, 2006, 36(9): 811-821. [59] Hu X M, Scott R W, Cai Y F, et al. Cretaceous Oceanic Red Beds (CORBs): Different time scales and models of origin[J]. Earth-Science Reviews, 2012, 115(4): 217-248. [60] Tang D J, Ma J B, Shi X Y, et al. The formation of marine red beds and iron cycling on the Mesoproterozoic North China Platform[J]. American Mineralogist, 2020, 105(9): 1412-1423. [61] Ambikadevi V R, Lalithambika M. Effect of organic acids on ferric iron removal from iron-stained kaolinite[J]. Applied Clay Science, 2000, 16(3/4): 133-145. [62] Jones A M, Griffin P J, Collins R N, et al. Ferrous iron oxidation under acidic conditions: The effect of ferric oxide surfaces[J]. Geochimica et Cosmochimica Acta, 2014, 145: 1-12. [63] Heller-Kallai L, Rozenson I. The use of mössbauer spectroscopy of iron in clay mineralogy[J]. Physics and Chemistry of Minerals, 1981, 7(5): 223-238. [64] 曹珂,李祥辉,王成善,等. 四川广元地区中侏罗世—早白垩世黏土矿物与古气候[J]. 矿物岩石,2010,30(1):41-46. Cao Ke, Li Xianghui, Wang Chengshan, et al. Clay minerals of the Middle Jurassic-Lower Cretaceous in the Guangyuan area, northern Sichuan: Implications to paleoclimate[J]. Journal of Mineralogy and Petrology, 2010, 30(1): 41-46. [65] Fang Q, Churchman G J, Hong H L, et al. New insights into microbial smectite illitization in the Permo-Triassic boundary K-bentonites, South China[J]. Applied Clay Science, 2017, 140: 96-111. [66] Sáez A, Inglès M, Cabrera L, et al. Tectonic-palaeoenvironmental forcing of clay-mineral assemblages in nonmarine settings: The Oligocene-Miocene As Pontes Basin (Spain)[J]. Sedimentary Geology, 2003, 159(3/4): 305-324. [67] 钱利军. 川西北地区中、下侏罗统物质分布规律与沉积充填过程[D]. 成都:成都理工大学,2013. Qian Lijun. Regulation of sedimentary distribution and sedimentary filling process during Middle and Lower Jurassic in western and northern Sichuan, China[D]. Chengdu: Chengdu University of Technology, 2013. [68] Einsele G. Sedimentary basins: Evolution, facies, and sediment budget[M]. 2nd ed. Berlin, Heidelberg: Springer, 2000. [69] Retallack G J. Untangling the effects of burial alteration and ancient soil formation[J]. Annual Review of Earth and Planetary Sciences, 1991, 19: 183-206. [70] Walker T R. Formation of red beds in modern and ancient deserts[J]. Geological Society of America Bulletin, 1967, 78(3): 353-368. [71] Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks[M]. Dordrecht: Springer Publishers, 2003. [72] Turner P. Continental red beds[M]. New York: Elsevier Scientific Publishing Company, 1980. [73] Reinemund J A. Petrology, stratigraphy, and origin of the Triassic sedimentary rocks of Connecticut. Paul D. Krynine[J]. The Journal of Geology, 1951, 59(4): 410-412. [74] Dubiel R F, Smoot J P. Criteria for interpreting paleoclimate from red beds: A tool for Pangean reconstructions[M]//Embry A F, Beauchamp B, Glass B J. Pangea: Global environments and resources, canadian society of petroleum geologists, memoir, vol. 17. Calgary: Canadian Society of Petroleum Geologists, 1994. [75] Singh S, Parkash B, Awasthi A K. Origin of red color of the Lower Siwalik palaeosols: A micromorphological approach[J]. Journal of Mountain Science, 2009, 6(2): 147-154. [76] Retallack G J. Soils of the past: An introduction to paleopedology[M]. 2nd ed. Oxford: Blackwell Science, 2001. [77] Schwertmann U, Friedl J, Stanjek H. From Fe(III) ions to ferrihydrite and then to hematite[J]. Journal of Colloid and Interface Science, 1999, 209(1): 215-223. [78] 王全伟,阚泽忠,刘啸虎,等. 四川中生代陆相盆地孢粉组合所反映的古植被与古气候特征[J]. 四川地质学报,2008,28(2):89-95. Wang Quanwei, Kan Zezhong, Liu Xiaohu, et al. The Mesozoic sporopollen assemblage in the Sichuan Basin and its significance to paleovegetation and paleoclimate[J]. Acta Geologica Sichuan, 2008, 28(2): 89-95. [79] 李洪奎. 四川盆地地质结构及叠合特征研究[D]. 成都:成都理工大学,2020. Li Hongkui. Study on the geological structure and superimposed characteristics of Sichuan Basin[D]. Chengdu: Chengdu University of Techonolgy, 2020.