-
为尽可能模拟滩坝沉积演化过程,实验采用模拟的三角洲和概化坡折浅水湖岸为底形(图1),实验排除了气候、构造变化对沉积带来的影响,设计模拟河道长1 m,宽20 cm,坡度5%,实验采用单一物源供给;利用通量供水器通过河道向湖盆沉积区域投送泥沙,泥沙配比为:细砂∶中砂∶粗砂=1∶2∶1;三角洲沉积区长4 m,宽3 m,此处先模拟沉积的三角洲作为后期波浪改造对象;盆区通过底形设计为坡度为0.4%的单一沙质斜坡;实验中设计了19轮波浪改造,通过造浪机产生浪高3~5 cm、周期为9 s、频率为1 s的规则波浪。
实验过程设定为三个阶段(表1),第一阶段:三角洲形成阶段,三角洲的供给量为:供水由0.5 L/s逐步降低至0 L/s,供砂量由0.8 kg/min逐渐降低至0 kg/min,湖平面保持稳定,模拟三角洲逐步废弃过程;第二阶段:低水位期三角洲改造阶段。三角洲沉积终止,湖平面保持稳定,模拟较低水位条件下湖浪对三角洲的侵蚀、改造滩坝作用;第三阶段:高水位期,三角洲改造阶段,湖平面上升,模拟较高水位条件下湖浪对滩坝的侵蚀改造作用。整个实验持续时间为19 h,其中第一阶段6 h,第二阶段6 h,第三阶段5 h。
表 1 实验阶段和水动力参数
实验阶段 滨浅湖水深/cm 波浪周期/s 波高/cm 波浪作用时间/h 泥沙沉降间隔时间/h 实验阶段一 3 9 2 6 12 实验阶段二 6 9 3.5 6 12 实验阶段三 12 9 5 5 12
Process and Model of Sedimentation of Sandy Beach Bar Due to Wave Action: An experimental study based on sink sedimentation simulation
-
摘要: 受波浪及沿岸流影响,在滨岸地区形成的滩坝砂体是滨海(湖)带发育的主要砂体类型。目前国内外学者对滩坝沉积砂体的认识多来自于现代沉积和油气地质特征,对滩坝砂体的沉积机制和内部结构研究相对较弱。基于沉积水槽实验,采用规则波浪对沙质斜坡滨岸带进行模拟实验,观测波浪作用下滨岸带滩坝形成过程和波浪运动特征,记录波浪作用下滨岸带沙质滩坝在不同浪带平面时空演化规律。实验结果显示:波浪是改造湖岸原有沉积物的关键驱动力,波浪作用下沙质岸滩床面泥砂将发生输移运动,而滩坝是陆湖(海)泥沙在水动力驱动下搬运沉积的结果,水动力的强弱及水流结构引起泥沙在空间上的不均匀输运和分布,进而塑造不同的滩坝形态。与强波浪相关的高水位可以加速滩坝系统的形成并最终形成大规模的滩坝砂;相比之下,与较弱波浪相关的低水位只能略微改变初始沉积物形态。根据不同的沉积物特征可将实验中的滩坝系统分为三类:冲浪带和碎浪带滩坝系统近端部分的大规模厚层坝砂,破浪带和升浪带滩坝系统中部分布广泛的薄滩砂,以及位于滩坝系统中远端的弧形或平行排列的脊状、砂纹坝砂。建立了水槽实验模式下滩坝沉积模式,可用于指导油气勘探开发。Abstract: Beach sand bodies that are formed in coastal regions by waves and coastal currents are the major sand type in coastal (or lake) beaches. Present understanding of sand bodies deposited on beaches mainly comes from observation of modern deposition and petroleum geological features, but there are relatively few studies of the sedimentation mechanism itself and the internal structure of beach sand bodies. In this study, a beach bar sedimentation model was constructed to guide oil and gas exploration and development. A sandy slope coastal zone formed by regular waves was simulated in a sink-sedimentation experiment in which the formation of a coastal beach bar due to wave action, and the wave motion was observed. Experimental results show that waves are the main force transporting the original sediments in lakeshore and on coastal beach bars. Beach bars are the result of migration and sedimentation of lakeshore and coastal sediments. Differences in the intensity of hydrodynamic forces and flow structures cause the spatial migration and distribution of sediments to differ, thus creating various forms of beach bar. Deep water and strong wave action accelerate the formation of beach bar systems and eventually form large-scale sand bodies on a beach. Conversely, shallow water and weak wave action merely change the forms of the initial sediments. The beach bar systems in the experiment were divided into three types: large-scale, thick sand bodies near a beach bar systems in the surf and breaker zone; partial extensively distributed thin beach sandbars in the breaker zone and rising zone; and ridges and sand-texture sandbars in parallel arcs at the middle and far ends of the beach.
-
Key words:
- flume experiment /
- beach bar /
- sedimentary process /
- sedimentation architecture
-
表 1 实验阶段和水动力参数
实验阶段 滨浅湖水深/cm 波浪周期/s 波高/cm 波浪作用时间/h 泥沙沉降间隔时间/h 实验阶段一 3 9 2 6 12 实验阶段二 6 9 3.5 6 12 实验阶段三 12 9 5 5 12 -
[1] Monroe S. Late Oligocene-Early Miocene Facies and lacustrine sedimentation, Upper Ruby River Basin, Southwestern Montana[J]. Journal of Sedimentary Research, 1981, 51(3): 935-951. [2] Reid I, Frostick L E. Beach orientation, bar morphology and the concentration of metalliferous placer deposits: A case study, Lake Turkana, N Kenya[J]. Journal of the Geological Society, 1985, 142(5): 837-848. [3] 朱筱敏,信荃麟,张晋仁. 断陷湖盆滩坝储集体沉积特征及沉积模式[J]. 沉积学报,1994,12(2):20-28. Zhu Xiaomin, Xin Quanlin, Zhang Jinren. Sedimentary characteristics and models of the beach-bar reservoirs in faulted down lacustrine basins[J]. Acta Sedimentologica Sinica, 1994, 12(2): 20-28. [4] Basilici G. Sedimentary facies in an extensional and deep-lacustrine depositional system: The Pliocene Tiberino Basin, central Italy[J]. Sedimentary Geology, 1997, 109(1/2): 73-94. [5] Frey R W, Howard J D. Beaches and beach-related facies, Holocene barrier islands of Georgia[J]. Geological Magazine, 1988, 125(6): 621-640. [6] 袁红军. 东营凹陷博兴洼陷滨浅湖相滩坝砂岩储层预测[J]. 石油与天然气地质,2007,28(4):497-503. Yuan Hongjun. Prediction of beach bar sand reservoirs of shore-shallow lake facies in Boxing subsag of Dongying Sag[J]. Oil & Gas Geology, 2007, 28(4): 497-503. [7] Otvos E G. Beach ridges—definitions and significance[J]. Geomorphology, 2000, 32(1/2): 83-108. [8] 姜在兴,王俊辉,张元福. 滩坝沉积研究进展综述[J]. 古地理学报,2015,17(4):427-440. Jiang Zaixing, Wang Junhui, Zhang Yuanfu. Advances in beach-bar research: A review[J]. Journal of Palaeogeography, 2015, 17(4): 427-440. [9] 王腾飞,金振奎, Aliyeva G,等. 湖盆滩坝沉积研究进展[J]. 科技导报,2018,36(23):57-67. Wang Tengfei, Jin Zhenkui, Aliyeva G, et al. Research progress of lacustrine beach-bars[J]. Science & Technology Review, 2018, 36(23): 57-67. [10] 杨勇强,邱隆伟,姜在兴,等. 陆相断陷湖盆滩坝沉积模式:以东营凹陷古近系沙四上亚段为例[J]. 石油学报,2011,32(3):417-423. Yang Yongqiang, Qiu Longwei, Jiang Zaixing, et al. A depositional pattern of beach bar in continental rift lake basins: A case study on the upper part of the Fourth member of the Shahejie Formation in the Dongying Sag[J]. Acta Petrolei Sinica, 2011, 32(3): 417-423. [11] 刘强虎,朱红涛,舒誉,等. 珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制[J]. 石油学报,2015,36(3):286-299. Liu Qianghu, Zhu Hongtao, Shu Yu, et al. Provenance systems and their control on the beach-bar of Paleogene Enping Formation, Enping Sag, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2015, 36(3): 286-299. [12] 叶蕾,朱筱敏,张锐锋,等. 冀中坳陷饶阳凹陷蠡县斜坡古近系沙河街组一段浅水三角洲和滩坝的沉积环境[J]. 古地理学报,2020,22(3):587-600. Ye Lei, Zhu Xiaomin, Zhang Ruifeng, et al. Sedimentary environment of shallow-water delta and beach-bar of the member 1 of Shahejie Formation in Lixian slope of Raoyang Sag, Jizhong Depression[J]. Journal of Palaeogeography, 2020, 22(3): 587-600. [13] 邓宏文,高晓鹏,赵宁,等. 济阳坳陷北部断陷湖盆陆源碎屑滩坝成因类型、分布规律与成藏特征[J]. 古地理学报,2010,12(6):737-747. Deng Hongwen, Gao Xiaopeng, Zhao Ning, et al. Genetic types, distribution patterns and hydrocarbon accumulation in terrigenous beach and bar in northern faulted-lacustrine-basin of Jiyang Depression[J]. Journal of Palaeogeography, 2010, 12(6): 737-747. [14] 邹灵. 东营凹陷南部缓坡带沙四段滩坝砂储层分布及成藏主控因素[J]. 油气地质与采收率,2008,15(2):34-36. Zou Ling. Reservoir distribution and main factors influencing hydrocarbon accumulation of beach-bar sandstone in the Sha4 of Shahejie Formation, gentle slope belt, Dongying Depression[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(2): 34-36. [15] 杨勇强,邱隆伟,姜在兴,等. 东营凹陷沙四上亚段滩坝物源体系[J]. 吉林大学学报(地球科学版),2011,41(1):46-53. Yang Yongqiang, Qiu Longwei, Jiang Zaixing, et al. Beach bar-provenance system on the upper part of Fourth member of Shahejie Formation in Dongying Sag[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1): 46-53. [16] 马立祥,邓宏文,林会喜,等. 济阳坳陷三种典型滩坝相的空间分布模式[J]. 地质科技情报,2009,28(2):66-71. Ma Lixiang, Deng Hongwen, Lin Huixi, et al. Three kinds of spatiotemporal models of typical beach and bar sedimentary facies in Jiyang Depression[J]. Geological Science and Technology Information, 2009, 28(2): 66-71. [17] 韩元红,郝乐伟,王琪,等. 青海湖近岸现代沉积滩坝主要类型及沉积特征[J]. 古地理学报,2016,18(5):759-768. Han Yuanhong, Hao Lewei, Wang Qi, et al. Sedimentary characteristics and types of beach bars deposited in modern times in nearshore of Qinghai Lake[J]. Journal of Palaeogeography, 2016, 18(5): 759-768. [18] 商晓飞,侯加根,程远忠,等. 厚层湖泊滩坝砂体成因机制探讨及地质意义:以黄骅坳陷板桥凹陷沙河街组二段为例[J]. 地质学报,2014,88(9):1705-1718. Shang Xiaofei, Hou Jiagen, Cheng Yuanzhong, et al. Formation mechanism of the thick layer lacustrine beach-bar and its geological implications: An example of the 2nd member of the Shahejie Formation in Banqiao Sag[J]. Acta Geologica Sinica, 2014, 88(9): 1705-1718. [19] 王升兰,姜在兴,刘晖. 博兴洼陷风暴—滩坝沉积特征及模式[J]. 断块油气田,2009,16(4):37-39. Wang Shenglan, Jiang Zaixing, Liu Hui. Sendimentary characteristics and model of tempestites-beach bar of upper section of the Fourth member of Shahejie Formation in Boxing Sag[J]. Fault-Block Oil & Gas Field, 2009, 16(4): 37-39. [20] 胡晨林,张元福,姜在兴,等. 风浪作用下鄱阳湖现代滨岸滩坝的形态变化[J]. 石油学报,2015,36(12):1543-1552. Hu Chenlin, Zhang Yuanfu, Jiang Zaixing, et al. Morphologic changes in modern onshore beach bar of Poyang Lake under wind and wave actions[J]. Acta Petrolei Sinica, 2015, 36(12): 1543-1552. [21] 朱静昌,张国栋,王益友,等. 舟山现代滨岸滩脊(坝)沟槽体系迁移与沉积特征[J]. 海洋与湖沼,1988,19(1):35-43. Zhu Jingchang, Zhang Guodong, Wang Yiyou, et al. Migration of ridge (Bar) runnel systems and the resultant sedimentary characteristics on modern coast, Zhoushan archipelago[J]. Oceanologia et Limnologia Sinica, 1988, 19(1): 35-43. [22] 白立科,邱隆伟,杨勇强,等. 山东峡山湖东岸现代滩坝沉积模式及控制因素[J]. 古地理学报,2020,22(2):278-294. Bai Like, Qiu Longwei, Yang Yongqiang, et al. Sedimentary model and controlling factors of modern beach-bar sediments in east coast of Xiashan Lake in Shandong province[J]. Journal of Palaeogeography, 2020, 22(2): 278-294. [23] 杨继超,宫立新,李广雪,等. 山东威海滨海沙滩动力地貌特征[J]. 中国海洋大学学报,2012,42(12):107-114. Yang Jichao, Gong Lixin, Li Guangxue, et al. Morphodynamic feature on the beaches in Weihai, Shandong province[J]. Periodical of Ocean University of China, 2012, 42(12): 107-114. [24] 陈启林,黎瑞,金振奎,等. 青海湖滩坝分布规律及其古气候意义[J]. 现代地质,2019,33(1):187-197. Chen Qilin, Li Rui, Jin Zhenkui, et al. Beach bar distribution and paleoclimate implications in Qinghai Lake[J]. Geoscience, 2019, 33(1): 187-197. [25] 王菁,李相博,刘化清,等. 陆相盆地滩坝砂体沉积特征及其形成与保存条件:以青海湖现代沉积为例[J]. 沉积学报,2019,37(5):1016-1030. Wang Jing, Li Xiangbo, Liu Huaqing, et al. Study of the development and preservation of lacustrine beach and bar based on the modern sedimentary characteristics of Qinghai Lake[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1016-1030. [26] 蒋昌波,伍志元,陈杰,等. 波浪作用下沙质海滩沉积物运动特征[J]. 应用基础与工程科学学报,2016,24(2):262-271. Jiang Changbo, Wu Zhiyuan, Chen Jie, et al. The wave-induced sedimentology and sorting character of sandy beach[J]. Journal of Basic Science and Engineering, 2016, 24(2): 262-271. [27] 王永诗,刘惠民,高永进,等. 断陷湖盆滩坝砂体成因与成藏:以东营凹陷沙四上亚段为例[J]. 地学前缘,2012,19(1):100-107. Wang Yongshi, Liu Huimin, Gao Yongjin, et al. Sandbody genesis and hydrocarbon accumulation mechanism of beach-bar reservoir in faulted-lacustrine-basins: A case study from the upper of the Fourth member of Shahejie Formation, Dongying Sag[J]. Earth Science Frontiers, 2012, 19(1): 100-107. [28] 李顺利,李竞,陈彬滔,等. 西湖凹陷渐新统花港组大型沿岸砂坝沉积特征及主控因素[J]. 古地理学报,2020,22(3):493-503. Li Shunli, Li Jing, Chen Bintao, et al. Sedimentary characteristics and controlling factors of large-scale longshore bar in the Oligocene Huagang Formation, Xihu Sag[J]. Journal of Palaeogeography, 2020, 22(3): 493-503. [29] 高艺,姜在兴,李俊杰,等. 古地貌恢复及其对滩坝沉积的控制作用:以辽河西部凹陷曙北地区沙四段为例[J]. 油气地质与采收率,2015,22(5):40-46. Gao Yi, Jiang Zaixing, Li Junjie, et al. Restoration of paleogeomorphology and its controlling effect on deposition of beach-bar sand bodies: A case study of the Fourth member of Shahejie Formation, Shubei area, Liaohe western sag[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(5): 40-46. [30] Basilici G. Sedimentary facies in an extensional and deep-lacustrine depositional system: The Pliocene Tiberino Basin, Central Italy[J]. Sedimentary Geology, 1997, 109(1/2): 73-94. [31] Houser C, Greenwood B. Profile response of a lacustrine multiple barred nearshore to a sequence of storm events[J]. Geomorphology, 2005, 69(1/2/3/4): 118-137. [32] Miall A D. The geology of stratigraphic sequences[M]. 2nd ed. Berlin: Springer, 2010. [33] Peng B, Han J C, Xie X, et al. Sedimentary succession and recognition marks of lacustrine gravel beach-bars, a case study from the Qinghai Lake, China[J]. Open Geosciences, 2020, 12(1): 59-70. [34] Ywa B, Yan L. Diagenetic facies prediction using a LDA-assisted SSOM method for the Eocene beach-bar sandstones of Dongying Depression, East China[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108040. [35] 袁坤,金振奎,彭飚,等. 青海湖东南岸现代滩坝沉积模式与识别标志[J]. 现代地质,2020,34(2):309-320. Yuan Kun, Jin Zhenkui, Peng Biao, et al. Sedimentary model and identification marks of modern lacustrine beach-bar on southeast coast of Qinghai Lake[J]. Geoscience, 2020, 34(2): 309-320. [36]