-
黄羊泉地区百口泉组储层中溶蚀作用副产物主要为自生石英和自生黏土矿物[14,34]。研究区自生石英以石英次生加大边为主,自生石英颗粒含量较低。研究区储层物性非均质较强,泥质含量高,孔隙结构复杂,储层中难以形成动力较强且持续性较好的水动力使硅质进行长距离搬运[7]。研究区储层埋藏深度较深且成岩环境较封闭,硅质主要以扩散的方式运移,储层中硅质胶结物来源于外部的可能性很小。研究区百口泉组储层火山碎屑含量较高,在早成岩阶段,火山碎屑易发生溶蚀作用形成蒙脱石[35]。随着百口泉组储层埋藏深度增加和地层温度不断升高,蒙皂石向无序伊/蒙混层、有序伊/蒙混层和伊利石转化[36]。扫描电镜观察到自生石英与高岭石、伊利石和绿泥石共生的现象(图3i),说明自生石英的生成与黏土矿物的形成相关。包裹体实验分析测试表明石英次生加大边内流体包裹体的均一温度集中在80.5 ℃~90 ℃和100 ℃~120 ℃(表1)[37],表明在埋藏成岩阶段,发生两期溶蚀作用形成的自生石英。根据自身石英形成温度及分布位置分析可知,第一期的石英次生加大主要来源于蒙皂石向伊利石的转化(公式(1)),此转化过程的温度为70 ℃~90 ℃[38⁃39]。该反应产生大量的SiO2,并减少蒙脱石30%的体积[38]。镜下观察可知研究区储层内大量蒙皂石向伊利石转化,且此反应吸收大量钾离子(1),研究区钾长石的溶蚀作用释放大量的钾离子(2),两种作用互相促进,使反应持续地进行。
1.5Al2Si4O10(OH)2(蒙皂石)+K+=KAl3Si3O10(OH)2(伊利石)+3SiO2+H+ (1) 2KAlSi3O8(钾长石)+2H++H2O=Al2Si2O5(OH)4(高岭石)+4SiO2+2K+ (2) 表 1 黄羊泉地区百口泉组储层包裹体特征(部分数据来源于文献[37])
井位 岩性 深度/m 石英次生加大边的包裹体 均一温度/℃ (E) 盐度/(wt.%NaCl) 均一温度/℃ (L) 盐度/(wt.% NaCl) M18 细砾岩 3 822.60 80.5~95.2 1.02~13.58 105.3~112.3 11.22~16.23 M18 中砾岩 3 868.00 106.4~117.3 3.52~5.15 M18 粗砂岩 3 903.10 86.7~94.6 5.36~23.03 103.2~118.4 4.12~20.59 M18 粗砂岩 3 906.10 102.1~105.5 3.16~10.26 AH1 细砾岩 3 794.30 104.3~108.6 2.06~5.13 AH1 粗砂岩 3 797.40 83.5~95.3 2.25~4.52 103.8~110.3 2.56~6.98 M009 细砾岩 3 608.95 102.5~104.6 1.43~3.06 M003 粗砂岩 3 546.70 84.6~87.5 4.02~7.65 M003 中砂岩 3 466.90 99.2~103.5 2.91~4 584 B64 中砾岩 2 739.50 81.5~85.7 1.98~4.57 105.1~111.3 1.98~12.58 注: E.早期包裹体;L.晚期包裹体。研究区砾岩储层中蒙脱石向伊利石转化过程中释放的硅质是自生石英的主要来源,此转化的主要地层温度为70℃~90 ℃,当地层温度大于90 ℃的次生石英有其他物质来源。当地层温度较高时,石英颗粒之间开始了化学压实作用,产生的硅质运移距离较短[40],研究区储层的黏土矿物含量较高,黏土矿物对石英颗粒的压溶作用有促进作用[41],使石英颗粒之间更易发生压溶作用,石英的化学压溶作用主要发生在100℃~120 ℃[42]。百口泉组储层研究表明第二期石英次生加大主要来源于石英颗粒间压溶作用。研究区砾岩储层经历了较强的压实作用[37],与部分石英颗粒压实作用较强时,附近有自生石英沉淀的现象相符(图3i)。
伊利石矿物的边缘共生矿物主要为石英(40.48%)、钠长石(14.76%)、黑云母(13.76%)和绿泥石(9.03%),在一般的酸性条件下,高岭石相对稳定不易转化,当成岩流体pH值增加,在K+存在的条件下,高岭石向伊利石转化,在Fe2+和Mg2+存在条件下,高岭石向绿泥石转化。伊利石形成于富钾碱性环境[43],这与研究区大量的钾长石溶蚀和蒙脱石的转化相符。此外,蒙脱石向伊利石转化也是形成伊利石的重要物质来源。蒙脱石向伊利石的转化过程中,蒙脱石向伊/蒙混层转化,伊/蒙混层从有序到无序转化,再最后成为伊利石。绿泥石膜主要发育在早成岩时期[44],且与富铁镁的碱性还原环境有关[45⁃46]。研究区绿泥石膜主要发育于原生孔隙为主的储层,主要形成阶段为早成岩B期—中成岩A期。颗粒状绿泥石含量较少,分布在较大的孔隙空间内,形成时间较晚,主要形成于地温较高的早成岩B期—中成岩B期,这个时期的铁离子和镁离子的浓度减小,形成绿泥石的速度缓慢,以形成颗粒状绿泥石为主。绿泥石边缘的共生矿物主要为石英(29.85%)、伊利石(18.99%)、钠长石(16.95%)和黑云母(16.39%),表明形成绿泥石所需铁离子和镁离子可能主要来源于研究区火山碎屑的蚀变和黑云母释放的铁离子。研究区大量火山岩碎屑发生溶蚀作用之后提供了黏土矿物转换成绿泥石时所需的铁离子,促进了绿泥石的形成。
-
黄羊泉地区百口泉组储层整体杂基含量较高,多套砾岩垂向叠置及砾岩和砂岩的叠置,泥岩发育程度较弱。研究区扇三角洲平原亚相以岩相类型Ⅰ和岩相类型Ⅱ为主,岩相类型Ⅲ含量相对较少。扇三角洲平原亚相中—下部以岩相类型Ⅰ为主,溶蚀作用程度较低,部分可见颗粒边缘的贴粒缝;中上部以岩相类型Ⅱ为主,部分发育凝灰质溶蚀孔,储层物性略为增加,可见油气充注(图6),顶部发育少量的砂岩层和泥岩层。研究区扇三角洲前缘亚相中岩相类型Ⅲ的含量增多,在相序顶部的岩相类型Ⅲ表现为长石和岩屑的强烈溶蚀。在相序的中下部,岩相类型Ⅱ的凝灰质及长石颗粒发生溶蚀,溶蚀作用强度较顶部变弱,并在其溶蚀孔内沉淀大量自生黏土矿物,相序中部的岩相类型Ⅰ杂基支撑砾岩则表现为强压实作用的特征,整体物性较差(图6)。
-
为研究百口泉组砾岩储层溶蚀作用对储层储集物性的影响,以14口取心井的200多片铸体薄片为基础,结合镜下观察和图像分析软件统计了长石和可溶岩屑的溶蚀量以及黏土矿物含量。研究区自生石英含量低(<1%),不计入溶蚀副产物的量。砾岩储层埋藏深度与黏土矿物研究表明,不同类型黏土矿物在深度上的分布特征具有分段性,在3 850 m以上,随着深度的增加,高岭石的含量不断地增加,黏土矿物类型中高岭石占比较高(图5)。随着深度加深和地层温度的增加,成岩环境由酸性向碱性转化,高岭石向伊利石和绿泥石转化,蒙脱石向伊/蒙混层转化;在3 900 m以下伊/蒙混层和绿泥石的含量明显增加(图5)。从矿物溶蚀量与黏土矿物含量统计(图7)可知,随着矿物溶蚀量的增加,溶蚀副产物的含量相应增加,两者有较好的相关性,表明研究区溶蚀作用发生在相对封闭的环境内[37],溶蚀作用较强的区域,溶蚀副产物的含量也相对较高。
-
玛湖凹陷百口泉组储层溶蚀过程中所需的酸性流体主要来源于烃源岩排出的有机质酸[31]。烃源岩中形成的有机质酸提供氢离子的能力是碳酸的6~350倍,可以溶蚀储层中大量的长石、岩屑和方解石等易溶矿物,是大量次生孔隙形成的关键因素[47]。在酸性成岩环境中,钾长石溶蚀形成伊利石和自生石英,增孔率的最大值为15.45%[48];在缺少断层和不整合等优势运移通道时,有机质热演化过程中释放的有机酸溶蚀铝硅酸盐矿物形成的孔隙度为4.49%~7.48%[49]。镜下统计表明研究区储层矿物溶蚀量与储层物性有一定的相关性,矿物溶蚀量相对较高的储层,对应的孔隙度和渗透率也处于相对较高值。研究区矿物溶蚀量达到13%时,孔隙度和渗透率达到14%和38×10-3 μm2(图5)。包裹体实验表明,研究区有两期自生石英加大边,表明至少有两期较大规模的酸性溶蚀。包裹体的盐度值较大(表1),表明两期大规模溶蚀主要发生在较为封闭的成岩环境内。溶蚀作用对储层物性的影响取决于溶蚀作用过程中溶蚀副产物离开溶解带还是原地沉淀[12]。研究区次生石英胶结物含量低(<1%),对储层物性影响小。因此,自生黏土矿物的沉淀过程是溶蚀作用能否改善储层物性的决定性因素。孔隙度与黏土矿物含量分析表明,高岭石的含量较低时(<2%),对孔隙度的影响较小,这与高岭石含大量晶间孔相关;当高岭石含量较大时,孔隙度明显降低(图8a)。研究区伊/蒙混层含量较高,主要来源于长石和凝灰质的溶蚀,占据大量孔隙空间,伊/蒙混层含量增加孔隙度迅速减小(图8b)。绿泥石薄膜对原始孔隙的保存具有积极的意义,在绿泥石含量较低时,孔隙度没有明显的变化,绿泥石颗粒占据大量的孔隙空间,使孔隙度迅速降低(图8c)。伊/蒙混层最终形成伊利石,伊利石含量增加孔隙度减小(图8d)。
黄羊泉地区百口泉组以岩相Ⅰ为主的储层泥质含量较高,溶蚀作用较弱,含部分贴粒缝(图3d),储层孔隙度和渗透率整体较低,溶蚀作用形成的黏土矿物等溶蚀副产物含量也相对较低(图9)。岩相类型Ⅰ为主的储层难以形成强度较大的溶蚀作用,储集空间较小,物性低;溶蚀量和孔隙度较大但渗透率低的样品主要分布在岩相类型Ⅱ中。部分以岩相类型Ⅱ为主的储层形成大量的凝灰质溶蚀孔,溶蚀作用强,镜下定量统计的溶蚀作用形成的面孔率也较高,但是渗透率低,部分样品孔隙度达15.6%,渗透率为0.12×10-3 μm2(图9)。在埋藏深度3 800 m以下,断层和不整合面发育程度较弱,储层整体处于半封闭—封闭的成岩环境[50]。以岩相类型Ⅱ为主的储层在溶蚀过程中,各类溶蚀副产物处于平衡状态,产生大量的伊利石和伊/蒙混层,孔隙结构复杂,流体运移速度减小较快,溶蚀副产物难以运移较长距离,在溶蚀作用带原地沉淀,溶蚀作用增加了局部孔隙度,但黏土矿物堵塞喉道,整体储层渗透率降低。因此,以岩相类型Ⅰ和岩相类型Ⅱ为主的储层,溶蚀作用对改善储层物性的作用较小。以岩相类型Ⅲ为主的储层储集类型以长石和可溶岩屑形成的溶蚀孔隙为主(图3b,c),矿物溶蚀量较高的样品,对应的孔隙度和渗透率也相对较高(图9)。以岩相类型Ⅲ为主的储层原始物性较好,分选性和磨圆度均较好,泥质含量较低,成岩作用流体相对于岩相类型Ⅰ和Ⅱ为主的储层运移速度较大,易将部分物质带离溶蚀带,使储层物性提升。以岩相类型Ⅲ为主的储层,溶蚀作用有利于储层孔隙度和渗透率的增加。
Effects of Dissolution on Reservoir Physical Properties of Conglomerate Stone: A case study of the Baikouquan Formation at the northwestern margin of the Junggar Basin
-
摘要: 溶蚀作用是玛湖凹陷黄羊泉地区百口泉组储层孔隙形成的重要成岩事件。砾岩储层泥砂砾混杂,孔隙结构复杂,成岩流体运移模式不明确,溶蚀作用是否提高储层物性取决于溶蚀副产物是否被有效带出。因此,溶蚀作用对砾岩储层物性的影响值得进一步研究。在砾岩储层岩相分类基础上,通过铸体薄片中矿物溶蚀量的精确统计,结合物性、扫描电镜、Quemscan矿物分析、X射线衍射和包裹体等分析测试,系统研究了砾岩储层中溶蚀作用对储层物性的影响。研究表明:溶蚀作用副产物主要为自生石英和自生黏土矿物。第一期石英次生加大主要来源于蒙皂石向伊利石转化,第二期石英次生加大主要来源于石英颗粒的压溶作用;伊利石主要来源于凝灰质溶蚀、高岭石和蒙脱石的转化;促进形成绿泥石所需的Fe2+主要来源于研究区内大量火山岩碎屑。溶蚀作用对不同类型岩相储层物性影响不同。以岩相类型Ⅰ为主的储层含少量矿物溶蚀孔和贴粒缝,溶蚀作用较弱,储层物性低;以岩相类型Ⅱ为主的储层多见凝灰质溶蚀形成的溶蚀孔,孔隙内沉淀大量伊/蒙混层和伊利石,孔隙度分布范围较大,渗透率低,溶蚀作用对此类储层仅进行物质再分配;以岩相类型Ⅲ为主的储层,含大量长石和岩屑溶蚀孔,溶蚀作用对储层物性有一定的提升。Abstract: Dissolution is an important diagenetic occurrence in pore formation in the Huangyangquan area of the Baikouquan Formation, Mahu Sag. Conglomerate reservoirs are mixed with mud, sandstone and gravelstone, with complex pore structure and an unclear migration mode of diagenetic fluid. Whether or not dissolution improves the physical properties of reservoirs depends on the effective removal of the dissolution by-products. The influence of dissolution on reservoir physical properties in a conglomerate reservoir was systematically studied using petrographic classification derived from accurate observations of mineral dissolution properties in cast thin sections, combined with physical properties, scanning electron microscopy, Qemscan mineral analysis, X-ray diffraction and inclusion analysis. The results show that the by-products of dissolution were mainly authigenic quartz and autogenous clay minerals. The primary authigenic quartz was mainly from the conversion of smectite to illite. The secondary authigenic quartz was mainly the result of pressure dissolution of quartz particles. The illite is mainly the product of dissolution of tuff and the transformation of kaolinite and smectite. The Fe2+ needed in the formation of chlorite were sourced mainly from the large amount of volcanic debris in the study area. Dissolution has had different effects on reservoirs, depending on their lithofacies type. Dissolution is weak in reservoirs containing mainly lithofacies type Ⅰ, with a small amount of mineral and attached-particle dissolution pores, resulting in low physical properties. Lithofacies type Ⅱ contain some tuffaceous dissolution pores in which large amounts of mixed illite/montmorillonite layers or illite are precipitated. This has produced high porosity but low permeability, since the dissolution process has merely redistributed materials within such reservoirs. Lithofacies type Ⅲ reservoirs contain a large number of dissolution pores in feldspars and debris, improving the reservoir properties considerably.
-
Key words:
- dissolution /
- physical effects /
- petrographic facies /
- conglomerate reservoir /
- Junggar Basin
-
图 3 玛湖凹陷黄羊泉地区百口泉组储层孔隙特征
(a)原生孔隙,H3井,T1b,2 417.60 m,单偏光;(b)岩屑和长石粒内溶蚀孔,方解石胶结,M18井,T1b,3 822.60 m,单偏光;(c)粒间溶蚀,M18井,T1b,3 818.40 m,单偏光;(d)微裂缝,M18井,T1b,3 861.52 m,单偏光;(e)凝灰质溶蚀,AH1井,T1b,3 797.00 m,单偏光;(f)高岭石,AH1井,T1b,3 821.50 m,扫描电镜;(g)伊利石,M18井,T1b,3 904.60 m,扫描电镜;(h)伊/蒙混层,M18井,T1b,3 906.10 m,扫描电镜;(i)自生石英和绿泥石,M18井,T1b,3 852.60 m,扫描电镜;Pri.原生孔隙;IntraD.粒内溶蚀孔;InterD.粒间溶蚀孔;Microcrack.微裂缝;Tuff.凝灰质;I/S.伊/蒙混层;QA.自生石英;Chl.绿泥石
Figure 3. Pore characteristics of Baikouquan Formation in Huangyangquan area of Mahu Sag
(a) primary pores, PL; (b) dissolution pores in rock debris and feldspar grains and calcite cementation, PL; (c) intergranular dissolution, PL; (d) microcracks, PL; (e) tuffaceous dissolution, PL; (f) kaolinite, SEM; (g) illite, SEM; (h) illite smectite mixed layer, SEM; (i) authigenic quartz and chlorite, SEM; Pri.primary pores; IntraD.intergranular dissolution pore; InterD.intergranular dissolution pore; I / S.illite smectite mixed layer; QA.authigenic quartz; Chl.chlorite
表 1 黄羊泉地区百口泉组储层包裹体特征(部分数据来源于文献[37])
井位 岩性 深度/m 石英次生加大边的包裹体 均一温度/℃ (E) 盐度/(wt.%NaCl) 均一温度/℃ (L) 盐度/(wt.% NaCl) M18 细砾岩 3 822.60 80.5~95.2 1.02~13.58 105.3~112.3 11.22~16.23 M18 中砾岩 3 868.00 106.4~117.3 3.52~5.15 M18 粗砂岩 3 903.10 86.7~94.6 5.36~23.03 103.2~118.4 4.12~20.59 M18 粗砂岩 3 906.10 102.1~105.5 3.16~10.26 AH1 细砾岩 3 794.30 104.3~108.6 2.06~5.13 AH1 粗砂岩 3 797.40 83.5~95.3 2.25~4.52 103.8~110.3 2.56~6.98 M009 细砾岩 3 608.95 102.5~104.6 1.43~3.06 M003 粗砂岩 3 546.70 84.6~87.5 4.02~7.65 M003 中砂岩 3 466.90 99.2~103.5 2.91~4 584 B64 中砾岩 2 739.50 81.5~85.7 1.98~4.57 105.1~111.3 1.98~12.58 注: E.早期包裹体;L.晚期包裹体。 -
[1] Yuan G H, Cao Y C, Gluyas J, et al. Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: Typical examples from two sags in Bohai Bay Basin, East China[J]. AAPG Bulletin, 2015, 99(11): 2121-2154. [2] 金之钧,杨雷,曾溅辉,等. 东营凹陷深部流体活动及其生烃效应初探[J]. 石油勘探与开发,2002,29(2):42-44. Jin Zhijun, Yang Lei, Zeng Jianhui, et al. Deep fluid activities and their effects on generation of hydrocarbon in Dongying Depression[J]. Petroleum Exploration and Development, 2002, 29(2): 42-44. [3] 李忠,李蕙生. 东濮凹陷深部次生孔隙成因与储层演化研究[J]. 地质科学,1994,29(3):267-275. Li Zhong, Li Huisheng. An approach to genesis and evolution of secondary porosity in deeply buried sandstone reservoirs, Dongpu Depression[J]. Scientia Geologica Sinica, 1994, 29(3): 267-275. [4] Pye K, Krinsley D H. Formation of secondary porosity in sandstones by quartz framework grain dissolution[J]. Nature, 1985, 317(6032): 54-56. [5] Schmidt V, McDonald D A. Role of secondary porosity in sandstone diagenesis[J]. AAPG Bulletin, 1977, 61(8): 1390-1391. [6] 远光辉,操应长,贾珍臻,等. 含油气盆地中深层碎屑岩储层异常高孔带研究进展[J]. 天然气地球科学,2015,26(1):28-42. Yuan Guanghui, Cao Yingchang, Jia Zhenzhen, et al. Research progress on anomalously high porosity zones in deeply buried clastic reservoirs in petroliferous basin[J]. Natural Gas Geoscience, 2015, 26(1): 28-42. [7] Bjørlykke K, Jahren J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12): 2193-2214. [8] Cain S A, Mountney N P. Spatial and temporal evolution of a terminal fluvial fan system: The Permian Organ Rock Formation, south-east Utah, USA[J]. Sedimentology, 2009, 56(6): 1774-1800. [9] 朱筱敏,王英国,钟大康,等. 济阳坳陷古近系储层孔隙类型与次生孔隙成因[J]. 地质学报,2007,81(2):197-204. Zhu Xiaomin, Wang Yingguo, Zhong Dakang, et al. Pore types and secondary pore evolution of Paleogene reservoir in the Jiyang Sag[J]. Acta Geologica Sinica, 2007, 81(2): 197-204. [10] Hutcheon I, Shevalier M, Abercrombie H J. PH buffering by metastable mineral-fluid equilibria and evolution of carbon dioxide fugacity during burial diagenesis[J]. Geochimica et Cosmochimica Acta, 1993, 57(5): 1017-1027. [11] Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity[M]//McDonald D A, Surdam R C. Clastic diagenesis. Tulsa: American Association of Petroleum Geologists, 1984: 127-150. [12] Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction: Model, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132. [13] 张昌民,尹太举,唐勇,等. 准噶尔盆地西北缘及玛湖凹陷沉积储集层研究进展[J]. 古地理学报,2020,22(1):129-146. Zhang Changmin, Yin Taiju, Tang Yong, et al. Advances in sedimentological reservoir research in Mahu Sag and northwest margin of Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2020, 22(1): 129-146. [14] 肖萌,袁选俊,吴松涛,等. 准噶尔盆地玛湖凹陷百口泉组砾岩储层特征及其主控因素[J]. 地学前缘,2019,26(1):212-224. Xiao Meng, Yuan Xuanjun, Wu Songtao, et al. Conglomerate reservoir characteristics of and main controlling factors for the Baikouquan Formation, Mahu Sag, Junggar Basin[J]. Earth Science Frontiers, 2019, 26(1): 212-224. [15] 操应长,燕苗苗,葸克来,等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素[J]. 沉积学报,2019,37(5):945-956. Cao Yingchang, Yan Miaomiao, Xi Kelai, et al. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu Depression[J]. Acta Sedimentologica Sinica, 2019, 37(5): 945-956. [16] 于兴河,李顺利,谭程鹏,等. 粗粒沉积及其储层表征的发展历程与热点问题探讨[J]. 古地理学报,2018,20(5):713-736. Yu Xinghe, Li Shunli, Tan Chengpeng, et al. Coarse-grained deposits and their reservoir characterizations: A look back to see forward and hot issues[J]. Journal of Palaeogeography, 2018, 20(5): 713-736. [17] 唐勇,徐洋,李亚哲,等. 玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义[J]. 新疆石油地质,2018,39(1):16-22. Tang Yong, Xu Yang, Li Yazhe, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 16-22. [18] 黄丁杰,于兴河,谭程鹏,等. 玛西斜坡区百口泉组储层孔隙结构特征及控制因素分析[J]. 东北石油大学学报,2015,39(2):9-18,41. Huang Dingjie, Yu Xinghe, Tan Chengpeng, et al. Pore structure features and its controlling factor analysis of reservoirs in Baikouquan Formation, Maxi slope area[J]. Journal of Northeast Petroleum University, 2015, 39(2): 9-18, 41. [19] 孟祥超,陈能贵,王海明,等. 砂砾岩沉积特征分析及有利储集相带确定:以玛北斜坡区百口泉组为例[J]. 沉积学报,2015,33(6):1235-1246. Meng Xiangchao, Chen Nenggui, Wang Haiming, et al. Sedimentary characteristics of glutenite and its favourable accumulation facies: A case study from T1 b, Mabei slope, Junggar Basin[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1235-1246. [20] Cronin B T, Kidd R B. Heterogeneity and lithotype distribution in ancient deep-sea canyons: Point Lobos deep-sea canyon as a reservoir analogue[J]. Sedimentary Geology, 1998, 115(1/2/3/4): 315-349. [21] Xiao M, Yuan X J, Cheng D W, et al. Feldspar dissolution and its influence on reservoirs: A case study of the Lower Triassic Baikouquan Formation in the northwest margin of the Junggar Basin, China[J]. Geofluids, 2018, 2018: 6536419. [22] 齐雯,潘建国,王国栋,等. 准噶尔盆地玛湖凹陷斜坡区百口泉组储层流体包裹体特征及油气充注史[J]. 天然气地球科学,2015,26(增刊1):64-71. Qi Wen, Pan Jianguo, Wang Guodong, et al. Fluid inclusion and hydrocarbon charge history for the reservoir of Baikouquan Formation in the Mahu Sag, Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(Suppl.1): 64-71. [23] 曲永强,王国栋,谭开俊,等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组次生孔隙储层的控制因素及分布特征[J]. 天然气地球科学,2015,26(增刊1):50-63. Qu Yongqiang, Wang Guodong, Tan Kaijun, et al. Controlling factors and distribution characteristics of the secondary pore reservoirs of the Triassic Baikouquan Formation in the Mahu slope area, Junggar Basin[J]. Natural Gas Geoscience, 2015, 26(Suppl.1): 50-63. [24] 牛海青,陈世悦,鄢继华,等. 准噶尔盆地乌夏断裂带三叠系沉积相研究[J]. 新疆石油地质,2007,28(4):425-427. Niu Haiqing, Chen Shiyue, Yan Jihua, et al. Sedimentary facies of Triassic in Wu-Xia fault belt, Junggar Basin[J]. Xinjiang Petroleum Geology, 2007, 28(4): 425-427. [25] 何登发,张磊,吴松涛,等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质,2018,39(5):845-861. He Dengfa, Zhang Lei, Wu Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 845-861. [26] 匡立春,唐勇,雷德文,等. 准噶尔盆地玛湖凹陷斜坡区三叠系百口泉组扇控大面积岩性油藏勘探实践[J]. 中国石油勘探,2014,19(6):14-23. Kuang Lichun, Tang Yong, Lei Dewen, et al. Exploration of fan-controlled large-area lithologic oil reservoirs of Triassic Baikouquan Formation in slope zone of Mahu Depression in Junggar Basin[J]. China Petroleum Exploration, 2014, 19(6): 14-23. [27] 于兴河,瞿建华,谭程鹏,等. 玛湖凹陷百口泉组扇三角洲砾岩岩相及成因模式[J]. 新疆石油地质,2014,35(6):619-627. Yu Xinghe, Qu Jianhua, Tan Chengpeng, et al. Conglomerate lithofacies and origin models of fan deltas of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 619-627. [28] 李兴,张立强,施辉,等. 准噶尔盆地玛湖凹陷百口泉组沉积古环境分析:以玛18井为例[J]. 岩性油气藏,2016,28(2):80-85. Li Xing, Zhang Liqiang, Shi Hui, et al. Sedimentary environment of Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin: A case study from Ma 18 well[J]. Lithologic Reservoirs, 2016, 28(2): 80-85. [29] 黄云飞,张昌民,朱锐,等. 准噶尔盆地玛湖凹陷下三叠统百口泉组古盐度恢复[J]. 新疆石油地质,2017,38(3):269-275. Huang Yunfei, Zhang Changmin, Zhu Rui, et al. Paleosalinity restoration of Lower Triassic Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2017, 38(3): 269-275. [30] Xiao M, Wu S T, Yuan X J, et al. Conglomerate reservoir pore evolution characteristics and favorable area prediction: A case study of the Lower Triassic Baikouquan Formation in the northwest margin of the Junggar Basin, China[J]. Journal of Earth Science, 2021, 32(4): 998-1010. [31] Kang X, Hu W X, Cao J, et al. Selective dissolution of alkali feldspars and its effect on Lower Triassic sandy conglomerate reservoirs in the Junggar Basin, northwestern China[J]. Geological Journal, 2018, 53(2): 475-499. [32] 陈哲龙. 环玛湖凹陷三叠系百口泉组油藏混源特征及成藏机理[D]. 北京:中国石油大学(北京),2016:40-42. Chen Zhelong. The mixed-sources characteristics and mechanism of oil accumulation in Triassic Baikouquan Formation from circum-Mahu Depression[D]. Beijing: China University of Petroleum (Beijing), 2016: 40-42. [33] 楼章华. 松辽盆地储层成岩反应与孔隙流体地球化学性质及成因[J]. 地质学报,1998,72(2):144-152. Lou Zhanghua. Diagenetic reactions, geochemical properties and origin of pore fluid in reservoirs of the Songliao Basin[J]. Acta Geologica Sinica, 1998, 72(2): 144-152. [34] 张顺存,黄立良,冯右伦,等. 准噶尔盆地玛北地区三叠系百口泉组储层成岩相特征[J]. 沉积学报,2018,36(2):354-365. Zhang Shuncun, Huang Liliang, Feng Youlun, et al. Diagenetic facies of Triassic Baikouquan Formation in Mabei area, Junggar Basin[J]. Acta Sedimentologica Sinica, 2018, 36(2): 354-365. [35] Do Campo M, Del Papa C, Nieto F, et al. Integrated analysis for constraining palaeoclimatic and volcanic influences on clay-mineral assemblages in orogenic basins (Palaeogene Andean foreland, northwestern Argentina)[J]. Sedimentary Geology, 2010, 228(3/4): 98-122. [36] Metwally Y M, Chesnokov E M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale[J]. Applied Clay Science, 2012, 55: 138-150. [37] Xiao M, Wu S T, Yuan X J, et al. Diagenesis effects on the conglomerate reservoir quality of the Baikouquan Formation, Junggar Basin, China[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107599. [38] Xi K L, Cao Y C, Jahren J, et al. Diagenesis and reservoir quality of the Lower Cretaceous Quantou Formation tight sandstones in the southern Songliao Basin, China[J]. Sedimentary Geology, 2015, 330: 90-107. [39] Peltonen C, Marcussen Ø, Bjørlykke K, et al. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties[J]. Marine and Petroleum Geology, 2009, 26(6): 887-898. [40] Dove P M. The dissolution kinetics of quartz in sodium chloride solutions at 25 ℃ to 300 ℃[J]. American Journal of Science, 1994, 294(6): 665-712. [41] Molenaar N, Cyziene J, Sliaupa S. Quartz cementation mechanisms and porosity variation in Baltic Cambrian sandstones[J]. Sedimentary Geology, 2007, 195(3/4): 135-159. [42] Marcussen Ø, Maast T E, Mondol N H, et al. Changes in physical properties of a reservoir sandstone as a function of burial depth: The Etive Formation, northern North Sea[J]. Marine and Petroleum Geology, 2010, 27(8): 1725-1735. [43] Lee M, Aronson J L, Savin S M. K/Ar dating of time of gas emplacement in Rotliegendes Sandstone, Netherlands[J]. AAPG Bulletin, 1985, 69(9): 1381-1385. [44] 李阳,李树同,牟炜卫,等. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学,2017,28(7):1043-1053. Li Yang, Li Shutong, Mou Weiwei, et al. Influences of clay minerals on physical properties of Chang 6 tight sandstone reservoir in Jiyuan area, Ordos Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1043-1053. [45] Grigsby J D. Origin and growth mechanism of authigenic chlorite in sandstones of the Lower Vicksburg Formation, South Texas[J]. Journal of Sedimentary Research, 2001, 71(1): 27-36. [46] 朱如凯,邹才能,张鼐,等. 致密砂岩气藏储层成岩流体演化与致密成因机理:以四川盆地上三叠统须家河组为例[J]. 中国科学(D辑):地球科学,2009,39(3):327-339. Zhu Rukai, Zou Caineng, Zhang Nai, et al. Diagenetic fluids evolution and genetic mechanism of tight sandstone gas reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China[J]. Science China (Seri. D): Earth Sciences, 2009, 39(3): 327-339. [47] Giles M R, de Boer R B. Origin and significance of redistributional secondary porosity[J]. Marine & Petroleum Geology, 1990, 7(4):378-397. [48] 远光辉,操应长,葸克来,等. 东营凹陷北带古近系碎屑岩储层长石溶蚀作用及其物性响应[J]. 石油学报,2013,34(5):853-866. Yuan Guanghui, Cao Yingchang, Xi Kelai, et al. Feldspar dissolution and its impact on physical properties of Paleogene clastic reservoirs in the northern slope zone of the Dongying Sag[J]. Acta Petrolei Sinica, 2013, 34(5): 853-866. [49] 远光辉,操应长,杨田,等. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J]. 地学前缘,2013,20(5):207-219. Yuan Guanghui, Cao Yingchang, Yang Tian, et al. Porosity enhancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J]. Earth Science Frontiers, 2013, 20(5): 207-219. [50] 韩登林,李忠,韩银学,等. 库车坳陷克拉苏构造带白垩系砂岩埋藏成岩环境的封闭性及其胶结作用分异特征[J]. 岩石学报,2009,25(10):2351-2362. Han Denglin, Li Zhong, Han Yinxue, et al. Sealing feature of burial diagenesis environment and its controls on differentiation of cementation in Cretaceous sandstone reservoir in Kelasu structure zone, Kuqa Depression[J]. Acta Petrologica Sinica, 2009, 25(10): 2351-2362.