Alternation of Microbiogenic Structures and Metazoan Bioturbated Structures from the Cambrian Miaoling Series of Henan
-
摘要: 河南寒武系苗岭统发育了大量微生物成因构造(叠层石和凝块石)和后生动物扰动构造(遗迹化石)。登封馒头组三段下部以叠层石灰岩及含垂直潜穴鲕粒灰岩的交替发育为特征,常被风暴作用导致的凹凸不平界面所分隔,叠层石形成于中等能量的滩间坪环境,而垂直潜穴发育于持续搅动的高能鲕粒滩环境;登封张夏组底部以凝块石灰岩和生物扰动构造灰岩的交替发育为特征,常以厚薄不均的泥岩层为分界面,二者均形成于正常浪基面之下的深水低能环境;卫辉崮山组以叠层石灰岩和生物扰动构造灰岩的交替发育为特征,二者以凹凸不平的界面或薄泥岩层相分隔,叠层石保存于中等能量的潮间坪沉积,而生物扰动构造则形成于低能的台地缓斜坡。当环境条件有利于微生物成席时(如清洁的水体、稳定的水动力条件和坚硬的底质),微生物成因沉积构造和微生物席底会大量发育。当环境条件不适合微生物席发育时(如浑浊的水体、交替变化的水动力条件和松软的底质),后生动物便开始在沉积物中掘穴,留下各类后生动物扰动构造和混合底。Abstract: Abundant microbiogenic structures (stromatolites and thrombolites) and metazoan bioturbated structures (trace fossils) are developed in the Cambrian Miaoling Series of Henan. The lower part of the Third member of the Mantou Formation in the Dengfeng area is dominated by the alternation of stromatolites and oolitic limestones with vertical burrows, which are often separated by the uneven interface caused by storms. The stromatolites were formed in a medium-energy inter-shoal flat environment, while the vertical burrows were developed in a continuously stirred high-energy oolitic shoal environment. The bottom of the Zhangxia Formation in the Dengfeng area is characterized by the alternating development of thrombolites and bioturbated limestones, often with an uneven thickness of mudstones as the interface, both of which were formed in the deep-water low-energy environment below the normal wave base. The Gushan Formation of the Weihui area is developed with the alternation of stromatolites and bioturbated limestones, which are separated by an uneven interface or thin mudstone layer. The stromatolites were preserved in medium energy intertidal flat deposits, while the bioturbated structures were formed in a low-energy gentle-slope Platform. The microbiogenic structures and matgrounds were widely developed in the sediments when sedimentary environment conditions (such as clean waters, stable hydrodynamic conditions, and hard substrates) are conducive to the formation of microbial mats. The metazoans began to excavate the sediments and formed various bioturbated structures and mixgrounds, when sedimentary environment conditions (such as muddy waters, alternating hydrodynamic conditions, and soft substrates) were not conducive to the formation of microbial mats.
-
图 4 登封关口剖面馒头组三段下部的叠层石与垂直潜穴特征
(a,b)围绕砾屑生长的叠层石;(c)小柱状叠层石;(d)发育垂直潜穴的鲕粒灰岩层与叠层石灰岩层,二者分界面凹凸不平;(e)含垂直潜穴鲕粒灰岩层中鲕粒微观照片;(f)垂直潜穴的微观照片,充填物为亮晶方解石,衬壁为含有石英的微晶方解石,围岩为鲕粒
Figure 4. The characteristics of stromatolites and vertical burrows in the lower part of the Third member of the Mantou Formation in Guankou section of the Dengfeng area
(a, b) stromatolites growing around gravel; (c) columnar stromatolites; (d) oolitic limestone layer and stromatolites limestone layer are developed with vertical burrows, and the boundary between them is uneven; (e) oolitic microscopic photograph in the oolitic limestone layer containing a vertical burrow; and (f) microscopic photo of the vertical burrow. The filling is sparry calcite, the lining wall is microcrystalline calcite containing quartz, and the surrounding rock is oolitic
图 6 登封关口剖面张夏组底部凝块石灰岩与生物扰动灰岩
(a)小柱状凝块石剖面照片,以砾屑鲕粒灰岩为基底;(b)小柱状凝块石层面照片;(c)块状凝块石剖面照片;(d)块状凝块石层面照片;(e)树枝状凝块石剖面照片;(f)大型生物礁构造;(g,h)生物扰动灰岩剖面照片;(i,j)生物扰动灰岩层面照片,可见Planolites垂直潜穴和Thalassinoides三维潜穴系统
Figure 6. Thrombolites and bioturbated structures at the bottom of the Zhangxia Formation in Guankou section of the Dengfeng area
(a) profile photo of small⁃columnar thrombolites, the thrombolite is based on gravelly oolitic limestone; (b) plane photo of small⁃columnar thrombolites; (c) profile photo of spotted thrombolites; (d) plane photo of spotted thrombolites; (e) profile photo of dendritic thrombolites; (f) large reef structures; (g, h) profile photo of bioturbated limestone; and (i, j) plane photo of bioturbated limestone, vertical burrows of Planolites and three⁃dimensional burrow systems of Thalassinoides are visible
图 8 卫辉沙滩剖面崮山组中的叠层石与生物扰动构造
(a)小柱状叠层石剖面照片;(b)与小柱状叠层石共生的鲕粒微观照片;(c)不规则柱状叠层石剖面照片,底部可见生物扰动灰岩层;(d)指状叠层石剖面照片;(e)生物扰动灰岩夹极薄层泥灰岩剖面照片;(f)生物扰动灰岩层面照片,可见遗迹化石Thalassinoides;(g)生物扰动灰岩剖面照片,可见遗迹化石Thalassinoides;(h)遗迹化石Thalassinoides微观照片
Figure 8. Stromatolites and bioturbated structures from the Gushan Formation in Shatan section of the Weihui area
(a) profile photo of small⁃columnar stromatolites; (b) microscopic photograph of oolite symbiosis with columnar stromatolites; (c) profile photo of irregular⁃columnar stromatolites, bioturbated limestone is developed at the bottom; (d) profile photo of finger⁃stromatolites; (e) profile photo of bioturbated limestone with extremely thin marl bioturbated limestone; (f) plane photo of bioturbated limestone, Thalassinoides are present in the remains; (g) profile photo of bioturbated limestone, Thalassinoides are present in the remains; and (h) microscopic photo of the Thalassinoides
-
[1] Walter M R, Buick R, Dunlop J S R. Stromatolites 3,400-3,500 Myr old from the North Pole area, western Australia[J]. Nature, 1980, 284(5755): 443-445. [2] Walter M R, Heys G R. Links between the rise of the metazoa and the decline of stromatolites[J]. Precambrian Research, 1985, 29(1/2/3): 149-174. [3] Schieber J, Bose P K, Eriksson P G, et al. Atlas of microbial mat features preserved within the siliciclastic rock record[M]. Amsterdam: Elsevier, 2007: 39-52. [4] Noffke N. The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits[J]. Earth-Science Reviews, 2009, 96(3): 173-180. [5] Muscente A D, Boag T H, Bykova N, et al. Environmental disturbance, resource availability, and biologic turnover at the dawn of animal life[J]. Earth-Science Reviews, 2018, 177: 248-264. [6] Riding R, Liang L Y. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 101-115. [7] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 2006, 185(3/4): 229-238. [8] Mángano M G, Buatois L A. Trace fossils in evolutionary paleoecology[M]//Miller III W. Trace fossils: Concepts, problems, prospects. Amsterdam: Elsevier, 2007: 391-409. [9] 齐永安,王敏,李妲,等. 寒武纪底质革命:从微生物席底到生物扰动混合底[J]. 河南理工大学学报(自然科学版),2012,31(2):159-164. Qi Yong’an, Wang Min, Li Da, et al. Cambrian substrate revolution: From matgrounds to bioturbated mixgrounds[J]. Journal of Henan Polytechnic University (Natural Science), 2012, 31(2): 159-164. [10] Bottjer D J, Hagadorn J W, Dornbos S Q. The Cambrian substrate revolution[J]. GSA Today, 2000, 10(9): 1-7. [11] Seilacher A. Biomat-related lifestyles in the Precambrian[J]. Palaios, 1999, 14(1): 86-93. [12] Walter M R. Stromatolites: The main geological source of information on the evolution of the early benthos[M]//Bengtson S. Early life on earth. New York: Columbia University Press, 1994: 270-286. [13] Zhang L J, Qi Y A, Buatois L A, et al. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in Early Cambrian carbonate settings[J]. Scientific Reports, 2017, 7: 45773. [14] 常玉光,齐永安,郑伟,等. 中国豫西寒武系馒头组叠层石的沉积特征及其古环境意义[J]. 沉积学报,2013,31(1):10-19. Chang Yuguang, Qi Yong’an, Zheng Wei, et al. Sedimentary characteristics and palaeoenvironmental significance on stromatolites of Mantou Formation in Cambrian, western Henan, China[J]. Acta Sedimentologica Sinica, 2013, 31(1): 10-19. [15] 代明月,齐永安,陈尧,等. 豫西渑池地区寒武系第三统张夏组的巨鲕及其成因[J]. 古地理学报,2014,16(5):726-734. Dai Mingyue, Qi Yong’an, Chen Yao, et al. Giant ooids and their genetic analysis from the Zhangxia Formation of Cambrian Series 3 in Mianchi area, western Henan province[J]. Journal of Palaeogeography, 2014, 16(5): 726-734. [16] 白万备,齐永安,郭英海,等. 河南鲁山寒武系第二统辛集组风暴沉积及其相关的遗迹化石[J]. 古地理学报,2018,20(3):365-376. Bai Wanbei, Qi Yong’an, Guo Yinghai, et al. Storm deposits and relevant trace fossils from the Cambrian Series 2 Xinji Formation in Lushan area, Henan province[J]. Journal of Palaeogeography, 2018, 20(3): 365-376. [17] 齐永安,李小燕,陈白兵,等. 豫西宜阳地区寒武系第三统馒头组二段鲕粒滩—微生物丘组合及其成因分析[J]. 河南理工大学学报(自然科学版),2019,38(2):34-41. Qi Yong’an, Li Xiaoyan, Chen Baibing, et al. Analysis on the oolitic shoal-microbial mound combinations and their geneses in the Second member of Mantou Formation, Cambrian, Series 3, Yiyang area, western Henan[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(2): 34-41. [18] 梅冥相, Latif K,孟庆芬,等. 寒武系张夏组鲕粒滩中微生物碳酸盐岩主导的生物丘:以河北秦皇岛驻操营剖面为例[J]. 地质学报,2019,93(1):227-251. Mei Mingxiang, Latif K, Meng Qingfen, et al. Cambrian bioherms dominated by microbial carbonate within the oolitic grainstone bank, Zhangxia Formation of the Miaolingian, Zhucaoying section in Qinhuangdao city of Hebei province[J]. Acta Geologica Sinica, 2019, 93(1): 227-251. [19] 梅冥相,胡媛,孟庆芬. 大连金州湾寒武系毛庄组微生物碳酸盐岩生物丘复合体[J]. 地质学报,2020,94(2):375-395. Mei Mingxiang, Hu Yuan, Meng Qingfen. Bioherm complex madding up of microbial carbonates in the Cambrian Maozhuang Formation, Jinzhouwan section in the Dalian city of Liaoning province in northeastern China[J]. Acta Geologica Sinica, 2020, 94(2): 375-395. [20] 张喜洋,齐永安,代明月,等. 河南登封寒武系第三统张夏组核形石与遗迹化石的耦合变化[J]. 微体古生物学报,2015,32(2):184-193. Zhang Xiyang, Qi Yong’an, Dai Mingyue, et al. Coupling variation of oncoids and trace fossils in the Zhangxia Formation (Cambrian Series 3), Dengfeng, western Henan province[J]. Acta Micropalaeontologica Sinica, 2015, 32(2): 184-193. [21] 常玉光,白万备,王敏. 豫西寒武纪叠层石演化特征及其与后生动物的耦合关系[J]. 现代地质,2017,31(1):92-101. Chang Yuguang, Bai Wanbei, Wang Min. Evolution characteristics of Cambrian stromatolites in western Henan and the coupling relationship with metazoan[J]. Geoscience, 2017, 31(1): 92-101. [22] 裴放,张海清,阎国顺,等. 河南省地层古生物研究[M]. 郑州:黄河水利出版社,2008:112-153. Pei Fang, Zhang Haiqing, Yan Guoshun, et al. Stratigraphic paleontology research in Henan province[M]. Zhengzhou: Yellow River Conservancy Press, 2008: 112-153. [23] 齐永安,王艳鹏,代明月,等. 豫西登封寒武系第三统张夏组凝块石灰岩及其控制因素[J]. 微体古生物学报,2014,31(3):243-255. Qi Yong’an, Wang Yanpeng, Dai Mingyue, et al. Thrombolites and controlling factors from the Zhangxia Formation of Cambrian Series 3 in Dengfeng, western Henan province[J]. Acta Micropalaeontologica Sinica, 2014, 31(3): 243-255. [24] Taylor A M. Trace fossil fabric analysis in the sub-surface exploration of Jurassic sequences from the North Sea Basin[D]. Manchester: University of Manchester, 1991: 1-167. [25] Wang M, Li K N, Yang W T, et al. The trace fossil Thalassinoides bacae in the Cambrian Zhangxia Formation (Miaolingian Series) of North China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109333. [26] Buatois L A, Mángano M G. Ediacaran ecosystems and the dawn of animals[M]//Mángano M G, Buatois L A. The trace-fossil record of major evolutionary events: Volume 1: Precambrian and Paleozoic. Dordrecht: Springer, 2016: 27-72. [27] Mcilroy D, Logan G A. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic-Cambrian transition[J]. Palaios, 1999, 14(1): 58-71. [28] Mángano M G, Bromley R G, Harper D A, et al. Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): Opening a new window into Early Phanerozoic benthic ecology[J]. Geology, 2012, 40(6): 519-522. [29] 刘炳辰,齐永安,代明月,等. 寒武纪生物大爆发之后的底栖生态系统工程建造者:以河南地区为例[J]. 地球科学,2021,46(1):148-161. Liu Bingchen, Qi Yong’an, Dai Mingyue, et al. Benthic ecosystem engineer after the Cambrian explosion: An example from Henan province[J]. Earth Science, 2021, 41(1): 148-161. [30] Chen Z, Zhou C M, Meyer M, et al. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors[J]. Precambrian Research, 2013, 224: 690-701. [31] Erwin D H, Laflamme M, Tweedt S M, et al. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334(6059): 1091-1097. [32] Fan J X, Shen S Z, Erwin D H, et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity[J]. Science, 2020, 367(6475): 272-277.