-
我国陆相细粒沉积岩具有岩石类型复杂、结构样式多样、空间分布非均质性强的特征[70⁃71,95],因此在进行陆相湖盆细粒沉积岩研究时,分类标准及命名方案众多:从有机成因以及石油开采的角度[96⁃97],中国陆相细粒沉积岩可以分为腐泥型、腐殖腐泥型和腐泥腐殖型[97⁃98]细粒沉积岩;从沉积环境角度,可以划分为湖泊和湖泊—沼泽成因[99⁃101]细粒沉积岩;从水体性质角度,可以划分为淡水细粒沉积岩和咸水—半咸水[95]细粒沉积岩。由上述分类可知,细粒沉积岩的有机质特征及所处盆地的构造样式、沉积环境是细粒沉积岩初步分类的重要依据,目前广泛应用的分类方法往往也基于上述标准,即结合细粒沉积岩成分、结构、构造等特征,采用岩相学分类方法[75⁃78],既可以有效地反映岩石的沉积环境,沉积水动力变化,也可以兼顾岩石成分、结构、构造等特征。
伴随着不同盆地细粒沉积岩岩石成分及微观组构特征研究的不断深入,发现盆地水体咸化程度不同,细粒沉积岩岩石学特征差异极大[102⁃106]。以其中典型的渤海湾盆地和松辽盆地为例,渤海湾盆地沙河街组沉积时期是典型的咸化湖盆,发育的细粒沉积岩本质上是一种混积岩[107⁃110],是陆源输入的机械沉积作用和(生物)化学沉积作用共同作用的结果,由碳酸盐矿物,石英、长石等长英质矿物,和少量黏土矿物组成[79](图2a),其中碳酸盐组分和陆源碎屑组分杂乱混合在一起或以纹层的形式交替叠置[31,82,114⁃115]。而松辽盆地青山口组沉积时期形成的细粒沉积岩在岩石成分上碳酸盐组分明显较低,以石英、长石等长英质组分和黏土组分为主[39,111⁃113](图2b),笔者通过对松辽盆地南部长岭凹陷青山口组页岩层系中碳酸盐组分高值样品点进行观察发现,碳酸盐组分通常以方解石、白云石胶结物的形式呈薄膜状或粒状镶嵌充填在石英、长石颗粒边缘。此外也有部分学者认为松辽盆地青山口组沉积时期碳酸盐岩异常高值带为介形虫等生物灭绝形成[116]。总体来说,淡水湖盆主要发生机械沉积作用,以陆源碎屑成分为主,而咸化湖盆沉积作用更为复杂,除机械沉积外,化学及生物沉积作用产生的盆内粒屑同样参与细粒沉积岩的构成。故笔者依据其岩石学特征将陆相湖盆细粒沉积岩进一步细分为混合型细粒沉积岩(咸化—半咸化湖盆)和碎屑型细粒沉积岩(淡水湖盆)两大类,分别对二者的分类方案进行总结,以便更好地认识不同类型细粒沉积体系中岩石成分、结构、构造等特征。
-
在咸化—半咸化湖盆中[117⁃118],当陆源供应、盆地内生物化学反应与火山活动达到一定平衡时[119],长英质碎屑组分、火山碎屑组分以及碳酸盐岩组分会共存并形成一个连续的统一体[120],此类由于混合沉积作用形成的岩石可称作混合型细粒沉积岩。“混合沉积”的概念最早由Mount[121]在1984年提出,90年代引入中国后取得了一系列的成果[101⁃103,122⁃124]。混合沉积形成的岩石类型丰富,陆源碎屑组分与火山碎屑、碳酸盐等其他组分在微观结构上混合构成的狭义混积岩[123⁃124],和碎屑岩与碳酸盐岩、火山岩等其他同期异相岩体在空间上横向相变,纵向互层或无规律零星交叉、夹层等层系上的混合形成的宏观广义混积岩[103]均属于混合沉积岩的范畴[101⁃102]。我国渤海湾盆地东营凹陷、济阳凹陷、沧东凹陷、歧口凹陷的沙河街组、孔店组等[78,125],四川盆地下侏罗统[78,90,126⁃128]、龙马溪组[129⁃130],准噶尔盆地吉木萨尔凹陷芦草沟组[131⁃132],柴达木盆地克鲁克组、干柴沟组[133⁃135],三塘湖盆地条湖组、芦草沟组等[136],广泛发育混合细粒沉积岩。
最初进行混合型细粒沉积岩分类时,仅简单地根据其岩石学特征,页理发育程度以及有机质丰度将其简单命名为页岩、泥岩、油页岩等,但由于此类方案过于简单,单一岩石类型中往往包含大量信息而被快速摒弃。目前基于岩相对细粒沉积岩进行分类和定名已经在国内外形成共识[137⁃140],岩相由于包含能够反映沉积环境变化的岩石学以及构造特征参数,可以有效地帮助我们恢复不同盆地的沉积过程以及地质条件。目前常用的岩相分类指标主要包括细粒沉积岩的矿物成分、沉积构造以及有机质丰度等。与前两者具有一定的通用性不同,在非常规油气勘探开发领域的研究学者更倾向于将能够表征细粒沉积岩生烃能力及含油气性的有机质纳入评价指标中来[7,125,140⁃142],考虑到不同岩相类型细粒沉积岩有机质含量及赋存状态不同,采用总有机碳含量(TOC)作为评价其有机质富集程度的参数,我国通常以2%和4%为界,将混合型细粒沉积岩划分为富有机质、中有机质和贫有机质三种[23⁃25]。而沉积构造参数的使用上,成层性是细粒沉积岩最显著的特征之一[65],但目前有关层理的研究多集中在层理的成分、形态、连续性以及组合特征上[19,109,143],针对层理规模的划分标准少有笔墨,本文综合不同学者进行岩相分类时采用的层理规模参数对层理规模以及名称进行了总结。与常规岩石的宏观块状(>1 m)以及层状构造(根据规模进一步细分0.5~1 m为厚层、0.1~0.5 m为中层、0.01~0.1 m为薄层、小于0.01 m为页状层)不同,细粒沉积岩的“纹层”更倾向于是一个微观结构上的成因概念,宏观为块状构造的岩石内部同样可以存在纹层结构[94],细粒沉积岩中使用的“层理”规模由小到大可以分为纹层状(小于1 mm,主要集中在0.01~0.5 mm)、层状(1 mm~1 m)以及块状构造(内部均一,部分发育负荷构造、液化砂脉、生物扰动等软沉积变形构造)[19,82,144⁃148]。然而,无论采取上述何种特征进行修饰,在岩相分类中,细粒沉积岩的矿物成分一直是其中的关键[140,149⁃152]。通常采用三端元的岩石学分类方法,选取长英质矿物、碳酸盐矿物和黏土矿物作为三个端元确定细粒沉积岩的岩石主名,如常见的黏土岩、石灰岩/白云岩、混合沉积岩等[90,131⁃132]。最终形成以有机质含量+沉积构造+岩石学主名的混合型细粒沉积岩岩相综合命名方法[149⁃152]。此类基于物质成分及特征描述的分类方法由于具有易于观察描述,现场操作简便的优点[51],目前大多采用此种分类手段。
然而,基于矿物成分的岩石学特征分类方案无可避免地存在一个问题,即相同的成分往往代表着不同的物质来源以及成因过程[65,153]。随着显微观测手段的不断进步,多数学者通过对矿物特征(粒度、晶体结构等)以及赋存状态(颗粒/胶结物)的显微特征研究[127,154⁃156],以及对矿物在沉积及成岩过程中的演变过程进行了实验室模拟[157],在一定程度上恢复了细粒沉积岩中不同矿物的来源及形成机制。由此,基于矿物来源及成因的细粒沉积分类方法开始逐渐被大众所接受。如王小军等[158]基于颗粒粒度、成分、结构,选取粒屑(代表砂屑、生屑等生物化学沉积作用的碳酸盐组分),泥(碳酸盐泥和陆源碎屑泥),粉砂(石英、长石岩屑等机械沉积的陆源碎屑组分)作为成因分类的三端元对混合型细粒沉积岩进行划分,同时增加盐组分对岩石类型加以修饰,有效恢复陆相湖盆的咸化过程。但成因分类受到研究技术手段以及端元选取的限制,至今尚未形成统一的分类标准。
无论采用何种分类方法,其最终划分的岩石类型均具有相似的特征。混合型细粒沉积岩整体具有黏土矿物含量普遍较低,碳酸盐矿物含量较高的特点,沉积构造以纹层状构造为主,次为块状构造,有机质含量较高。本文采用以岩石学为基础的岩相分类法进行归纳,混合型细粒沉积岩中最常见的岩相类型为富有机质层状/纹层状灰岩相、富有机质页状黏土岩相、中有机质纹层状灰质混合沉积岩相、贫有机质块状长英质/黏土质混合沉积岩相等[78,159⁃160]。其中富有机质层状/纹层状灰岩相以浅色碳酸盐纹层与深色富有机质黏土纹层互层为典型特征。浅色碳酸盐纹层厚度大,出现频率高,界限清晰,局部呈脉状或不连续夹层状;黏土纹层内部可见石英颗粒半定向分布,指示牵引流搬运特征;有机质赋存方式以顺层状为主,兼有分散状富集的特点,形成暗色的富有机质层。富有机质页状黏土岩相,也是我们最常见的“黑色页岩”,页理发育,硬度较小,岩心上多沿层理面破碎呈薄片状,镜下观察石英颗粒顺层性及定向性较差,以散乱分布的形式分布其中。中有机质纹层状灰质细粒混合沉积岩相是混合咸化湖盆中最为发育的一类岩相,由颜色较浅的碳酸盐纹层、长英质纹层与暗色有机质含量较高的黏土质纹层在垂向上频繁叠置构成,浅色纹层通常呈连续或不连续透镜状产出,有机质以分散状、断续纹层状及短线状分布在岩石内部[7]。除上述岩相类型外,还包括在物源强度较高或生物贫瘠的条件下形成的贫有机质块状灰质混合沉积岩相、层状粉砂岩相等,通常不作为重点研究内容。
-
碎屑型细粒沉积岩主要分布在我国松辽盆地的青山口组以及鄂尔多斯盆地的延长组中,与混合型细粒沉积岩不同的是,碎屑型细粒沉积岩所在的淡水湖盆陆源碎屑供应能量较强,以陆源碎屑的机械沉积作用为主,少见盆内自生的生物及化学沉淀物[45]。碎屑型细粒沉积岩分类中同样将有机质丰度[161⁃162]以及沉积构造[111,163⁃166]作为分类标准之一,但在岩石学主名方面,由于碳酸盐的赋存方式、分布及成因存在一定争议,目前碎屑型细粒沉积岩岩石学命名主要存在两种方案。
第一种“三端元”的岩石学分类方法,即参照混合型细粒岩分类方法,选择黏土矿物、长英质矿物,碳酸盐矿物作为三端元[161⁃162],将岩石类型分为黏土质页岩、长英质页/泥岩、(介壳)灰岩、和混合质页岩等。其中块状长英质泥岩多在浅湖水体动荡的环境下快速沉积形成,有机质含量低,孔隙条件及含油性较差,而纹层发育良好的纹层状混合质页岩是页岩油富集的有利岩相[39]。但随着研究的不断进行,吴松涛[167]通过对松辽盆地古龙页岩油富集部位与岩石类型进行拟合,发现与其他盆地不同,松辽盆地黏土纹层与长英质及钙质纹层相比油气富集情况更好,对此类碎屑型细粒沉积岩分类是否需要如此繁琐再次提出了质疑。且松辽盆地发育以机械沉积作用为主的长英质细粒沉积岩,具有高碳酸盐含量的样品个数较少且集中,多为介壳灰岩呈夹层形式零星分布在细粒沉积的纵向序列之中[39,162],更像是由于突发性事件导致水体生物繁盛后大批量死亡产生钙质骨骼富集从而引起的钙质组分增多,潘树新等[116]也已经证实松辽盆地青山口组存在多期由于介形虫集群性死亡事件产生的介形虫层,并认为基准面的周期性下降造成水体变浅、矿化度增高以及陆源碎屑输入量增高都会导致局部钙质骨骼富集。总体上看,松辽盆地细粒沉积以粉砂和黏土交替出现为主,碳酸盐含量较低,通常作为胶结物或夹层形式存在。因此,笔者更倾向于第二种碎屑型细粒沉积岩岩石学分类方案。
第二种划分方案不再拘泥于岩石成分,而是将碎屑岩粒度作为确定岩石主名的标准,首先利用宏观构造特征将其分为页理(单层厚度小于0.01 m)发育的“页岩”以及块状构造的“泥岩”[10,165⁃166],随后结合粒度特征将其分为泥岩/页岩、粉砂质泥岩、粉砂质页岩[164,168]。并针对其中含油气性较好的页岩,根据其内部纹层的产状以及连续性[169⁃170]将页岩相进一步细分为波状纹层页岩,水平纹层状页岩,透镜纹层状页岩,(均质)页岩等。整体来说,与混合型细粒沉积岩相比,碎屑型细粒沉积的岩石类型简单,岩石分类方案单一,以粒级、沉积构造作为分类依据,结合有机质含量将其划分为“贫、中、富有机质的泥岩或页岩”,更有利于后续研究工作的开展。
碎屑型细粒沉积岩中泥岩与页岩在空间上互补交替出现[169⁃170],其中泥岩颜色变化范围较大,石英、长石等长英质矿物含量较高且呈纹层、脉状分布其中,取心过程中不易破碎,单层厚度较大,块状泥岩内部槽模、沟模、火焰构造等变形构造发育[111,165,169],指示高能环境中的快速沉积过程,推测此类泥岩形成于水体动荡,含氧量高,物源碎屑供给丰富的环境,不利于有机质的生成和保存,故有机质丰度较低[171];而页岩的黏土矿物含量更高,颜色更深,以黑色、黑褐色为主,页理发育,取心时易沿层理面发生破碎,存在少量生物碎屑,指示陆源碎屑供给不足,沉积速率低,有机质富集,是碎屑型细粒沉积岩开发的有利岩相[34,172]。
对不同细粒沉积体系分类方案总结(表1)发现,无论是哪种类型的细粒沉积体系,何种岩相分类方案,其目的都是为了结合区域沉积构造背景,通过对不同岩石类型组合、不同沉积构造特征的样品进行环境特征恢复乃至成因过程的耦合,建立具有代表性的细粒沉积模式,以指导非常规油气的勘探与开发。但由于细粒沉积过程的复杂性和多解性,我们很难找到某个或某几个泛用性极高的岩相类型表征其形成环境及成因过程,目前通常采用模拟细粒沉积岩的特殊构造,尤其是“纹层”形成过程的方法,近似恢复其形成时期的流体特征及搬运—沉积的动力学机制。
表 1 陆相混合型细粒沉积岩与碎屑型细粒沉积岩划分方案
岩石大类 分类依据 典型研究者及研究对象 分类结果 混合型细粒沉积岩 岩石学特征 赵建华等[90] 四川盆地龙马溪组李书琴等[131],葸克来等[132]吉木萨尔凹陷芦草沟组 粉砂岩、黏土岩,灰岩白云岩,灰质混合沉积岩, 长英质混合沉积岩,黏土质混合沉积岩等 沉积构造岩石学特征 刘姝君等[150]东营凹陷沙三下—沙四上亚段邓远等[151] 沧东凹陷孔店组二段周立宏等[152] 歧口凹陷沙一段下亚段 块状长英质页岩、纹层状长英质页岩;纹层状黏土质页岩; 纹层状灰质页岩;块状白云质页岩、白云岩; 纹层状碳酸盐质/长英质/黏土质混合页岩等 有机质含量沉积构造岩石学特征 吴靖等[77],张顺等[159]彭丽等[125]济阳凹陷沙三下亚段渤海湾盆地东营凹陷沙三下—沙四上亚段刘忠宝等[128]四川盆地中下侏罗统 含有机质纹层状泥质灰岩、富有机质纹层状泥质灰岩、 富有机质纹层状灰质泥岩、富有机质层状灰质泥岩、 富有机质层状泥质灰岩以及富有机质块状泥质灰岩等 有机质含量沉积构造成因类型 陈世悦等[91],宁方兴等[141] 渤海湾盆地东营凹陷王小军等[158]吉木萨尔凹陷芦草沟组 块状/纹层状/团块状(长英质黏土质)碳酸盐型细粒混积岩等; 富有机质纹层状隐晶泥质灰岩等 碎屑型细粒沉积岩 有机质含量沉积构造岩石学特征 柳波等[39],王岚等[161]松辽盆地古龙凹陷青山口组张君峰等[111]松辽盆地南部青山口组 富有机质黏土质页岩、富有机质长英质页岩、贫有机质长英质泥岩、 富有机质混合质页岩(如含生屑长英质页岩、长英质泥灰岩)、贫有机质介壳灰岩 有机质含量(沉积构造)碎屑岩粒级 柳波等[162]松辽盆地长岭凹陷青山口组耳闯等[163],付金华等[168]鄂尔多斯盆地延长组 高有机质薄片状页岩相、中有机质块状泥岩相、 中有机质纹层状页岩相、低有机质纹层状页岩相和低有机质砂岩夹层相
Research Progress into Fine-grained Sedimentary Rock Characteristics and Formation in a Continental Lake Basin
-
摘要: 细粒沉积岩是最为常见的岩石类型之一,蕴藏着丰富的油气资源,伴随着非常规油气的发展,有关细粒沉积的研究逐渐成为了热点,但由于陆相细粒沉积岩岩石类型丰富,形成机制复杂,缺乏统一科学的分类方案。对目前常见的陆相细粒沉积岩分类方法进行总结,并依据岩石组分将其分为混合型和碎屑型细粒沉积岩两种,并指明其常见的岩石类型特征;梳理与其相关的成因动力学物理模拟实验成果,其中有关泥级颗粒的搬运—沉积机理已经取得了重大突破。而细粒沉积模式方面,可以分为有机质富集模式,岩相模式以及成因模式,三个模式的内涵和所要解决的地质问题各不相同。在此基础上,提出加强细粒沉积岩不同矿物成分微观结构特征、沉积—成岩机理认识,将岩石微观成因分类方案与宏观成因模式有效融合是未来细粒沉积研究的关键。Abstract: Fine-grained sediments are among the most common types of rock rich in oil and gas resources. Along with the onset of the non-conventional oil and gas revolution, research into fine-grained sediments has gradually received more attention. However, due to the fine particle size, the large number of components and the as yet to be clarified formation process and genetic mechanism of fine-grained sediments, the terminology used to describe their classification and model becomes quite confusing, and appears to lack a uniform standard. To solve these problems, a common classification criterion for fine-grained sediments and for common rock types in different modes of deposition and their characteristics, as well as the relevant genetic dynamics, are summarized here. Moreover, the “one basin, one scheme” sediment refinement mode is further classified into an organic-matter enrichment model, a facies model and a genetic model, and their connotations and applications are summarized. On this basis, it is proposed that the understanding of microstructure and the sedimentary diagenetic mechanisms of the different mineral components in fine-grained sedimentary rocks be strengthened. Effectively integrating genetic rock-classification schemes with a macro-genetic model will be key to future studies of fine-grained sedimentary rocks.
-
图 2 混合型细粒沉积岩以及碎屑型细粒沉积岩岩石学特征[39,76,111⁃113]
1.沙河街组三段下亚段(东营、沾化凹陷);2.沙河街组四段上亚段纯上次亚段(东营、沾化凹陷);3.沙河街组四段上亚段纯下次亚段(东营、沾化凹陷);4.孔店组二段(沧东凹陷);5.孔店组二段(沧东凹陷);6.松辽盆地青山口组一段(古龙凹陷);7.松辽盆地青山口组一段(长岭凹陷);8.松辽盆地南部青山口组;9.松辽盆地沙河子组(长岭断陷);10.松辽盆地青山口组一段(大情字井地区);11.碳酸盐岩;12.粉砂岩;13.黏土岩;14.混合沉积岩
Figure 2. Petrological characteristics of mixed and clastic fine⁃grained sedimentary rocks[39,76,111⁃113]
1. lower 3rd sub⁃member of Shahejie Formation (Dongying Sag, Zhanhua Sag); 2. Chunshang part of upper 4th sub⁃member of Shahejie Formation (Dongying Sag, Zhanhua Sag); 3. Chunxia part of upper 4th sub⁃member of Shahejie Formation (Dongying Sag, Zhanhua Sag); 4. 2nd member of Kongdian Formation (Cangdong Sag); 5. 2nd member of Kongdian Formation (Cangdong Sag); 6. 1st member of Qingshankou Formation in Songliao Basin (Gulong Sag); 7. 1st member of Qingshankou Formation in Songliao Basin (Changling Sag); 8. Qingshankou Formation in southern Songliao Basin; 9. Shahezi Formation in Songliao Basin (Changling Fault Depression); 10. 1st member of Qingshankou Formation in Songliao Basin (Daqingzijing area); 11. carbonate rock; 12. siltstone; 13. clay rock; 14. mixed sedimentary rock
图 4 松辽盆地南部青山口组细粒沉积周期性底流作用标志
松辽盆地长岭凹陷青一段细粒沉积岩特征:(a)黑灰色块状泥岩,微细粉砂质纹层不连续,局部粉砂质透镜体,H238井,2 101.50 m;(b)黑灰色块状泥岩,中间由细小粉砂质透镜体、团块形成的粒序层理,H238井,2 104.40 m;(c)砂泥突变接触面,下部泥质粉砂岩可见波状泥质纹层,H238井,2 110.20 m;(d)砂脉、砂质团块,存在变形,具有明显的牵引流构造特征,H238井,2 151.70 m;(e)上部水平层理,下部砂质团块,牵引流构造特征,H258井,2 418.98 m;(f)泥质及粉砂纹层互层,存在变形砂脉,H258井,2 410.12 m;(g)粉砂纹层与泥质纹层互层形成平行层理,H258井,2 380.02 m;(h)泥质纹层夹在粉砂层之间,形成波状交错层理,H258井,2 426.17 m
Figure 4. Periodic underflow of fine⁃grained sediments of Qingshankou Formation in southern Songliao Basin
core characteristics of fine⁃grained sedimentary system of member Qing 1 in Changling Sag, Songliao Basin: (a) black⁃ray massive mudstone, discontinuous fine silty lamina, local silty lens, well H238, 2 101.50 m; (b) black⁃gray massive mudstone, with grain sequence bedding formed by fine silty lens and mass in the middle, well H238, 2 104.40 m; (c) sand mud abrupt contact surface, showing wavy argillaceous laminae in lower argillaceous siltstone, well H238, 2 110.20 m; (d) sand veins and sand masses, with deformation and obvious traction flow structural characteristics, well H238, 2 151.70 m; (e) upper horizontal bedding, lower sandy mass, with traction and drainage structural characteristics, well H258, 2 418.98 m; (f) interbedded argillaceous and silty sand layers, with sand veins, severe deformation, well H258, 2 410.12 m; (g) interbedded silty sand lamina and argillaceous lamina forming parallel bedding, well H258, 2 380.02 m; (h) argillaceous lamina sandwiched between silty sand layers, forming wavy cross⁃bedding, well H258, 2 426.17 m
表 1 陆相混合型细粒沉积岩与碎屑型细粒沉积岩划分方案
岩石大类 分类依据 典型研究者及研究对象 分类结果 混合型细粒沉积岩 岩石学特征 赵建华等[90] 四川盆地龙马溪组李书琴等[131],葸克来等[132]吉木萨尔凹陷芦草沟组 粉砂岩、黏土岩,灰岩白云岩,灰质混合沉积岩, 长英质混合沉积岩,黏土质混合沉积岩等 沉积构造岩石学特征 刘姝君等[150]东营凹陷沙三下—沙四上亚段邓远等[151] 沧东凹陷孔店组二段周立宏等[152] 歧口凹陷沙一段下亚段 块状长英质页岩、纹层状长英质页岩;纹层状黏土质页岩; 纹层状灰质页岩;块状白云质页岩、白云岩; 纹层状碳酸盐质/长英质/黏土质混合页岩等 有机质含量沉积构造岩石学特征 吴靖等[77],张顺等[159]彭丽等[125]济阳凹陷沙三下亚段渤海湾盆地东营凹陷沙三下—沙四上亚段刘忠宝等[128]四川盆地中下侏罗统 含有机质纹层状泥质灰岩、富有机质纹层状泥质灰岩、 富有机质纹层状灰质泥岩、富有机质层状灰质泥岩、 富有机质层状泥质灰岩以及富有机质块状泥质灰岩等 有机质含量沉积构造成因类型 陈世悦等[91],宁方兴等[141] 渤海湾盆地东营凹陷王小军等[158]吉木萨尔凹陷芦草沟组 块状/纹层状/团块状(长英质黏土质)碳酸盐型细粒混积岩等; 富有机质纹层状隐晶泥质灰岩等 碎屑型细粒沉积岩 有机质含量沉积构造岩石学特征 柳波等[39],王岚等[161]松辽盆地古龙凹陷青山口组张君峰等[111]松辽盆地南部青山口组 富有机质黏土质页岩、富有机质长英质页岩、贫有机质长英质泥岩、 富有机质混合质页岩(如含生屑长英质页岩、长英质泥灰岩)、贫有机质介壳灰岩 有机质含量(沉积构造)碎屑岩粒级 柳波等[162]松辽盆地长岭凹陷青山口组耳闯等[163],付金华等[168]鄂尔多斯盆地延长组 高有机质薄片状页岩相、中有机质块状泥岩相、 中有机质纹层状页岩相、低有机质纹层状页岩相和低有机质砂岩夹层相 -
[1] Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195. [2] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. [3] Clarke F W. The data of geochemistry[M]. 2nd ed. Washington: Government Printing Office, 1924: 1-770. [4] Wickman F E. The “total” amount of sediments and the composition of the “average igneous rock”[J]. Geochimica et Cosmochimica Acta, 1954, 5(3): 97-110. [5] Sorby H C. On the application of quantitative methods to the study of the structure and history of rocks[J]. Quarterly Journal of the Geological Society, 1908, 64(1/2/3/4): 171-233. [6] Krumbein W C. The mechanical analysis of fine-grained sediments[J]. Journal of Sedimentary Research, 1932, 2(3): 140-149. [7] 陈世悦,张顺,王永诗,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发,2016,43(2):198-208. Chen Shiyue, Zhang Shun, Wang Yongshi, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208. [8] 邹才能,杨智,张国生,等. 常规—非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发,2014,41(1):14-27. Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Conventional and unconventional petroleum "orderly accumulation": Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 40(1): 14-27. [9] Lewan M D. Laboratory classification of very fine grained sedimentary rocks[J]. Geology, 1978, 6(12): 745-748. [10] Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744. [11] Jiang Z X, Duan H J, Liang C, et al. Classification of hydrocarbon-bearing fine-grained sedimentary rocks[J]. Journal of Earth Science, 2017, 28(6): 693-976. [12] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246. [13] Milliken K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199. [14] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151-158. [15] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. [16] Flemming B W. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams[J]. Continental Shelf Research, 2000, 20(10/11): 1125-1137. [17] Folk R L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature[J]. The Journal of Geology, 1954, 62(4): 344-359. [18] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1980: 1-182. [19] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2015,42(5):598-607. Liu Bo, Yanfang Lü, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607. [20] 周立宏,蒲秀刚,陈长伟,等. 陆相湖盆细粒岩油气的概念、特征及勘探意义:以渤海湾盆地沧东凹陷孔二段为例[J]. 地球科学,2018,43(10):3625-3639. Zhou Lihong, Pu Xiugang, Chen Changwei, et al. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: A case from the Second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3625-3639. [21] 邹才能,朱如凯,白斌,等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报,2015,34(1):1-17. Zou Caineng, Zhu Rukai, Bai Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 1-17. [22] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184. Zhu Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184. [23] 高岗,向宝力,都鹏燕,等. 准噶尔盆地玛湖凹陷风城组泥岩与泥质白云岩热模拟产物特征对比[J]. 地球科学与环境学报,2016,38(1):93-103. Gao Gang, Xiang Baoli, Du Pengyan, et al. Comparison of thermal simulation product characteristics of mudstone and argillaceous dolomite from Fengcheng Formation in Mahu Sag of Junggar Basin[J]. Journal of earth Sciences and Environment, 2016, 38(1): 93-103. [24] Williams H, Turner F J, Gilbert C M. Petrography: An introduction to the study of rocks in thin section[M]. 2nd ed. San Francisco: W. H. Freeman and Company, 1982. [25] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1980. [26] Bates R L, Jackson J A. Glossary of geology[M]. 3rd ed. Alexandria: American Geological Institute, 1987. [27] Alexander T, Baihly J, Boyer C, et al. The shale gas revolution[J]. New Technology of Oilfield, 2011, 23(3): 40-55. [28] 国家石油和化学工业局. SY/T 5368—2000 岩石薄片鉴定 [S]. 北京:石油工业出版社,2000. State Administration of Petroleum and Chemical Industry. SY/T 5368-2000 thin section examination of rock [S]. Beijing: Petroleum Industry Press, 2000. [29] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010. Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010. [30] 王成云,匡立春,高岗,等. 吉木萨尔凹陷芦草沟组泥质岩类生烃潜力差异性分析[J]. 沉积学报,2014,32(2):385-390. Wang Chengyun, Kuang Lichun, Gao Gang, et al. Difference in hydrocarbon generation potential of the shaly source rocks in Jimusar Sag, Permian Lucaogou Formation[J]. Acta Sedimentologica Sinica, 2014, 32(2): 385-390. [31] 王勇,刘惠民,宋国奇,等. 济阳坳陷泥页岩细粒沉积体系[J]. 石油学报,2019,40(4):395-410. Wang Yong, Liu Huimin, Song Guoqi, et al. Lacustrine shale fine-grained sedimentary system in Jiyang Depression[J]. Acta Petrolei Sinica, 2019, 40(4): 395-410. [32] 卢双舫,李俊乾,张鹏飞,等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发,2018,45(3):436-444. Lu Shuangfang, Li Junqian, Zhang Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444. [33] 聂海宽,张培先,边瑞康,等. 中国陆相页岩油富集特征[J]. 地学前缘,2016,23(2):55-62. Nie Haikuan, Zhang Peixian, Bian Ruikang, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62. [34] 宋国奇,张林晔,卢双舫,等. 页岩油资源评价技术方法及其应用[J]. 地学前缘,2013,20(4):221-228. Song Guoqi, Zhang Linye, Lu Shuangfang, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013, 20(4): 221-228. [35] 支东明,唐勇,郑孟林,等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探,2019,24(5):615-623. Zhi Dongming, Tang Yong, Zheng Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623. [36] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1-10. Zhao Wenzhi, Hu Suyun, Hou Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10. [37] 赵文智,胡素云,侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发,2018,45(4):537-545. Zhao Wenzhi, Hu Suyun, Hou Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545. [38] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26. Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. [39] 柳波,石佳欣,付晓飞,等. 陆相泥页岩层系岩相特征与页岩油富集条件:以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发,2018,45(5):828-838. Liu Bo, Shi Jiaxin, Fu Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in First member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838. [40] 支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534. Zhi Dongming, Tang Yong, Yang Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534. [41] 赵贤正,周立宏,蒲秀刚,等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破:以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发,2018,45(3):361-372. Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372. [42] 王民,马睿,李进步,等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发,2019,46(4):789-802. Wang Min, Ma Rui, Li Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. [43] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. [44] Mavor M. Barnett shale gas-in-place volume including sorbed and free gas volume[R]. Texas: AAPG Southwest Section Meeting, 2003. [45] Tourtelot H A. Theuseof theword “shale”[J]. American Journal of Science, 1960, 258: 335-343. [46] Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction and overview[M]. New York: Springer, 2005: 1-297. [47] O'Brien N R, Slatt R M. Argillaceous rock atlas[M]. New York: Springer, 1990: 1-156. [48] Weaver C E. Clays, muds, and shales: Developments in sedimentology, 44[M]. Amsterdam: Elsevier, 1989: 1-819. [49] Boggs S. Mudstones and shales[M]//Boggs S Jr. Petrology of sedimentary rocks. 2nd ed. New York: Cambridge University Press, 2009: 194-219. [50] Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks[M]. Dordrecht: Springer, 2003: 1-821. [51] Potter P E, Maynard J B, Pryor W A. Sedimentology of shale[M]. New York: Springer, 1980: 1-310. [52] Weaver C E. Fine-grained rocks: Shales or physilites[J]. Sedimentary Geology, 1980, 27(4): 301-313. [53] 邹才能,陶士振,袁选俊,等. “连续型”油气藏及其在全球的重要性:成藏、分布与评价[J]. 石油勘探与开发,2009,36(6):669-682. Zou Caineng, Tao Shizhen, Yuan Xuanjun, et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J]. Petroleum Exploration and Development, 2009, 36(6): 669-682. [54] 周立宏,蒲秀刚,邓远,等. 细粒沉积岩研究中几个值得关注的问题[J]. 岩性油气藏,2016,28(1):6-15. Zhou Lihong, Pu Xiugang, Deng Yuan, et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs, 2016, 28(1): 6-15. [55] 钟建华,刘圣鑫,马寅生,等. 页岩宏观破裂模式与微观破裂机理[J]. 石油勘探与开发,2015,42(2):242-250. Zhong Jianhua, Liu Shengxin, Ma Yinsheng, et al. Macro-fracture mode and micro-fracture mechanism of shale[J]. Petroleum Exploration and Development, 2015, 42(2): 242-250. [56] Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. [57] Hickey J J, Bo H. Lithofacies summary of the Mississippian barnett shale, mitchell 2 T.P. sims well, wise county, texas[J]. AAPG Bulletin, 2007, 91(4): 437-443. [58] Mitra A, Warrington D S, Sommer A. Application of lithofacies models to characterize unconventional shale gas reservoirs and identify optimal completion intervals[C]//Proceedings of the SPE western regional meeting. Anaheim: Society of Petroleum Engineers, 2010. [59] Wang G C, Carr T R. Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian Basin[J]. Computers & Geosciences, 2012, 49: 151-163. [60] Bhattacharya S, Carr T R, Pal M. Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: Case studies from the Bakken and Mahantango-Marcellus Shale, USA[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1119-1133. [61] Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the barnett shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22. [62] McKee E D, Weir G W. Terminology for stratification and cross-stratification in sedimentary rocks[J]. GSA Bulletin, 1953, 64(4): 381-390. [63] Trabucho-Alexandre J, Dirkx R, Veld H, et al. Toarcian black shales in the dutch central graben: Record of energetic, variable depositional conditions during an oceanic anoxic event[J]. Journal of Sedimentary Research, 2012, 82(2): 104-120. [64] Schieber J. Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York[J]. Journal of Sedimentary Research, 1999, 69(4): 909-925. [65] Schieber J. Early diagenetic silica deposition in algal cysts and spores: A source of sand in black shales?[J]. Journal of Sedimentary Research, 1996, 66(1): 175-183. [66] Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299. [67] Camp W K, Egenhoff S, Schieber J, et al. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks — discussion[J]. Journal of Sedimentary Research, 2016, 86(1): 1-5. [68] Milliken K L. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks—reply[J]. Journal of Sedimentary Research, 2016, 86(1): 6-10. [69] 李新景,吕宗刚,董大忠,等. 北美页岩气资源形成的地质条件[J]. 天然气工业,2009,29(5):27-32. Li Xinjing, Zonggang Lü, Dong Dazhong, et al. Geologic controls on accumulation of shale gas in North America[J]. Natural Gas Industry, 2009, 29(5): 27-32. [70] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653. Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. [71] 李昌伟,陶士振,董大忠,等. 国内外页岩气形成条件对比与有利区优选[J]. 天然气地球科学,2015,26(5):986-1000. Li Changwei, Tao Shizhen, Dong Dazhong, et al. Comparison of the formation condition of shale gas between domestic and abroad and favorable areas evaluation[J]. Natural Gas Geoscience, 2015, 26(5): 986-1000. [72] 孟楚洁,胡文瑄,贾东,等. 宁镇地区上奥陶统五峰组—下志留统高家边组底部黑色岩系地球化学特征与沉积环境分析[J]. 地学前缘,2017,24(6):300-311. Meng Chujie, Hu Wenxuan, Jia Dong, et al. Analyses of geochemistry features and sedimentary environment in the Upper Ordovician Wufeng-Lower Silurian Gaojiabian Formations in Nanjing-Zhenjiang area[J]. Earth Science Frontiers, 2017, 24(6): 300-311. [73] 徐文礼,郑荣才,颜雪,等. 下扬子地区早古生代黑色岩系地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版),2014,44(4):1108-1122. Xu Wenli, Zheng Rongcai, Yan Xue, et al. Trace and rare earthelement geochemistry of the Early Paleozoic black shales in the Lower Yangtze area and its geological significances[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1108-1122. [74] 姜在兴,孔祥鑫,杨叶芃,等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发,2021,48(1):26-37. Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37. [75] Dimberline A J, Bell A, Woodcock N H. A laminated hemipelagic facies from the Wenlock and Ludlow of the Welsh Basin[J]. Journal of the Geological Society, 1990, 147(4): 693-701. [76] Lemons D R, Chan M A. Facies architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of Late Pleistocene Lake bonneville, northern Utah and southern Idaho[J]. AAPG Bulletin, 1999, 83(4): 635-665. [77] 吴靖,姜在兴,梁超. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系[J]. 石油学报,2017,38(10):1110-1122. Wu Jing, Jiang Zaixing, Liang Chao. Lithofacies characteristics of fine-grained sedimentary rocks in the upper submember of member 4 of Shahejie Formation, Dongying Sag and their relationship with sedimentary environment[J]. Acta Petrolei Sinica, 2017, 38(10): 1110-1122. [78] 张顺,刘惠民,陈世悦,等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨:以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报,2017,91(5):1108-1119. Zhang Shun, Liu Huimin, Chen Shiyue, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(5): 1108-1119. [79] 郑荣才,文华国,范铭涛,等. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征[J]. 岩石学报,2006,22(12):3027-3038. Zheng Rongcai, Wen Huaguo, Fan Mingtao, et al. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin[J]. Acta Petrologica Sinica, 2006, 22(12): 3027-3038. [80] 柳益群,周鼎武,焦鑫,等. 一类新型沉积岩:地幔热液喷积岩:以中国新疆三塘湖地区为例[J]. 沉积学报,2013,31(5):773-781. Liu Yiqun, Zhou Dingwu, Jiao Xin, et al. A new type of sedimentary rocks: Mantle-originated hydroclastites and hydrothermal exhalites, Santanghu area, Xinjiang, NW China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 773-781. [81] Jiao X, Liu Y Q, Yang W, et al. A magmatic-hydrothermal lacustrine exhalite from the Permian Lucaogou Formation, Santanghu Basin, NW China ⁃ The volcanogenic origin of fine-grained clastic sedimentary rocks[J]. Journal of Asian Earth Sciences, 2018, 156: 11-25. [82] 刘惠民,王勇,杨永红,等. 东营凹陷细粒混积岩发育环境及其岩相组合:以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学,2020,45(10):3543-3555. Liu Huimin, Wang Yong, Yang Yonghong, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es4 [J]. Earth Science, 2020, 45(10): 3543-3555. [83] 姜在兴,王雯雯,王俊辉,等. 风动力场对沉积体系的作用[J]. 沉积学报,2017,35(5):863-876. Jiang Zaixing, Wang Wenwen, Wang Junhui, et al. The influence of wind field on depositional systems[J]. Acta Sedimentologica Sinica, 2017, 35(5): 863-876. [84] 张少敏,操应长,朱如凯,等. 湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘,2018,25(4):198-209. Zhang Shaomin, Cao Yingchang, Zhu Rukai, et al. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers, 2018, 25(4): 198-209. [85] 焦鑫,柳益群,周鼎武,等. 湖相烃源岩中的火山—热液深源物质与油气生成耦合关系研究进展[J]. 古地理学报,2021,23(4):789-809. Jiao Xin, Liu Yiqun, Zhou Dingwu, et al. Progress on coupling relationship between volcanic and hydrothermal-originated sediments and hydrocarbon generation in lacustrine source rocks[J]. Journal of Palaeogeography, 2021, 23(4): 789-809. [86] Wohletz K H, Sheridan M F. Hydrovolcanic explosions. II. Evolution of basaltic tuff rings and tuff cones[J]. American Journal of Science, 1983, 283(5): 385-413. [87] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field[J]. Science, 2005, 307(5714): 1428-1434. [88] Smith J V. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints[J]. Journal of Volcanology and Geothermal Research, 2018, 349: 311-322. [89] 李增学,宋明水,李莹,等. 湖相细粒岩二级指标划分法岩相分类及其应用实例[J]. 现代地质,2021,35(2):365-377. Li Zengxue, Song Mingshui, Li Ying, et al. Petrographic classification of lacustrine fine-grained rocks using a two-level index division method and a case study of its application[J]. Geoscience, 2021, 35(2): 365-377. [90] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586. Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586. [91] 陈世悦,张顺,刘惠民,等. 湖相深水细粒物质的混合沉积作用探讨[J]. 古地理学报,2017,19(2):271-284. Chen Shiyue, Zhang Shun, Liu Huimin, et al. Discussion on mixing of finegrained sediments in lacustrine deep water[J]. Journal of Palaeogeography, 2017, 19(2): 271-284. [92] Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomania⁃Turonian Kaskapau Formation, western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822. [93] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43. Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43. [94] Frébourg G, Ruppel S C, Loucks R G, et al. Depositional controls on sediment body architecture in the Eagle Ford/Boquillas system: Insights from outcrops in west Texas, United States[J]. Aapg Bulletin, 2016, 100(4): 657-682. [95] 刘招君,孟庆涛,柳蓉. 中国陆相油页岩特征及成因类型[J]. 古地理学报,2009,11(1):105-114. Liu Zhaojun, Meng Qingtao, Liu Rong. Characteristics and genetic types of continental oil shales in China[J]. Journal of Palaeogeography, 2009, 11(1): 105-114. [96] Hutton A C. Petrographic classification of oil shales[J]. International Journal of Coal Geology, 1987, 8(3): 203-231. [97] 刘招君,孙平昌,柳蓉,等. 中国陆相盆地油页岩成因类型及矿床特征[J]. 古地理学报,2016,18(4):525-534. Liu Zhaojun, Sun Pingchang, Liu Rong, et al. Genetic types and deposit features of oil shale in continental basin in China[J]. Journal of Palaeogeography, 2016, 18(4): 525-534. [98] 赵隆业,陈基娘,王天顺. 关于中国油页岩的工业成因分类[J]. 煤田地质与勘探,1991,19(5):2-6. Zhao Longye, Chen Jiniang, Wang Tianshun. Industrial-original classification of Chinese oil shales[J]. Coal Geology & Exploration, 1991, 19(5): 2-6. [99] 李宝毅,王建鹏,徐银波,等. 断陷和坳陷盆地富有机质泥岩测试参数及研究意义[J]. 世界地质,2012,31(4):778-784. Li Baoyi, Wang Jianpeng, Xu Yinbo, et al. Testing parameters of organic-rich mudstone in faulted basin and depressed basin and their significance[J]. Global Geology, 2012, 31(4): 778-784. [100] 刘招君,孟庆涛,贾建亮,等. 陆相盆地油页岩成矿规律:以东北地区中、新生代典型盆地为例[J]. 吉林大学学报(地球科学版),2012,42(5):1286-1297. Liu Zhaojun, Meng Qingtao, Jia Jianliang, et al. Metallogenic regularity of oil shale in continental basin: Case study in the Meso-Cenozoic basins of Northeast China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1286-1297. [101] 刘招君,柳蓉,孙平昌,等. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版),2020,50(2):313-325. Liu Zhaojun, Liu Rong, Sun Pingchang, et al. Oil shale characteristics and distribution in typical basins of China[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 313-325. [102] 张锦泉,叶红专. 论碳酸盐与陆源碎屑的混合沉积[J]. 成都地质学院学报,1989,16(2):87-92. Zhang Jinquan, Ye Hongzhuan. A study on carbonate and siliciclastic mixed sediments[J]. Journal of Chengdu College of Geology, 1989, 16(2): 87-92. [103] 沙庆安. 混合沉积和混积岩的讨论[J]. 古地理学报,2001,3(3):63-66. Sha Qing’an. Discussion on mixing deposit and hunji rock[J]. Journal of Palaeogeography, 2001, 3(3): 63-66. [104] 郑绵平. 盐湖学的研究与展望[J]. 地质论评,2006,52(6):737-746. Zheng Mianping. Salinology: Research and prospects[J]. Geological Review, 2006, 52(6): 737-746. [105] 金强,朱光有. 中国中新生代咸化湖盆烃源岩沉积的问题及相关进展[J]. 高校地质学报,2006,12(4):483-492. Jin Qiang, Zhu Guangyou. Progress in research of deposition of oil source rocks in saline lakes and their hydrocarbon generation[J]. Geological Journal of China Universities, 2006, 12(4): 483-492. [106] Chen A D, Zheng M P, Yao H T, et al. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications[J]. Geoscience Frontiers, 2018, 9(3): 943-953. [107] 谭先锋,王萍,王佳,等. 早始新世极热气候时期咸化湖盆混合沉积作用:以渤海湾盆地东营凹陷孔店组为例[J]. 石油与天然气地质,2018,39(2):340-354. Tan Xianfeng, Wang Ping, Wang Jia, et al. Mixed sedimentation in saline lacustrine basins during initial Eocene thermal maximum period: A case study on Kongdian Formation in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2018, 39(2): 340-354. [108] Liang C, Cao Y C, Jiang Z X, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: Implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858. [109] 刘惠民,孙善勇,操应长,等. 东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J]. 油气地质与采收率,2017,24(1):1-10. Liu Huimin, Sun Shanyong, Cao Yingchang, et al. Lithofacies characteristics and distribution model of fine-grained sedimentary rock in the lower Es3 member, Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 1-10. [110] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039. Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. [111] 张君峰,徐兴友,白静,等. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践[J]. 石油勘探与开发,2020,47(4):637-652. Zhang Junfeng, Xu Xingyou, Bai Jing, et al. Enrichment and exploration of deep lacustrine shale oil in the First member of Cretaceous Qingshankou Formation, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2020, 47(4): 637-652. [112] 付晓飞,石海东,蒙启安,等. 构造和沉积对页岩油富集的控制作用:以松辽盆地中央坳陷区青一段为例[J]. 大庆石油地质与开发,2020,39(3):56-71. Fu Xiaofei, Shi Haidong, Meng Qi’an, et al. Controlling effects of the structure and deposition on the shale oil enrichment: Taking Formation qn1, in the Central Depression of Songliao Basin as an instance[J]. Petroleum Geology & Oilfield Development in Daqin, 2020, 39(3): 56-71. [113] 林森虎,袁选俊,杨智. 陆相页岩与泥岩特征对比及其意义:以鄂尔多斯盆地延长组7段为例[J]. 石油与天然气地质,2017,38(3):517-523. Lin Senhu, Yuan Xuanjun, Yang Zhi. Comparative study on lacustrine shale and mudstone and its significance: A case from the 7th member of Yanchang Formation in the Ordos Basin[J]. Oil & Gas Geology, 2017, 38(3): 517-523. [114] 解习农,叶茂松,徐长贵,等. 渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理[J]. 地球科学,2018,43(10):3526-3539. Xie Xinong, Ye Maosong, Xu Changgui, et al. High quality reservoirs characteristics and forming mechanisms of mixed siliciclastic-carbonate sediments in the Bozhong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3526-3539. [115] 周立宏,陈长伟,韩国猛,等. 渤海湾盆地歧口凹陷沙一下亚段地质特征与页岩油勘探潜力[J]. 地球科学,2019,44(8):2736-2750. Zhou Lihong, Chen Changwei, Han Guomeng, et al. Geological characteristics and shale oil exploration potential of lower First member of Shahejie Formation in Qikou Sag, Bohai Bay Basin[J]. Earth Science, 2019, 44(8): 2736-2750. [116] 潘树新,梁苏娟,史永苏,等. 松辽盆地上白垩统青山口组介形虫群集性死亡事件成因[J]. 古地理学报,2010,12(4):409-414. Pan Shuxin, Liang Sujuan, Shi Yongsu, et al. Origin of ostracod extinction event of the Upper Cretaceous Qingshankou Formation in Songliao Basin[J]. Journal of Palaeogeography, 2010, 12(4): 409-414. [117] 陈能贵,王艳清,徐峰,等. 柴达木盆地新生界湖盆咸化特征及沉积响应[J]. 古地理学报,2015,17(3):371-380. Chen Nenggui, Wang Yanqing, Xu Feng, et al. Palaeosalinity characteristics and its sedimentary response to the Cenozoic salt-water lacustrine deposition in Qaidam Basin[J]. Journal of Palaeogeography, 2015, 17(3): 371-380. [118] 张敏,尹成明,寿建峰,等. 柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相[J]. 古地理学报,2004,6(4):391-400. Zhang Min, Yin Chengming, Shou Jianfeng, et al. Sedimentary facies of carbonate rocks of the Paleogene and Neogene in western Qaidam Basin[J]. Journal of Palaeogeography, 2004, 6(4): 391-400. [119] Chiarella D, Longhitano S G, Tropeano M. Types of mixing and heterogeneities in siliciclastic-carbonate sediments[J]. Marine and Petroleum Geology, 2017, 88: 617-627. [120] Doyle L J, Roberts H H. Carbonate-clastic transitions[M]. Amsterdam: Elsevier, 1988. [121] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435. [122] 张雄华. 混积岩的分类和成因[J]. 地质科技情报,2000,19(4):31-34. Zhang Xionghua. Classification and origin of mixosedimentite[J]. Geological Science and Technology Information, 2000, 19(4): 31-34. [123] 杨朝青,沙庆安. 云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J]. 沉积学报,1990,8(2):59-66. Yang Chaoqing, Sha Qing’an. Sedimentary environment of the Middle Devonian Qujing Formation, Qujing, Yunnan province: A kind of mixing sedimentation of terrigenous clastics and carbonate[J]. Acta Sedimentologica Sinica, 1990, 8(2): 59-66. [124] 李祥辉. 层序地层中的混合沉积作用及其控制因素[J]. 高校地质学报,2008,14(3):395-404. Li Xianghui. Mixing of siliciclastic-carbonate sediments within systems tracts of depositional sequences and its controlling factors[J]. Geological Journal of China Universities, 2008, 14(3): 395-404. [125] 彭丽,陆永潮,彭鹏,等. 渤海湾盆地渤南洼陷沙三下亚段泥页岩非均质性特征及演化模式:以罗69井为例[J]. 石油与天然气地质,2017,38(2):219-229. Peng Li, Lu Yongchao, Peng Peng, et al. Heterogeneity and evolution model of the lower Shahejie member 3 mud-shale in the Bonan subsag, Bohai Bay Basin: An example from well Luo 69[J]. Oil & Gas Geology, 2017, 38(2): 219-229. [126] 朱毅秀,金振奎,金科,等. 中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征:以四川盆地元坝地区下侏罗统大安寨段为例[J]. 石油与天然气地质,2021,42(2):494-508. Zhu Yixiu, Jin Zhenkui, Jin Ke, et al. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks incontinental lacustrine basins: A case study on the Lower Jurassic Da’anzhai member of Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(2): 494-508. [127] 朱彤,龙胜祥,王烽,等. 四川盆地湖相泥页岩沉积模式及岩石相类型[J]. 天然气工业,2016,36(8):22-28. Zhu Tong, Long Shengxiang, Wang Feng, et al. Sedimentary models and lithofacies types of lacustrine mud shale in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(8): 22-28. [128] 刘忠宝,刘光祥,胡宗全,等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义:以四川盆地中下侏罗统为例[J]. 天然气工业,2019,39(12):10-21. Liu Zhongbao, Liu Guangxiang, Hu Zongquan, et al. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 10-21. [129] 梁超,姜在兴,杨镱婷,等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发,2012,39(6):691-698. Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698. [130] 李卓,姜振学,唐相路,等. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J]. 地球科学,2017,42(7):1116-1123. Li Zhuo, Jiang Zhenxue, Tang Xianglu, et al. Lithofacies characteristics and its effect on pore structure of the marine shale in the low Silurian Longmaxi Formation, southeastern Chongqing[J]. Earth Science, 2017, 42(7): 1116-1123. [131] 李书琴,印森林,高阳,等. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学,2020,31(2):235-249. Li Shuqin, Yin Senlin, Gao Yang, et al. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 235-249. [132] 葸克来,操应长,朱如凯,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495-1507. Xi Kelai, Cao Yingchang, Zhu Rukai, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507. [133] 陈世悦,刘金,马帅,等. 柴北缘东段克鲁克组泥页岩储层特征[J]. 地学前缘,2016,23(5):56-65. Chen Shiyue, Liu Jin, Ma Shuai, et al. Characteristics of Keluke shale reservoirs in northeast margin of Qaidam Basin[J]. Earth Science Frontiers, 2016, 23(5): 56-65. [134] 康志宏,周磊,任收麦,等. 柴北缘中侏罗统大煤沟组七段泥页岩储层特征[J]. 地学前缘,2015,22(4):265-276. Kang Zhihong, Zhou Lei, Ren Shoumai, et al. Characteristics of shale of the 7th member of the Middle Jurassic Dameigou Formation in northern Qaidam Basin[J]. Earth Science Frontiers, 2015, 22(4): 265-276. [135] 刘占国,张永庶,宋光永,等. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制[J]. 石油勘探与开发,2021,48(1):68-80. Liu Zhanguo, Zhang Yongshu, Song Guangyong, et al. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi area, Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 68-80. [136] 徐雄飞,于祥春,卿忠,等. 三塘湖盆地芦草沟组岩相特征及其与页岩油藏的关系[J]. 新疆石油地质,2020,41(6):677-684. Xu Xiongfei, Yu Xiangchun, Zhong Qing, et al. Lithofacies characteristics and its relationship with shale oil reservoirs of Lucaogou Formation in Santanghu Basin[J]. Xinjiang Petroleum Geology, 2020, 41(6): 677-684. [137] Finthan B, Mamman Y D. The lithofacies and depositional paleoenvironment of the Bima Sandstone in Girei and Environs, Yola Arm, Upper Benue Trough, Northeastern Nigeria[J]. Journal of African Earth Sciences, 2020, 169: 103863. [138] Borka S. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems[J]. Open Geosciences, 2016, 8(1): 45-51. [139] Könitzer S F, Davies S J, Stephenson M H, et al. Depositional controls on mudstone lithofacies in a basinal setting: Implications for the delivery of sedimentary organic matter[J]. Journal of Sedimentary Research, 2014, 84(3): 198-214. [140] 聂银兰,谢庆宾,朱筱敏,等. 基于岩相表征的细粒沉积物沉积机制和研究展望[J]. 断块油气田,2021,28(3):305-310. Nie Yinlan, Xie Qingbin, Zhu Xiaomin, et al. The sedimentary mechanism and research prospect of fine grain sediments based on lithofacies characterization[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 305-310. [141] 宁方兴,王学军,郝雪峰,等. 东营凹陷细粒沉积岩岩相组合特征[J]. 西南石油大学学报(自然科学版),2020,42(4):55-65. Ning Fangxing, Wang Xuejun, Hao Xuefeng, et al. Fine-grained sedimentary rock lithofacies assemblage characteristics in Dongying Depression[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(4): 55-65. [142] Jones R W. Organic facies[M]//Brooks J, Welte D. Advance in petroleum geochemistry. London: Academic Press, 1987: 1-90. [143] 施振生,邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报,2021,39(1):181-196. Shi Zhensheng, Qiu Zhen. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196. [144] Lobza V, Schieber J. Biogenic sedimentary structures produced by worms in soupy, soft muds; observations from the Chattanooga Shale (Upper Devonian) and experiments[J]. Journal of Sedimentary Research, 1999, 69(5): 1041-1049. [145] 钟摇,朱利东,杨文光,等. 重庆云阳地区沙溪庙组软沉积物变形构造及其地质意义[J]. 成都理工大学学报(自然科学版),2021,48(2):165-177. Zhong Yao, Zhu Lidong, Yang Wenguang, et al. Soft sediment deformation structures in Shaximiao Formation and its geological significance in Yunyang area, Chongqing, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(2): 165-177. [146] Rodrı́guez-Pascua M A, Calvo J P, De Vicente G, et al. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene[J]. Sedimentary Geology, 2000, 135(1/2/3/4): 117-135. [147] Neuendorf K K E, Mehl J P, Jackson A. Glossary of geology[M]. 5th ed. Alexandria: American Geological Institute, 2005. [148] Campbell C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26. [149] 刘庆,曾翔,王学军,等. 东营凹陷沙河街组沙三下—沙四上亚段泥页岩岩相与沉积环境的响应关系[J]. 海洋地质与第四纪地质,2017,37(3):147-156. Liu Qing, Zeng Xiang, Wang Xuejun, et al. Lithofacies of mudstone and shale deposits of the Es 3z-Es 4s Formation in Dongying Sag and their depositional environment[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 147-156. [150] 刘姝君,操应长,梁超. 渤海湾盆地东营凹陷古近系细粒沉积岩特征及沉积环境[J]. 古地理学报,2019,21(3):479-489. Liu Shujun, Cao Yingchang, Liang Chao. Lithologic characteristics and sedimentary environment of fine-grained sedimentary rocks of the Paleogene in Dongying Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2019, 21(3): 479-489. [151] 邓远,陈世悦,蒲秀刚,等. 渤海湾盆地沧东凹陷孔店组二段细粒沉积岩形成机理与环境演化[J]. 石油与天然气地质,2020,41(4):811-823,890. Deng Yuan, Chen Shiyue, Pu Xiugang, et al. Formation mechanism and environmental evolution of fine-grained sedimentary rocks from the Second member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2020, 41(4): 811-823, 890. [152] 周立宏,韩国猛,马建英,等. 歧口凹陷西南缘沙河街组一段下亚段古环境特征与沉积模式[J]. 石油学报,2020,41(8):903-917. Zhou Lihong, Han Guomeng, Ma Jianying, et al. Palaeoenvironment characteristics and sedimentary model of the lower submember of member 1 of Shahejie Formation in the southwestern margin of Qikou Sag[J]. Acta Petrolei Sinica, 2020, 41(8): 903-917. [153] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985. [154] 滕建彬,刘惠民,邱隆伟,等. 东营凹陷古近系湖相细粒混积岩沉积成岩特征[J]. 地球科学,2020,45(10):3808-3826. Teng Jianbin, Liu Huimin, Qiu Longwei, et al. Sedimentary and diagenetic characteristics of lacustrine fine-grained hybrid rock in Paleogene formation in Dongying Sag[J]. Earth Science, 2020, 45(10): 3808-3826. [155] Boles J R, Franks S J. Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 49(1): 55-70. [156] Thyberg B, Jahren J, Winje T, et al. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals[J]. Marine and Petroleum Geology, 2010, 27(8): 1752-1764. [157] Metwally Y M, Chesnokov E M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale[J]. Applied Clay Science, 2012, 55: 138-150. [158] 王小军,宋永,郭旭光,等. 陆相咸化湖盆细粒沉积岩分类及其石油地质意义[J]. 沉积学报,2023,41(1):303-317. Wang Xiaojun, Song Yong, Guo Xuguang, et al. Classification of fine-grained sedimentary rocks in saline lacustrine basins and its petroleum geological significance[J]. Acta Sedimentologica Sinica,2023,41(1):303-317. [159] 张顺,陈世悦,鄢继华,等. 东营凹陷西部沙三下亚段—沙四上亚段泥页岩岩相及储层特征[J]. 天然气地球科学,2015,26(2):320-332. Zhang Shun, Chen Shiyue, Yan Jihua, et al. Characteristics of shale lithofacies and reservoir space in the 3rd and 4th members of Shahejie Formation, the west of Dongying Sag[J]. Natural Gas Geoscience, 2015, 26(2): 320-332. [160] 杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333. Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333. [161] 王岚,曾雯婷,夏晓敏,等. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学,2019,30(8):1125-1133. Wang Lan, Zeng Wenting, Xia Xiaomin, et al. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong Depression, Songliao Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1125-1133. [162] 柳波,孙嘉慧,张永清,等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发,2021,48(3):521-535. Liu Bo, Sun Jiahui, Zhang Yongqing, et al. Reservoir space and enrichment model of shale oil in the First member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. [163] 耳闯,罗安湘,赵靖舟,等. 鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征[J]. 地学前缘,2016,23(2):108-117. Chuang Er, Luo Anxiang, Zhao Jingzhou, et al. Lithofacies features of organic-rich shale of the Triassic Yanchang Formation in Huachi aera, Ordos Basin[J]. Earth Science Frontiers, 2016, 23(2): 108-117. [164] 范柏江,梅启亮,王小军,等. 泥岩与页岩地化特征对比:以鄂尔多斯盆地安塞地区延长组7段为例[J]. 石油与天然气地质,2020,41(6):1119-1128. Fan Bojiang, Mei Qiliang, Wang Xiaojun, et al. Geochemical comparison of mudstone and shale: A case study of the 7th member of Yanchang Formation in Ansai area, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(6): 1119-1128. [165] 赵文智,朱如凯,胡素云,等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发,2020,47(6):1079-1089. Zhao Wenzhi, Zhu Rukai, Hu Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089. [166] 刘群,袁选俊,林森虎,等. 鄂尔多斯盆地延长组湖相黏土岩分类和沉积环境探讨[J]. 沉积学报,2014,32(6):1016-1025. Liu Qun, Yuan Xuanjun, Lin Senhu, et al. The classification of lacustrine mudrock and research on its’ depositional environment[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1016-1025. [167] 吴松涛. 松辽盆地青山口组页岩纹层结构与储集性能评价[C]//中国石油学会石油地质专业委员会,中国地质学会石油地质专业委员会,中国石油学会非常规油气专业委员会,等. 第六届非常规油气地质评价暨新能源学术研讨会. 2021:7. Wu Songtao. Shale laminar structure and reservoir performance evaluation of Qingshankou Formation in Songliao Basin[C]//Petroleum Geology Committee of China Petroleum Society, Petroleum Geology Committee of China Geological Society, Unconventional Oil and Gas Committee of China Petroleum Society, et al. The 6th symposium on unconventional oil and gas geological evaluation and new energy. 2021: 7. [168] 付金华,邓秀芹,楚美娟,等. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义[J]. 沉积学报,2013,31(5):928-938. Fu Jinhua, Deng Xiuqin, Chu Meijuan et al. Features of deepwater lithofacies, Yanchang Formation in Ordos Basin and its petroleum significance[J]. Acta Sedimentologica Sinica, 2013, 31(5): 928-938. [169] 李森,朱如凯,崔景伟,等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境:以铜川地区瑶页1井为例[J]. 沉积学报,2020, 38(3):554-570. Li Sen, Zhu Rukai, Cui Jingwei, et al. Sedimentary characteristics of fine-grained sedimentary rock and paleo-environment of Chang 7 member in the Ordos Basin: A case study from well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570. [170] 白静,徐兴友,陈珊,等. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复:以吉页油1井为例[J]. 中国地质,2020,47(1):220-235. Bai Jing, Xu Xingyou, Chen Shan, et al. Sedimentary characteristics and paleo-environment restoration of the First member of Qingshankou Formation in Qian’an area, Changling Sag, Songliao Basin: A case study of Jiyeyou 1 well[J]. Geology in China, 2020, 47(1): 220-235. [171] Calvert S E, Bustin R M, Ingall E D. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales[J]. Geochimica et Cosmochimica Acta, 1996, 60(9): 1577-1593. [172] Pedersen T F, Calvert S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466. [173] Selvaraj K, Lin B Z, Lou J Y, et al. Lacustrine sedimentological and geochemical records for the last 170 years of climate and environmental changes in southeastern China[J]. Boreas, 2016, 45(1): 165-179. [174] Thill A, Moustier S, Garnier J M, et al. Evolution of particle size and concentration in the Rhône river mixing zone: Influence of salt flocculation[J]. Continental Shelf Research, 2001, 21(18/19): 2127-2140. [175] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[M]//Slatt R M, Zavala C. Sediment transfer from shelf to deep water: Revisiting the delivery system. Tulsa: AAPG Studies in Geology, 2011: 1-30. [176] Curran K J, Hill P S, Milligan T G. Fine-grained suspended sediment dynamics in the Eel River flood plume[J]. Continental Shelf Research, 2002, 22(17): 2537-2550. [177] 范二平,唐书恒,张成龙,等. 湘西北下古生界黑色页岩扫描电镜孔隙特征[J]. 古地理学报,2014,16(1):133-142. Fan Erping, Tang Shuheng, Zhang Chenglong, et al. Scanning-electron-microscopic micropore characteristics of the Lower Paleozoic black shale in northwestern Hunan province[J]. Journal of Palaeogeography, 2014, 16(1): 133-142. [178] Wolanski E, Gibbs R J. Flocculation of suspended sediment in the Fly River estuary, Papua New Guinea[J]. Journal of Coastal Research, 1995, 11(3): 754-762. [179] Tourney J, Ngwenya B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132. [180] Malarkey J, Baas J H, Hope J A, et al. The pervasive role of biological cohesion in bedform development[J]. Nature Communications, 2015, 6: 6257. [181] Eisma D. Flocculation and de-flocculation of suspended matter in estuaries[J]. Netherlands Journal of Sea Research, 1986, 20(2/3): 183-199. [182] Parsons D R, Schindler R J, Hope J A, et al. The role of biophysical cohesion on subaqueous bed form size[J]. Geophysical Research Letters, 2016, 43(4): 1566-1573. [183] Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183. [184] Schindler R J, Parsons D R, Ye L P, et al. Sticky stuff: Redefining bedform prediction in modern and ancient environments[J]. Geology, 2015, 43(5): 399-402. [185] Kranck K, Smith P C, Milligan T G. Grain-size characteristics of fine-grained unflocculated sediments I: ‘One-round’ distributions[J]. Sedimentology, 1996, 43(3): 589-594. [186] Asmolov E S. Numerical simulation of rarefied suspension sedimentation in a container[J]. Fluid Dynamics, 2007, 42(3): 410-418. [187] 黄建维. 粘性泥沙在静水中沉降特性的试验研究[J]. 泥沙研究,1981(2):30-41. Huang Jianwei. Experimental study of settling properties of cohesive sediment in still water[J]. Journal of Sediment Research, 1981(2): 30-41. [188] 谢宗奎. 柴达木台南地区第四系细粒沉积岩相与沉积模式研究[J]. 地学前缘,2009,16(5):245-250. Xie Zongkui. Research on the Quaternary fine-fraction lithofacies and sedimentation model in Tainan area, Qaidam Basin[J]. Earth Science Frontiers, 2009, 16(5): 245-250. [189] McCave I N. Transport and escape of fine-grained sediment from shelf areas[M]//Swift D J P, Duane D B, Pilkey O H. Shelf sediment transport: Process and pattern. Stroudsburg: Dowden, Hutchinson & Ross, 1972. [190] Nittrouer C A, Wright L D. Transport of particles across continental shelves[J]. Reviews of Geophysics, 1994, 32(1): 85-113. [191] Arthur M A, Sageman B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 499-551. [192] 逄勇,颜润润,余钟波,等. 风浪作用下的底泥悬浮沉降及内源释放量研究[J]. 环境科学,2008,29(9):2456-2464. Pang Yong, Yan Runrun, Yu Zhongbo, et al. Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu affected by wind[J]. Environmental Science, 2008, 29(9): 2456-2464. [193] 胡开明,王水,逄勇. 太湖不同湖区底泥悬浮沉降规律研究及内源释放量估算[J]. 湖泊科学,2014,26(2):191-199. Hu Kaiming, Wang Shui, Pang Yong. Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu[J]. Journal of Lake Sciences, 2014, 26(2): 191-199. [194] 杨茜,杨庶,宋娴丽,等. 桑沟湾夏、秋季悬浮颗粒物的沉降通量及再悬浮的影响[J]. 海洋学报,2014,36(12):85-90. Yang Qian, Yang Shu, Song Xianli, et al. Vertical flux and resuspension of settling particulate matter of Sanggou Bay in summer and autumn[J]. Acta Oceanologica Sinica, 2014, 36(12): 85-90. [195] 徐志刚. 长江口细颗粒泥沙的絮凝特性试验[J]. 东海海洋,1984(3):45-50. Xu Zhigang. Experiment on flocculation characteristics of fine sediments from the Changjiang estuary[J]. Journal of Marine Sciences, 1984(3): 45-50. [196] 陈洪松,邵明安. NaCl对细颗粒泥沙静水絮凝沉降动力学模式的影响[J]. 水利学报,2002(8):63-67. Chen Hongsong, Shao Ming’an. Effect of NaCl concentration on dynamic model of fine sediment flocculation and settling in still water[J]. Journal of Hydraulic Engineering, 2002(8): 63-67. [197] Heiskanen A S. Contamination of sediment trap fluxes by vertically migrating phototrophic micro-organisms in the coastal Baltic Sea[J]. Marine Ecology Progress, 1995, 122: 45-58. [198] 柴朝晖,方红卫,姚仕明,等. 黏性泥沙絮凝—沉降—再悬浮运动过程数学模型研究[J]. 水利学报,2016,47(12):1540-1547. Chai Zhaohui, Fang Hongwei, Yao Shiming, et al. A model for the flocculation-settling-resuspension process of cohesive sediment[J]. Journal of Hydraulic Engineering, 2016, 47(12): 1540-1547. [199] Yoshida H, Nurtono T, Fukui K. A new method for the control of dilute suspension sedimentation by horizontal movement[J]. Powder Technology, 2005, 150(1): 9-19. [200] Allen J R L. Current ripples: Their relation to patterns of water and sediment motion[M]. Amsterdam: North Holland Publishing Company, 1968: 1-433. [201] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. [202] Schieber J, Southard J B. Bedload transport of mud by floccule ripples: Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486. [203] 金成志,董万百,白云风,等. 松辽盆地古龙页岩岩相特征与成因[J]. 大庆石油地质与开发,2020,39(3):35-44. Jin Chengzhi, Dong Wanbai, Bai Yunfeng, et al. Lithofacies characteristics and genesis analysis of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 35-44. [204] Tripsanas E K, Piper D J W, Jenner K A, et al. Submarine mass-transport facies: New perspectives on flow processes from cores on the eastern North American margin[J]. Sedimentology, 2008, 55(1): 97-136. [205] 潘树新,陈彬滔,刘华清,等. 陆相湖盆深水底流改造砂:沉积特征、成因及其非常规油气勘探意义[J]. 天然气地球科学,2014,25(10):1577-1585. Pan Shuxin, Chen Bintao, Liu Huaqing, et al. Deepwater bottom current rework sand (BCRS) in lacustrine basins: Sedimentary characteristics, identification criterion, formation mechanism and its significance for unconventional oil/gas exploration[J]. Natural Gas Geoscience, 2014, 25(10): 1577-1585. [206] Sturm M, Matter A. Turbidites and varves in lake brienz (Switzerland): Deposition of clastic detritus by density currents[M]//Matter A, Tucker M E. Modern and ancient lake sediments. Oxford: Blackwell Scientific, 1978. [207] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H. Turbidites and deep water sedimentation: Short course lecture notes, Part I. California: Los Angeles, 1973. [208] Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297. [209] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299. [210] 姜在兴,王俊辉,张元福,等. “风—源—盆”三元耦合油气储集体预测方法及其应用:对非主力物源区储集体的解释与预测[J]. 石油学报,2020,41(12):1465-1476. Jiang Zaixing, Wang Junhui, Zhang Yuanfu, et al. Ternary “Windfield-Source-Basin” system for the prediction of hydrocarbon reservoirs:interpretation and prediction of hydrocarbon reservoirs deviated from the main provenance areas[J]. Acta Petrolei Sinica, 2020, 41(12): 1465-1476. [211] Curran K J, Hill P S, Schell T M, et al. Inferring the mass fraction of floc-deposited mud: Application to fine-grained turbidites[J]. Sedimentology, 2004, 51(5): 927-944. [212] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003. [213] Baas J H, Manica R, Puhl E, et al. Processes and products of turbidity currents entering soft muddy substrates[J]. Geology, 2014, 42(5): 371-374. [214] Shanmugam G. New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 2013, 40(3): 316-324. [215] 李相博,刘化清,潘树新,等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报,2019,37(5):904-921. Li Xiangbo, Liu Huaqing, Pan Shuxin, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921. [216] 宋博,闫全人,向忠金,等. 广西凭祥盆地深水底流沉积类型及其研究意义[J]. 沉积学报,2016,34(1):58-69. Song Bo, Yan Quanren, Xiang Zhongjin, et al. Sedimentary types and significance of deep-water bottom currents deposit in the Pingxiang Basin, Guangxi[J]. Acta Sedimentologica Sinica, 2016, 34(1): 58-69. [217] 孙福宁,杨仁超,李冬月. 异重流沉积研究进展[J]. 沉积学报,2016,34(3):452-462. Sun Funing, Yang Renchao, Li Dongyue. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462. [218] Tran D, Strom K. Suspended clays and silts: Are they independent or dependent fractions when it comes to settling in a turbulent suspension?[J]. Continental Shelf Research, 2017, 138: 81-94. [219] Stow D A V, Bowen A J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents[J]. Sedimentology, 1980, 27(1): 31-46. [220] Schieber J, Yawar Z. A new twist on mud deposition-mud ripples in experiment and rock record[J]. The Sedimentary Record, 2009, 7(2): 4-8. [221] Schieber J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 2016, 331: 162-169. [222] Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34. [223] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer-Verlag, 2004: 1-976. [224] Boggs Jr S. Principles of sedimentology and stratigraphy[M]. 4th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006: 1-688. [225] Chen C, Mu C L, Zhou K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76: 159-175. [226] Shinn E A, Steinen R P, Dill R F, et al. Lime-mud layers in high-energy tidal channels: A record of hurricane deposition[J]. Geology, 1993, 21(7): 603-606. [227] Schieber J, Southard J B, Kissling P, et al. Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(11): 1026-1032. [228] Tyson R V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study[J]. Organic Geochemistry, 2001, 32(2): 333-339. [229] Ma Y Q, Fan M J, Lu Y C, et al. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: Implications for depositional controls on organic matter accumulation[J]. Marine and Petroleum Geology, 2016, 75: 291-309. [230] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912. [231] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339. [232] Chen G, Gang W Z, Liu Y Z, et al. Organic matter enrichment of the Late Triassic Yanchang Formation (Ordos Basin, China) under dysoxic to oxic conditions: Insights from pyrite framboid size distributions[J]. Journal of Asian earth sciences, 2019, 170: 106-117. [233] Zou C N, Qiu Z, Wei H Y, et al. Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 1-11. [234] Röhl H J, Schmid-Röhl A, Oschmann W, et al. Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate”: [Palaeogeogr., Palaeoclimatol., Palaeocol. 165 (2001) 27⁃52][J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 273-299. [235] Zhang W Z, Yang H, Xie L Q, et al. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4): 424-429. [236] Xie S C, Pancost R D, Wang Y B, et al. Cyanobacterial blooms tied to volcanism during the 5-million-year Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450. [237] Procesi M, Ciotoli G, Mazzini A, et al. Sediment-hosted geothermal systems: Review and first global mapping[J]. Earth-Science Reviews, 2019, 192: 529-544. [238] Santillan-Jimenez E, Pace R, Morgan T, et al. Co-processing of hydrothermal liquefaction algal bio-oil and petroleum feedstock to fuel-like hydrocarbons via fluid catalytic cracking[J]. Fuel Processing Technology, 2019, 188: 164-171. [239] Langmann B, Zakšek K, Hort M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry and Physics, 2010, 10(8): 3891-3899. [240] Lovell C J, Rose C W. Measurement of soil aggregate settling velocities. 1. A modified bottom withdrawal tube method[J]. Australian Journal of Soil Research, 1988, 26(1): 55-71. [241] 王倩茹,陶士振,关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学,2020,31(3):417-427. Wang Qianru, Tao Shizhen, Guan Ping. Progress in research and exploration & development of shale oil in continental basins in China[J]. Natural Gas Geoscience, 2020, 31(3): 417-427. [242] 胡涛,庞雄奇,姜福杰,等. 陆相断陷咸化湖盆有机质差异富集因素探讨:以东濮凹陷古近系沙三段泥页岩为例[J]. 沉积学报,2021,39(1):140-152. Hu Tao, Pang Xiongqi, Jiang Fujie, et al. Factors controlling differential enrichment of organic matter in saline lacustrine rift basin: A case study of Third member Shahejie Fm in Dongpu Depression[J]. Acta Sedimentologica Sinica, 2021, 39(1): 140-152. [243] Zimmerle W. New aspects on the formation of hydrocarbon source rocks[J]. Geologische Rundschau, 1985, 74(2): 385-416. [244] 刘全有,朱东亚,孟庆强,等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学(D辑):地球科学,2019,49(3):499-520. Liu Quanyou, Zhu Dongya, Meng Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China (Seri. D): Earth Sciences, 2019, 49(3): 499-520. [245] Wright V P. Lacustrine carbonates in rift settings: The interaction of volcanic and microbial processes on carbonate deposition[J]. Geological Society, London, Special Publications, 2012, 370(1): 39-47. [246] 庞军刚,李赛,杨友运,等. 湖盆深水区细粒沉积成因研究进展:以鄂尔多斯盆地延长组为例[J]. 石油实验地质,2014,36(6):706-711,724. Pang Jungang, Li Sai, Yang Youyun, et al. Study progress of origin of fine-grained sedimentary rocks in deep-water area of lacustrine basin: Taking Yangchang Formation in Ordos Basin as an example[J]. Petroleum Geology & Experiment, 2014, 36(6): 706-711, 724. [247] 梁超. 含油气细粒沉积岩沉积作用与储层形成机理[D]. 北京:中国地质大学(北京),2015. Liang Chao. The sedimentation and reservoir formation mechanism of hydrocarbon-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2015. [248] 朱筱敏,钟大康,袁选俊,等. 中国含油气盆地沉积地质学进展[J]. 石油勘探与开发,2016,43(5):820-829. Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, et al. Development of sedimentary geology of petroliferous basins in China[J]. Petroleum Exploration and Development, 2016, 43(5): 820-829. [249] 赵贤正,蒲秀刚,韩文中,等. 细粒沉积岩性识别新方法与储集层甜点分析:以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油勘探与开发,2017,44(4):492-502. Zhao Xianzheng, Pu Xiugang, Han Wenzhong, et al. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2017, 44(4): 492-502. [250] 刘可禹,刘畅. “化学—沉积相”分析:一种研究细粒沉积岩的有效方法[J]. 石油与天然气地质,2019,40(3):491-503. Liu Keyu, Liu Chang, “Chemo-sedimentary facies” analysis: An effective method to study fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2019, 40(3): 491-503. [251] 郭英海,赵迪斐,陈世悦. 细粒沉积物及其古地理研究进展与展望[J]. 古地理学报,2021,23(2):263-283. Guo Yinghai, Zhao Difei, Chen Shiyue. Research progress and prospect of fine-grained sediments and palaeogeography[J]. Journal of Palaeogeography, 2021, 23(2): 263-283. [252] Slatt R M, Rodriguez N D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 68-84. [253] 李圯,刘可禹,蒲秀刚,等. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境[J]. 地球科学,2020,45(10):3779-3796. Li Yi, Liu Keyu, Pu Xiugang, et al. Lithofacies characteristics and formation environments of mixed finegrained sedimentary rocks in Second member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin[J]. Earth Science, 2020, 45(10): 3779-3796. [254] Hammes U, Frébourg G. Haynesville and Bossier mudrocks: A facies and sequence stratigraphic investigation, East Texas and Louisiana, USA[J]. Marine and Petroleum Geology, 2012, 31(1): 8-26. [255] 李鹏,刘全有,毕赫,等. 火山活动与海侵影响下的典型湖相页岩有机质保存差异分析[J]. 地质学报,2021,95(3):632-642. Li Peng, Liu Quanyou, Bi He, et al. Analysis of the difference in organic matter preservation in typical lacustrine shale under the influence of volcanism and transgression[J]. Acta Geologica Sinica, 2021, 95(3): 632-342. [256] Bradley W H, Eugster H P. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming[R]. U.S. Geological Survey Professional Paper 496-B, Washington: United States Government Printing Office, 1969: 53. [257] Hill P S, Fox J M, Crockett J S, et al. Sediment delivery to the seabed on continental margins[M]//Nittrouer C A, Austin J A, Field M E, et al. Continental margin sedimentation: From sediment transport to sequence stratigraphy. Malden: Blackwell Publishing Ltd., 2007. [258] Snedden J W, Nummedal D. Origin and geometry of storm-deposited sand beds in modern sediments of the texas continental shelf[M]//Swift D J P, Oertel G F, Tillman R W, et al. Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy. Oxford: Blackwell Publishing Ltd., 1991. [259] Eugster H P, Surdam R C. Depositional environment of the Green River Formation of wyoming: A preliminary report[J]. Geological Society of America Bulletin, 1973, 84(4): 1115-1120. [260] Desborough G A. A biogenic-chemical stratified lake model for the origin of oil shale of the Green River Formation: An alternative to the playa-lake model[J]. Geological Society of America Bulletin, 1978, 89(7): 961-971. [261] 柳蓉,张坤,刘招君,等. 中国油页岩富集与地质事件研究[J]. 沉积学报,2021,39(1):10-28. Liu Rong, Zhang Kun, Liu Zhaojun, et al. Oil shale mineralization and geological events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28. [262] 李友川. 中国近海湖相优质烃源岩形成的主要控制因素[J]. 中国海上油气,2015,27(3):1-9. Li Youchuan. Main controlling factors for the development of high quality lacustrine hydrocarbon source rocks in offshore China[J]. China Offshore Oil and Gas, 2015, 27(3): 1-9. [263] 杨仁超,尹伟,樊爱萍,等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报,2017,19(5):791-806. Yang Renchao, Yin Wei, Fan Aiping, et al. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 791-806. [264] Shiah F K, Liu K K, Kao S J, et al. The coupling of bacterial production and hydrography in the southern East China Sea: Spatial patterns in spring and fall[J]. Continental Shelf Research, 2000, 20(4/5): 459-477. [265] Fishman N, Guthrie J, Honarpour M. The stratigraphic distribution of hydrocarbon storage and its effect on producible hydrocarbons in the Eagle Ford Formation, South Texas[C]//Proceedings of the unconventional resources technology conference. Denver: SEG, 2013. [266] Hemmesch N T, Harris N B, Mnich C A, et al. A sequence-stratigraphic framework for the Upper Devonian Woodford Shale, Permian Basin, west Texas[J]. AAPG Bulletin, 2014, 98(1): 23-47. [267] Houseknecht D W, Rouse W A, Paxton S T, et al. Upper Devonian⁃Mississippian stratigraphic framework of the Arkoma Basin and distribution of potential source-rock facies in the Woodford⁃Chattanooga and Fayetteville⁃Caney shale-gas systems[J]. AAPG Bulletin, 2014, 98(9): 1739-1759. [268] 张凯棣. 东海陆架近代泥质沉积源汇过程的矿物学响应[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2017. Zhang Kaidi. Mineralogical response of source to sink processes in modern muddy sediments of the East China Sea continental shelf[D]. Qingdao: Institute of Oceanology, Chinese Academy of Science, 2017. [269] Breyer J A, Denne R, Kosanke T, et al. Facies, fractures, pressure and production in the eagle ford shale (Cretaceous) between the Maverick Basin and the San Marcos Arch, Texas, USA[C]//Proceedings of the unconventional resources technology conference. Denver: SEG, 2013. [270] Kelts K, Talbot M. Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions[M]//Tilzer M M, Serruya C. Large lakes: Ecological structure and function. Berlin Heidelberg: Springer, 1990. [271] 蒋宜勤,柳益群,杨召,等. 准噶尔盆地吉木萨尔凹陷凝灰岩型致密油特征与成因[J]. 石油勘探与开发,2015,42(6):741-749. Jiang Yiqin, Liu Yiqun, Yang Zhao, et al. Characteristics and origin of tuff-type tight oil in Jimusar Depression, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 741-749. [272] Soulsby R L, Manning A J, Spearman J, et al. Settling velocity and mass settling flux of flocculated estuarine sediments[J]. Marine Geology, 2013, 339: 1-12. [273] Zhang Y, Ren J, Zhang W Y. Flocculation under the control of shear, concentration and stratification during tidal cycles[J]. Journal of Hydrology, 2020, 586: 124908. [274] 钱宁,万兆慧. 泥沙运动力学[J]. 北京:科学出版社,2003. Qian Ning, Wan Zhaohui. Mechanics of sediment transport[J]. Beijing: Science Press, 2003. [275] Wheatcroft R A, Ilhan I, Pink F X. Particle bioturbation in Massachusetts Bay: Preliminary results using a new deliberate tracer technique[J]. Journal of Marine Research, 1994, 52(6): 1129-1150. [276] Amoudry L O, Souza A J. Deterministic coastal morphological and sediment transport modeling: A review and discussion[J]. Reviews of Geophysics, 2011, 49(2): RG2002. [277] Zhang W Y, Harff J, Schneider R, et al. Holocene morphogenesis at the southern Baltic Sea: Simulation of multi-scale processes and their interactions for the Darss⁃Zingst peninsula[J]. Journal of Marine Systems, 2014, 129: 4-18. [278] French J, Payo A, Murray B, et al. Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales[J]. Geomorphology, 2016, 256: 3-16. [279] Zhang W Y. Sediment transport models[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 764-767. [280] Diaz M, Grasso F, Le Hir P, et al. Modeling mud and sand transfers between a macrotidal estuary and the continental shelf: Influence of the sediment transport parameterization[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015643. [281] Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research: Oceans, 1979, 84(C4): 1797-1808.