高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陆相湖盆细粒沉积岩特征及形成机理研究进展

王鑫锐 孙雨 刘如昊 李钊

王鑫锐, 孙雨, 刘如昊, 李钊. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117
引用本文: 王鑫锐, 孙雨, 刘如昊, 李钊. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117
WANG XinRui, SUN Yu, LIU RuHao, LI Zhao. Research Progress into Fine-grained Sedimentary Rock Characteristics and Formation in a Continental Lake Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117
Citation: WANG XinRui, SUN Yu, LIU RuHao, LI Zhao. Research Progress into Fine-grained Sedimentary Rock Characteristics and Formation in a Continental Lake Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117

陆相湖盆细粒沉积岩特征及形成机理研究进展

doi: 10.14027/j.issn.1000-0550.2021.117
基金项目: 

国家自然科学基金项目 41872158

黑龙江省自然科学基金项目 YQ2019D002

详细信息
    作者简介:

    王鑫锐,女,1995年出生,博士研究生,沉积与储层地质学,E-mail: wangxr_2017@163.com

    通讯作者:

    孙雨,男,教授,E-mail: sunyu_hc@163.com

  • 中图分类号: P581

Research Progress into Fine-grained Sedimentary Rock Characteristics and Formation in a Continental Lake Basin

Funds: 

National Natural Science Foundation of China 41872158

Natural Science Foundation of Heilongjiang Province YQ2019D002

  • 摘要: 细粒沉积岩是最为常见的岩石类型之一,蕴藏着丰富的油气资源,伴随着非常规油气的发展,有关细粒沉积的研究逐渐成为了热点,但由于陆相细粒沉积岩岩石类型丰富,形成机制复杂,缺乏统一科学的分类方案。对目前常见的陆相细粒沉积岩分类方法进行总结,并依据岩石组分将其分为混合型和碎屑型细粒沉积岩两种,并指明其常见的岩石类型特征;梳理与其相关的成因动力学物理模拟实验成果,其中有关泥级颗粒的搬运—沉积机理已经取得了重大突破。而细粒沉积模式方面,可以分为有机质富集模式,岩相模式以及成因模式,三个模式的内涵和所要解决的地质问题各不相同。在此基础上,提出加强细粒沉积岩不同矿物成分微观结构特征、沉积—成岩机理认识,将岩石微观成因分类方案与宏观成因模式有效融合是未来细粒沉积研究的关键。
  • 图  1  中国富有机质页岩平面分布及构造背景[73]

    Figure  1.  Plane distribution and tectonic setting of organic⁃rich shale in China[73]

    Fig.1

    图  2  混合型细粒沉积岩以及碎屑型细粒沉积岩岩石学特征[39,76,111113]

    1.沙河街组三段下亚段(东营、沾化凹陷);2.沙河街组四段上亚段纯上次亚段(东营、沾化凹陷);3.沙河街组四段上亚段纯下次亚段(东营、沾化凹陷);4.孔店组二段(沧东凹陷);5.孔店组二段(沧东凹陷);6.松辽盆地青山口组一段(古龙凹陷);7.松辽盆地青山口组一段(长岭凹陷);8.松辽盆地南部青山口组;9.松辽盆地沙河子组(长岭断陷);10.松辽盆地青山口组一段(大情字井地区);11.碳酸盐岩;12.粉砂岩;13.黏土岩;14.混合沉积岩

    Figure  2.  Petrological characteristics of mixed and clastic fine⁃grained sedimentary rocks[39,76,111113]

    1. lower 3rd sub⁃member of Shahejie Formation (Dongying Sag, Zhanhua Sag); 2. Chunshang part of upper 4th sub⁃member of Shahejie Formation (Dongying Sag, Zhanhua Sag); 3. Chunxia part of upper 4th sub⁃member of Shahejie Formation (Dongying Sag, Zhanhua Sag); 4. 2nd member of Kongdian Formation (Cangdong Sag); 5. 2nd member of Kongdian Formation (Cangdong Sag); 6. 1st member of Qingshankou Formation in Songliao Basin (Gulong Sag); 7. 1st member of Qingshankou Formation in Songliao Basin (Changling Sag); 8. Qingshankou Formation in southern Songliao Basin; 9. Shahezi Formation in Songliao Basin (Changling Fault Depression); 10. 1st member of Qingshankou Formation in Songliao Basin (Daqingzijing area); 11. carbonate rock; 12. siltstone; 13. clay rock; 14. mixed sedimentary rock

    图  3  水流速度、悬浮物浓度和波纹形态关系图[201]

    Figure  3.  Flow velocity,suspended sediment concentration, and ripple appearance[201]

    Fig.3

    图  4  松辽盆地南部青山口组细粒沉积周期性底流作用标志

    松辽盆地长岭凹陷青一段细粒沉积岩特征:(a)黑灰色块状泥岩,微细粉砂质纹层不连续,局部粉砂质透镜体,H238井,2 101.50 m;(b)黑灰色块状泥岩,中间由细小粉砂质透镜体、团块形成的粒序层理,H238井,2 104.40 m;(c)砂泥突变接触面,下部泥质粉砂岩可见波状泥质纹层,H238井,2 110.20 m;(d)砂脉、砂质团块,存在变形,具有明显的牵引流构造特征,H238井,2 151.70 m;(e)上部水平层理,下部砂质团块,牵引流构造特征,H258井,2 418.98 m;(f)泥质及粉砂纹层互层,存在变形砂脉,H258井,2 410.12 m;(g)粉砂纹层与泥质纹层互层形成平行层理,H258井,2 380.02 m;(h)泥质纹层夹在粉砂层之间,形成波状交错层理,H258井,2 426.17 m

    Figure  4.  Periodic underflow of fine⁃grained sediments of Qingshankou Formation in southern Songliao Basin

    core characteristics of fine⁃grained sedimentary system of member Qing 1 in Changling Sag, Songliao Basin: (a) black⁃ray massive mudstone, discontinuous fine silty lamina, local silty lens, well H238, 2 101.50 m; (b) black⁃gray massive mudstone, with grain sequence bedding formed by fine silty lens and mass in the middle, well H238, 2 104.40 m; (c) sand mud abrupt contact surface, showing wavy argillaceous laminae in lower argillaceous siltstone, well H238, 2 110.20 m; (d) sand veins and sand masses, with deformation and obvious traction flow structural characteristics, well H238, 2 151.70 m; (e) upper horizontal bedding, lower sandy mass, with traction and drainage structural characteristics, well H258, 2 418.98 m; (f) interbedded argillaceous and silty sand layers, with sand veins, severe deformation, well H258, 2 410.12 m; (g) interbedded silty sand lamina and argillaceous lamina forming parallel bedding, well H258, 2 380.02 m; (h) argillaceous lamina sandwiched between silty sand layers, forming wavy cross⁃bedding, well H258, 2 426.17 m

    图  5  不同沉积物供应量下的纹层形成过程[222]

    Figure  5.  Lamina formation for different sediment supply[222]

    Fig.5

    图  6  碳酸盐沉积波纹形态与流速及剪切应力的关系[227]

    Figure  6.  Relationship between ripple shape of carbonate deposition and velocity and shear stress[227]

    Fig.6

    图  7  陆相湖盆富有机质细粒页岩沉积模式图[38]

    (a)坳陷湖盆;(b)断陷湖盆;(c)前陆湖盆

    Figure  7.  Sedimentary pattern of fine⁃grained shale enrichment in continental lake basin[38]

    Fig.7

    图  8  基于岩相—沉积环境的陆相细粒沉积模式[160]

    Figure  8.  Continental fine⁃grained sedimentary model based on lithofacies sedimentary environment[160]

    Fig.8

    图  9  陆相混合型及碎屑型细粒沉积岩成因模式(修改自刘惠民等[82]

    Figure  9.  Genetic model of continental mixed and clastic fine⁃grained sedimentary rocks (modified from Liu et al.[82])

    Fig.9

    表  1  陆相混合型细粒沉积岩与碎屑型细粒沉积岩划分方案

    岩石大类分类依据典型研究者及研究对象分类结果
    混合型细粒沉积岩岩石学特征赵建华等[90] 四川盆地龙马溪组李书琴等[131],葸克来等[132]吉木萨尔凹陷芦草沟组粉砂岩、黏土岩,灰岩白云岩,灰质混合沉积岩, 长英质混合沉积岩,黏土质混合沉积岩等
    沉积构造岩石学特征刘姝君等[150]东营凹陷沙三下—沙四上亚段邓远等[151] 沧东凹陷孔店组二段周立宏等[152] 歧口凹陷沙一段下亚段块状长英质页岩、纹层状长英质页岩;纹层状黏土质页岩; 纹层状灰质页岩;块状白云质页岩、白云岩; 纹层状碳酸盐质/长英质/黏土质混合页岩等
    有机质含量沉积构造岩石学特征吴靖等[77],张顺等[159]彭丽等[125]济阳凹陷沙三下亚段渤海湾盆地东营凹陷沙三下—沙四上亚段刘忠宝等[128]四川盆地中下侏罗统含有机质纹层状泥质灰岩、富有机质纹层状泥质灰岩、 富有机质纹层状灰质泥岩、富有机质层状灰质泥岩、 富有机质层状泥质灰岩以及富有机质块状泥质灰岩等
    有机质含量沉积构造成因类型陈世悦等[91],宁方兴等[141] 渤海湾盆地东营凹陷王小军等[158]吉木萨尔凹陷芦草沟组块状/纹层状/团块状(长英质黏土质)碳酸盐型细粒混积岩等; 富有机质纹层状隐晶泥质灰岩等
    碎屑型细粒沉积岩有机质含量沉积构造岩石学特征柳波等[39],王岚等[161]松辽盆地古龙凹陷青山口组张君峰等[111]松辽盆地南部青山口组富有机质黏土质页岩、富有机质长英质页岩、贫有机质长英质泥岩、 富有机质混合质页岩(如含生屑长英质页岩、长英质泥灰岩)、贫有机质介壳灰岩
    有机质含量(沉积构造)碎屑岩粒级柳波等[162]松辽盆地长岭凹陷青山口组耳闯等[163],付金华等[168]鄂尔多斯盆地延长组高有机质薄片状页岩相、中有机质块状泥岩相、 中有机质纹层状页岩相、低有机质纹层状页岩相和低有机质砂岩夹层相
    下载: 导出CSV
  • [1] Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195.
    [2] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
    [3] Clarke F W. The data of geochemistry[M]. 2nd ed. Washington: Government Printing Office, 1924: 1-770.
    [4] Wickman F E. The “total” amount of sediments and the composition of the “average igneous rock”[J]. Geochimica et Cosmochimica Acta, 1954, 5(3): 97-110.
    [5] Sorby H C. On the application of quantitative methods to the study of the structure and history of rocks[J]. Quarterly Journal of the Geological Society, 1908, 64(1/2/3/4): 171-233.
    [6] Krumbein W C. The mechanical analysis of fine-grained sediments[J]. Journal of Sedimentary Research, 1932, 2(3): 140-149.
    [7] 陈世悦,张顺,王永诗,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发,2016,43(2):198-208.

    Chen Shiyue, Zhang Shun, Wang Yongshi, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208.
    [8] 邹才能,杨智,张国生,等. 常规—非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发,2014,41(1):14-27.

    Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Conventional and unconventional petroleum "orderly accumulation": Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 40(1): 14-27.
    [9] Lewan M D. Laboratory classification of very fine grained sedimentary rocks[J]. Geology, 1978, 6(12): 745-748.
    [10] Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744.
    [11] Jiang Z X, Duan H J, Liang C, et al. Classification of hydrocarbon-bearing fine-grained sedimentary rocks[J]. Journal of Earth Science, 2017, 28(6): 693-976.
    [12] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
    [13] Milliken K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199.
    [14] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
    [15] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968.
    [16] Flemming B W. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams[J]. Continental Shelf Research, 2000, 20(10/11): 1125-1137.
    [17] Folk R L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature[J]. The Journal of Geology, 1954, 62(4): 344-359.
    [18] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1980: 1-182.
    [19] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2015,42(5):598-607.

    Liu Bo, Yanfang Lü, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
    [20] 周立宏,蒲秀刚,陈长伟,等. 陆相湖盆细粒岩油气的概念、特征及勘探意义:以渤海湾盆地沧东凹陷孔二段为例[J]. 地球科学,2018,43(10):3625-3639.

    Zhou Lihong, Pu Xiugang, Chen Changwei, et al. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: A case from the Second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3625-3639.
    [21] 邹才能,朱如凯,白斌,等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报,2015,34(1):1-17.

    Zou Caineng, Zhu Rukai, Bai Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 1-17.
    [22] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184.

    Zhu Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184.
    [23] 高岗,向宝力,都鹏燕,等. 准噶尔盆地玛湖凹陷风城组泥岩与泥质白云岩热模拟产物特征对比[J]. 地球科学与环境学报,2016,38(1):93-103.

    Gao Gang, Xiang Baoli, Du Pengyan, et al. Comparison of thermal simulation product characteristics of mudstone and argillaceous dolomite from Fengcheng Formation in Mahu Sag of Junggar Basin[J]. Journal of earth Sciences and Environment, 2016, 38(1): 93-103.
    [24] Williams H, Turner F J, Gilbert C M. Petrography: An introduction to the study of rocks in thin section[M]. 2nd ed. San Francisco: W. H. Freeman and Company, 1982.
    [25] Folk R L. Petrology of sedimentary rocks[M]. Austin: Hemphill Publishing Company, 1980.
    [26] Bates R L, Jackson J A. Glossary of geology[M]. 3rd ed. Alexandria: American Geological Institute, 1987.
    [27] Alexander T, Baihly J, Boyer C, et al. The shale gas revolution[J]. New Technology of Oilfield, 2011, 23(3): 40-55.
    [28] 国家石油和化学工业局. SY/T 5368—2000 岩石薄片鉴定 [S]. 北京:石油工业出版社,2000.

    State Administration of Petroleum and Chemical Industry. SY/T 5368-2000 thin section examination of rock [S]. Beijing: Petroleum Industry Press, 2000.
    [29] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010.

    Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010.
    [30] 王成云,匡立春,高岗,等. 吉木萨尔凹陷芦草沟组泥质岩类生烃潜力差异性分析[J]. 沉积学报,2014,32(2):385-390.

    Wang Chengyun, Kuang Lichun, Gao Gang, et al. Difference in hydrocarbon generation potential of the shaly source rocks in Jimusar Sag, Permian Lucaogou Formation[J]. Acta Sedimentologica Sinica, 2014, 32(2): 385-390.
    [31] 王勇,刘惠民,宋国奇,等. 济阳坳陷泥页岩细粒沉积体系[J]. 石油学报,2019,40(4):395-410.

    Wang Yong, Liu Huimin, Song Guoqi, et al. Lacustrine shale fine-grained sedimentary system in Jiyang Depression[J]. Acta Petrolei Sinica, 2019, 40(4): 395-410.
    [32] 卢双舫,李俊乾,张鹏飞,等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发,2018,45(3):436-444.

    Lu Shuangfang, Li Junqian, Zhang Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444.
    [33] 聂海宽,张培先,边瑞康,等. 中国陆相页岩油富集特征[J]. 地学前缘,2016,23(2):55-62.

    Nie Haikuan, Zhang Peixian, Bian Ruikang, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62.
    [34] 宋国奇,张林晔,卢双舫,等. 页岩油资源评价技术方法及其应用[J]. 地学前缘,2013,20(4):221-228.

    Song Guoqi, Zhang Linye, Lu Shuangfang, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013, 20(4): 221-228.
    [35] 支东明,唐勇,郑孟林,等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探,2019,24(5):615-623.

    Zhi Dongming, Tang Yong, Zheng Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623.
    [36] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1-10.

    Zhao Wenzhi, Hu Suyun, Hou Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
    [37] 赵文智,胡素云,侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发,2018,45(4):537-545.

    Zhao Wenzhi, Hu Suyun, Hou Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545.
    [38] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26.

    Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
    [39] 柳波,石佳欣,付晓飞,等. 陆相泥页岩层系岩相特征与页岩油富集条件:以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发,2018,45(5):828-838.

    Liu Bo, Shi Jiaxin, Fu Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in First member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838.
    [40] 支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534.

    Zhi Dongming, Tang Yong, Yang Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534.
    [41] 赵贤正,周立宏,蒲秀刚,等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破:以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发,2018,45(3):361-372.

    Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372.
    [42] 王民,马睿,李进步,等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发,2019,46(4):789-802.

    Wang Min, Ma Rui, Li Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802.
    [43] Curtis J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
    [44] Mavor M. Barnett shale gas-in-place volume including sorbed and free gas volume[R]. Texas: AAPG Southwest Section Meeting, 2003.
    [45] Tourtelot H A. Theuseof theword “shale”[J]. American Journal of Science, 1960, 258: 335-343.
    [46] Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction and overview[M]. New York: Springer, 2005: 1-297.
    [47] O'Brien N R, Slatt R M. Argillaceous rock atlas[M]. New York: Springer, 1990: 1-156.
    [48] Weaver C E. Clays, muds, and shales: Developments in sedimentology, 44[M]. Amsterdam: Elsevier, 1989: 1-819.
    [49] Boggs S. Mudstones and shales[M]//Boggs S Jr. Petrology of sedimentary rocks. 2nd ed. New York: Cambridge University Press, 2009: 194-219.
    [50] Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks[M]. Dordrecht: Springer, 2003: 1-821.
    [51] Potter P E, Maynard J B, Pryor W A. Sedimentology of shale[M]. New York: Springer, 1980: 1-310.
    [52] Weaver C E. Fine-grained rocks: Shales or physilites[J]. Sedimentary Geology, 1980, 27(4): 301-313.
    [53] 邹才能,陶士振,袁选俊,等. “连续型”油气藏及其在全球的重要性:成藏、分布与评价[J]. 石油勘探与开发,2009,36(6):669-682.

    Zou Caineng, Tao Shizhen, Yuan Xuanjun, et al. Global importance of “continuous” petroleum reservoirs: Accumulation, distribution and evaluation[J]. Petroleum Exploration and Development, 2009, 36(6): 669-682.
    [54] 周立宏,蒲秀刚,邓远,等. 细粒沉积岩研究中几个值得关注的问题[J]. 岩性油气藏,2016,28(1):6-15.

    Zhou Lihong, Pu Xiugang, Deng Yuan, et al. Several issues in studies on fine-grained sedimentary rocks[J]. Lithologic Reservoirs, 2016, 28(1): 6-15.
    [55] 钟建华,刘圣鑫,马寅生,等. 页岩宏观破裂模式与微观破裂机理[J]. 石油勘探与开发,2015,42(2):242-250.

    Zhong Jianhua, Liu Shengxin, Ma Yinsheng, et al. Macro-fracture mode and micro-fracture mechanism of shale[J]. Petroleum Exploration and Development, 2015, 42(2): 242-250.
    [56] Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
    [57] Hickey J J, Bo H. Lithofacies summary of the Mississippian barnett shale, mitchell 2 T.P. sims well, wise county, texas[J]. AAPG Bulletin, 2007, 91(4): 437-443.
    [58] Mitra A, Warrington D S, Sommer A. Application of lithofacies models to characterize unconventional shale gas reservoirs and identify optimal completion intervals[C]//Proceedings of the SPE western regional meeting. Anaheim: Society of Petroleum Engineers, 2010.
    [59] Wang G C, Carr T R. Methodology of organic-rich shale lithofacies identification and prediction: A case study from Marcellus Shale in the Appalachian Basin[J]. Computers & Geosciences, 2012, 49: 151-163.
    [60] Bhattacharya S, Carr T R, Pal M. Comparison of supervised and unsupervised approaches for mudstone lithofacies classification: Case studies from the Bakken and Mahantango-Marcellus Shale, USA[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 1119-1133.
    [61] Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the barnett shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22.
    [62] McKee E D, Weir G W. Terminology for stratification and cross-stratification in sedimentary rocks[J]. GSA Bulletin, 1953, 64(4): 381-390.
    [63] Trabucho-Alexandre J, Dirkx R, Veld H, et al. Toarcian black shales in the dutch central graben: Record of energetic, variable depositional conditions during an oceanic anoxic event[J]. Journal of Sedimentary Research, 2012, 82(2): 104-120.
    [64] Schieber J. Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York[J]. Journal of Sedimentary Research, 1999, 69(4): 909-925.
    [65] Schieber J. Early diagenetic silica deposition in algal cysts and spores: A source of sand in black shales?[J]. Journal of Sedimentary Research, 1996, 66(1): 175-183.
    [66] Mulder T, Syvitski J P M. Turbidity currents generated at river mouths during exceptional discharges to the world oceans[J]. The Journal of Geology, 1995, 103(3): 285-299.
    [67] Camp W K, Egenhoff S, Schieber J, et al. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks — discussion[J]. Journal of Sedimentary Research, 2016, 86(1): 1-5.
    [68] Milliken K L. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks—reply[J]. Journal of Sedimentary Research, 2016, 86(1): 6-10.
    [69] 李新景,吕宗刚,董大忠,等. 北美页岩气资源形成的地质条件[J]. 天然气工业,2009,29(5):27-32.

    Li Xinjing, Zonggang Lü, Dong Dazhong, et al. Geologic controls on accumulation of shale gas in North America[J]. Natural Gas Industry, 2009, 29(5): 27-32.
    [70] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

    Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
    [71] 李昌伟,陶士振,董大忠,等. 国内外页岩气形成条件对比与有利区优选[J]. 天然气地球科学,2015,26(5):986-1000.

    Li Changwei, Tao Shizhen, Dong Dazhong, et al. Comparison of the formation condition of shale gas between domestic and abroad and favorable areas evaluation[J]. Natural Gas Geoscience, 2015, 26(5): 986-1000.
    [72] 孟楚洁,胡文瑄,贾东,等. 宁镇地区上奥陶统五峰组—下志留统高家边组底部黑色岩系地球化学特征与沉积环境分析[J]. 地学前缘,2017,24(6):300-311.

    Meng Chujie, Hu Wenxuan, Jia Dong, et al. Analyses of geochemistry features and sedimentary environment in the Upper Ordovician Wufeng-Lower Silurian Gaojiabian Formations in Nanjing-Zhenjiang area[J]. Earth Science Frontiers, 2017, 24(6): 300-311.
    [73] 徐文礼,郑荣才,颜雪,等. 下扬子地区早古生代黑色岩系地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版),2014,44(4):1108-1122.

    Xu Wenli, Zheng Rongcai, Yan Xue, et al. Trace and rare earthelement geochemistry of the Early Paleozoic black shales in the Lower Yangtze area and its geological significances[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(4): 1108-1122.
    [74] 姜在兴,孔祥鑫,杨叶芃,等. 陆相碳酸盐质细粒沉积岩及油气甜点多源成因[J]. 石油勘探与开发,2021,48(1):26-37.

    Jiang Zaixing, Kong Xiangxin, Yang Yepeng, et al. Multi-source genesis of continental carbonate-rich fine-grained sedimentary rocks and hydrocarbon sweet spots[J]. Petroleum Exploration and Development, 2021, 48(1): 26-37.
    [75] Dimberline A J, Bell A, Woodcock N H. A laminated hemipelagic facies from the Wenlock and Ludlow of the Welsh Basin[J]. Journal of the Geological Society, 1990, 147(4): 693-701.
    [76] Lemons D R, Chan M A. Facies architecture and sequence stratigraphy of fine-grained lacustrine deltas along the eastern margin of Late Pleistocene Lake bonneville, northern Utah and southern Idaho[J]. AAPG Bulletin, 1999, 83(4): 635-665.
    [77] 吴靖,姜在兴,梁超. 东营凹陷沙河街组四段上亚段细粒沉积岩岩相特征及与沉积环境的关系[J]. 石油学报,2017,38(10):1110-1122.

    Wu Jing, Jiang Zaixing, Liang Chao. Lithofacies characteristics of fine-grained sedimentary rocks in the upper submember of member 4 of Shahejie Formation, Dongying Sag and their relationship with sedimentary environment[J]. Acta Petrolei Sinica, 2017, 38(10): 1110-1122.
    [78] 张顺,刘惠民,陈世悦,等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨:以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报,2017,91(5):1108-1119.

    Zhang Shun, Liu Huimin, Chen Shiyue, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J]. Acta Geologica Sinica, 2017, 91(5): 1108-1119.
    [79] 郑荣才,文华国,范铭涛,等. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征[J]. 岩石学报,2006,22(12):3027-3038.

    Zheng Rongcai, Wen Huaguo, Fan Mingtao, et al. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin[J]. Acta Petrologica Sinica, 2006, 22(12): 3027-3038.
    [80] 柳益群,周鼎武,焦鑫,等. 一类新型沉积岩:地幔热液喷积岩:以中国新疆三塘湖地区为例[J]. 沉积学报,2013,31(5):773-781.

    Liu Yiqun, Zhou Dingwu, Jiao Xin, et al. A new type of sedimentary rocks: Mantle-originated hydroclastites and hydrothermal exhalites, Santanghu area, Xinjiang, NW China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 773-781.
    [81] Jiao X, Liu Y Q, Yang W, et al. A magmatic-hydrothermal lacustrine exhalite from the Permian Lucaogou Formation, Santanghu Basin, NW China ⁃ The volcanogenic origin of fine-grained clastic sedimentary rocks[J]. Journal of Asian Earth Sciences, 2018, 156: 11-25.
    [82] 刘惠民,王勇,杨永红,等. 东营凹陷细粒混积岩发育环境及其岩相组合:以沙四上亚段泥页岩细粒沉积为例[J]. 地球科学,2020,45(10):3543-3555.

    Liu Huimin, Wang Yong, Yang Yonghong, et al. Sedimentary environment and lithofacies of fine-grained hybrid sedimentary in Dongying Sag: A case of fine-grained sedimentary system of the Es4 [J]. Earth Science, 2020, 45(10): 3543-3555.
    [83] 姜在兴,王雯雯,王俊辉,等. 风动力场对沉积体系的作用[J]. 沉积学报,2017,35(5):863-876.

    Jiang Zaixing, Wang Wenwen, Wang Junhui, et al. The influence of wind field on depositional systems[J]. Acta Sedimentologica Sinica, 2017, 35(5): 863-876.
    [84] 张少敏,操应长,朱如凯,等. 湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘,2018,25(4):198-209.

    Zhang Shaomin, Cao Yingchang, Zhu Rukai, et al. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers, 2018, 25(4): 198-209.
    [85] 焦鑫,柳益群,周鼎武,等. 湖相烃源岩中的火山—热液深源物质与油气生成耦合关系研究进展[J]. 古地理学报,2021,23(4):789-809.

    Jiao Xin, Liu Yiqun, Zhou Dingwu, et al. Progress on coupling relationship between volcanic and hydrothermal-originated sediments and hydrocarbon generation in lacustrine source rocks[J]. Journal of Palaeogeography, 2021, 23(4): 789-809.
    [86] Wohletz K H, Sheridan M F. Hydrovolcanic explosions. II. Evolution of basaltic tuff rings and tuff cones[J]. American Journal of Science, 1983, 283(5): 385-413.
    [87] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field[J]. Science, 2005, 307(5714): 1428-1434.
    [88] Smith J V. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints[J]. Journal of Volcanology and Geothermal Research, 2018, 349: 311-322.
    [89] 李增学,宋明水,李莹,等. 湖相细粒岩二级指标划分法岩相分类及其应用实例[J]. 现代地质,2021,35(2):365-377.

    Li Zengxue, Song Mingshui, Li Ying, et al. Petrographic classification of lacustrine fine-grained rocks using a two-level index division method and a case study of its application[J]. Geoscience, 2021, 35(2): 365-377.
    [90] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586.

    Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586.
    [91] 陈世悦,张顺,刘惠民,等. 湖相深水细粒物质的混合沉积作用探讨[J]. 古地理学报,2017,19(2):271-284.

    Chen Shiyue, Zhang Shun, Liu Huimin, et al. Discussion on mixing of finegrained sediments in lacustrine deep water[J]. Journal of Palaeogeography, 2017, 19(2): 271-284.
    [92] Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomania⁃Turonian Kaskapau Formation, western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822.
    [93] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.

    Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
    [94] Frébourg G, Ruppel S C, Loucks R G, et al. Depositional controls on sediment body architecture in the Eagle Ford/Boquillas system: Insights from outcrops in west Texas, United States[J]. Aapg Bulletin, 2016, 100(4): 657-682.
    [95] 刘招君,孟庆涛,柳蓉. 中国陆相油页岩特征及成因类型[J]. 古地理学报,2009,11(1):105-114.

    Liu Zhaojun, Meng Qingtao, Liu Rong. Characteristics and genetic types of continental oil shales in China[J]. Journal of Palaeogeography, 2009, 11(1): 105-114.
    [96] Hutton A C. Petrographic classification of oil shales[J]. International Journal of Coal Geology, 1987, 8(3): 203-231.
    [97] 刘招君,孙平昌,柳蓉,等. 中国陆相盆地油页岩成因类型及矿床特征[J]. 古地理学报,2016,18(4):525-534.

    Liu Zhaojun, Sun Pingchang, Liu Rong, et al. Genetic types and deposit features of oil shale in continental basin in China[J]. Journal of Palaeogeography, 2016, 18(4): 525-534.
    [98] 赵隆业,陈基娘,王天顺. 关于中国油页岩的工业成因分类[J]. 煤田地质与勘探,1991,19(5):2-6.

    Zhao Longye, Chen Jiniang, Wang Tianshun. Industrial-original classification of Chinese oil shales[J]. Coal Geology & Exploration, 1991, 19(5): 2-6.
    [99] 李宝毅,王建鹏,徐银波,等. 断陷和坳陷盆地富有机质泥岩测试参数及研究意义[J]. 世界地质,2012,31(4):778-784.

    Li Baoyi, Wang Jianpeng, Xu Yinbo, et al. Testing parameters of organic-rich mudstone in faulted basin and depressed basin and their significance[J]. Global Geology, 2012, 31(4): 778-784.
    [100] 刘招君,孟庆涛,贾建亮,等. 陆相盆地油页岩成矿规律:以东北地区中、新生代典型盆地为例[J]. 吉林大学学报(地球科学版),2012,42(5):1286-1297.

    Liu Zhaojun, Meng Qingtao, Jia Jianliang, et al. Metallogenic regularity of oil shale in continental basin: Case study in the Meso-Cenozoic basins of Northeast China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1286-1297.
    [101] 刘招君,柳蓉,孙平昌,等. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版),2020,50(2):313-325.

    Liu Zhaojun, Liu Rong, Sun Pingchang, et al. Oil shale characteristics and distribution in typical basins of China[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 313-325.
    [102] 张锦泉,叶红专. 论碳酸盐与陆源碎屑的混合沉积[J]. 成都地质学院学报,1989,16(2):87-92.

    Zhang Jinquan, Ye Hongzhuan. A study on carbonate and siliciclastic mixed sediments[J]. Journal of Chengdu College of Geology, 1989, 16(2): 87-92.
    [103] 沙庆安. 混合沉积和混积岩的讨论[J]. 古地理学报,2001,3(3):63-66.

    Sha Qing’an. Discussion on mixing deposit and hunji rock[J]. Journal of Palaeogeography, 2001, 3(3): 63-66.
    [104] 郑绵平. 盐湖学的研究与展望[J]. 地质论评,2006,52(6):737-746.

    Zheng Mianping. Salinology: Research and prospects[J]. Geological Review, 2006, 52(6): 737-746.
    [105] 金强,朱光有. 中国中新生代咸化湖盆烃源岩沉积的问题及相关进展[J]. 高校地质学报,2006,12(4):483-492.

    Jin Qiang, Zhu Guangyou. Progress in research of deposition of oil source rocks in saline lakes and their hydrocarbon generation[J]. Geological Journal of China Universities, 2006, 12(4): 483-492.
    [106] Chen A D, Zheng M P, Yao H T, et al. Magnetostratigraphy and 230Th dating of a drill core from the southeastern Qaidam Basin: Salt lake evolution and tectonic implications[J]. Geoscience Frontiers, 2018, 9(3): 943-953.
    [107] 谭先锋,王萍,王佳,等. 早始新世极热气候时期咸化湖盆混合沉积作用:以渤海湾盆地东营凹陷孔店组为例[J]. 石油与天然气地质,2018,39(2):340-354.

    Tan Xianfeng, Wang Ping, Wang Jia, et al. Mixed sedimentation in saline lacustrine basins during initial Eocene thermal maximum period: A case study on Kongdian Formation in Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2018, 39(2): 340-354.
    [108] Liang C, Cao Y C, Jiang Z X, et al. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: Implications for geochemistry and reservoir characteristics[J]. AAPG Bulletin, 2017, 101(11): 1835-1858.
    [109] 刘惠民,孙善勇,操应长,等. 东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式[J]. 油气地质与采收率,2017,24(1):1-10.

    Liu Huimin, Sun Shanyong, Cao Yingchang, et al. Lithofacies characteristics and distribution model of fine-grained sedimentary rock in the lower Es3 member, Dongying Sag[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 1-10.
    [110] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [111] 张君峰,徐兴友,白静,等. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践[J]. 石油勘探与开发,2020,47(4):637-652.

    Zhang Junfeng, Xu Xingyou, Bai Jing, et al. Enrichment and exploration of deep lacustrine shale oil in the First member of Cretaceous Qingshankou Formation, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2020, 47(4): 637-652.
    [112] 付晓飞,石海东,蒙启安,等. 构造和沉积对页岩油富集的控制作用:以松辽盆地中央坳陷区青一段为例[J]. 大庆石油地质与开发,2020,39(3):56-71.

    Fu Xiaofei, Shi Haidong, Meng Qi’an, et al. Controlling effects of the structure and deposition on the shale oil enrichment: Taking Formation qn1, in the Central Depression of Songliao Basin as an instance[J]. Petroleum Geology & Oilfield Development in Daqin, 2020, 39(3): 56-71.
    [113] 林森虎,袁选俊,杨智. 陆相页岩与泥岩特征对比及其意义:以鄂尔多斯盆地延长组7段为例[J]. 石油与天然气地质,2017,38(3):517-523.

    Lin Senhu, Yuan Xuanjun, Yang Zhi. Comparative study on lacustrine shale and mudstone and its significance: A case from the 7th member of Yanchang Formation in the Ordos Basin[J]. Oil & Gas Geology, 2017, 38(3): 517-523.
    [114] 解习农,叶茂松,徐长贵,等. 渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理[J]. 地球科学,2018,43(10):3526-3539.

    Xie Xinong, Ye Maosong, Xu Changgui, et al. High quality reservoirs characteristics and forming mechanisms of mixed siliciclastic-carbonate sediments in the Bozhong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3526-3539.
    [115] 周立宏,陈长伟,韩国猛,等. 渤海湾盆地歧口凹陷沙一下亚段地质特征与页岩油勘探潜力[J]. 地球科学,2019,44(8):2736-2750.

    Zhou Lihong, Chen Changwei, Han Guomeng, et al. Geological characteristics and shale oil exploration potential of lower First member of Shahejie Formation in Qikou Sag, Bohai Bay Basin[J]. Earth Science, 2019, 44(8): 2736-2750.
    [116] 潘树新,梁苏娟,史永苏,等. 松辽盆地上白垩统青山口组介形虫群集性死亡事件成因[J]. 古地理学报,2010,12(4):409-414.

    Pan Shuxin, Liang Sujuan, Shi Yongsu, et al. Origin of ostracod extinction event of the Upper Cretaceous Qingshankou Formation in Songliao Basin[J]. Journal of Palaeogeography, 2010, 12(4): 409-414.
    [117] 陈能贵,王艳清,徐峰,等. 柴达木盆地新生界湖盆咸化特征及沉积响应[J]. 古地理学报,2015,17(3):371-380.

    Chen Nenggui, Wang Yanqing, Xu Feng, et al. Palaeosalinity characteristics and its sedimentary response to the Cenozoic salt-water lacustrine deposition in Qaidam Basin[J]. Journal of Palaeogeography, 2015, 17(3): 371-380.
    [118] 张敏,尹成明,寿建峰,等. 柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相[J]. 古地理学报,2004,6(4):391-400.

    Zhang Min, Yin Chengming, Shou Jianfeng, et al. Sedimentary facies of carbonate rocks of the Paleogene and Neogene in western Qaidam Basin[J]. Journal of Palaeogeography, 2004, 6(4): 391-400.
    [119] Chiarella D, Longhitano S G, Tropeano M. Types of mixing and heterogeneities in siliciclastic-carbonate sediments[J]. Marine and Petroleum Geology, 2017, 88: 617-627.
    [120] Doyle L J, Roberts H H. Carbonate-clastic transitions[M]. Amsterdam: Elsevier, 1988.
    [121] Mount J F. Mixing of siliciclastic and carbonate sediments in shallow shelf environments[J]. Geology, 1984, 12(7): 432-435.
    [122] 张雄华. 混积岩的分类和成因[J]. 地质科技情报,2000,19(4):31-34.

    Zhang Xionghua. Classification and origin of mixosedimentite[J]. Geological Science and Technology Information, 2000, 19(4): 31-34.
    [123] 杨朝青,沙庆安. 云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J]. 沉积学报,1990,8(2):59-66.

    Yang Chaoqing, Sha Qing’an. Sedimentary environment of the Middle Devonian Qujing Formation, Qujing, Yunnan province: A kind of mixing sedimentation of terrigenous clastics and carbonate[J]. Acta Sedimentologica Sinica, 1990, 8(2): 59-66.
    [124] 李祥辉. 层序地层中的混合沉积作用及其控制因素[J]. 高校地质学报,2008,14(3):395-404.

    Li Xianghui. Mixing of siliciclastic-carbonate sediments within systems tracts of depositional sequences and its controlling factors[J]. Geological Journal of China Universities, 2008, 14(3): 395-404.
    [125] 彭丽,陆永潮,彭鹏,等. 渤海湾盆地渤南洼陷沙三下亚段泥页岩非均质性特征及演化模式:以罗69井为例[J]. 石油与天然气地质,2017,38(2):219-229.

    Peng Li, Lu Yongchao, Peng Peng, et al. Heterogeneity and evolution model of the lower Shahejie member 3 mud-shale in the Bonan subsag, Bohai Bay Basin: An example from well Luo 69[J]. Oil & Gas Geology, 2017, 38(2): 219-229.
    [126] 朱毅秀,金振奎,金科,等. 中国陆相湖盆细粒沉积岩岩石学特征及成岩演化表征:以四川盆地元坝地区下侏罗统大安寨段为例[J]. 石油与天然气地质,2021,42(2):494-508.

    Zhu Yixiu, Jin Zhenkui, Jin Ke, et al. Petrologic features and diagenetic evolution of fine-grained sedimentary rocks incontinental lacustrine basins: A case study on the Lower Jurassic Da’anzhai member of Yuanba area, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(2): 494-508.
    [127] 朱彤,龙胜祥,王烽,等. 四川盆地湖相泥页岩沉积模式及岩石相类型[J]. 天然气工业,2016,36(8):22-28.

    Zhu Tong, Long Shengxiang, Wang Feng, et al. Sedimentary models and lithofacies types of lacustrine mud shale in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(8): 22-28.
    [128] 刘忠宝,刘光祥,胡宗全,等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义:以四川盆地中下侏罗统为例[J]. 天然气工业,2019,39(12):10-21.

    Liu Zhongbao, Liu Guangxiang, Hu Zongquan, et al. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 10-21.
    [129] 梁超,姜在兴,杨镱婷,等. 四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发,2012,39(6):691-698.

    Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698.
    [130] 李卓,姜振学,唐相路,等. 渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J]. 地球科学,2017,42(7):1116-1123.

    Li Zhuo, Jiang Zhenxue, Tang Xianglu, et al. Lithofacies characteristics and its effect on pore structure of the marine shale in the low Silurian Longmaxi Formation, southeastern Chongqing[J]. Earth Science, 2017, 42(7): 1116-1123.
    [131] 李书琴,印森林,高阳,等. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学,2020,31(2):235-249.

    Li Shuqin, Yin Senlin, Gao Yang, et al. Study on sedimentary microfacies of mixed fine-grained rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 235-249.
    [132] 葸克来,操应长,朱如凯,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495-1507.

    Xi Kelai, Cao Yingchang, Zhu Rukai, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507.
    [133] 陈世悦,刘金,马帅,等. 柴北缘东段克鲁克组泥页岩储层特征[J]. 地学前缘,2016,23(5):56-65.

    Chen Shiyue, Liu Jin, Ma Shuai, et al. Characteristics of Keluke shale reservoirs in northeast margin of Qaidam Basin[J]. Earth Science Frontiers, 2016, 23(5): 56-65.
    [134] 康志宏,周磊,任收麦,等. 柴北缘中侏罗统大煤沟组七段泥页岩储层特征[J]. 地学前缘,2015,22(4):265-276.

    Kang Zhihong, Zhou Lei, Ren Shoumai, et al. Characteristics of shale of the 7th member of the Middle Jurassic Dameigou Formation in northern Qaidam Basin[J]. Earth Science Frontiers, 2015, 22(4): 265-276.
    [135] 刘占国,张永庶,宋光永,等. 柴达木盆地英西地区咸化湖盆混积碳酸盐岩岩相特征与控储机制[J]. 石油勘探与开发,2021,48(1):68-80.

    Liu Zhanguo, Zhang Yongshu, Song Guangyong, et al. Mixed carbonate rocks lithofacies features and reservoirs controlling mechanisms in the saline lacustrine basin in Yingxi area, Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 68-80.
    [136] 徐雄飞,于祥春,卿忠,等. 三塘湖盆地芦草沟组岩相特征及其与页岩油藏的关系[J]. 新疆石油地质,2020,41(6):677-684.

    Xu Xiongfei, Yu Xiangchun, Zhong Qing, et al. Lithofacies characteristics and its relationship with shale oil reservoirs of Lucaogou Formation in Santanghu Basin[J]. Xinjiang Petroleum Geology, 2020, 41(6): 677-684.
    [137] Finthan B, Mamman Y D. The lithofacies and depositional paleoenvironment of the Bima Sandstone in Girei and Environs, Yola Arm, Upper Benue Trough, Northeastern Nigeria[J]. Journal of African Earth Sciences, 2020, 169: 103863.
    [138] Borka S. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems[J]. Open Geosciences, 2016, 8(1): 45-51.
    [139] Könitzer S F, Davies S J, Stephenson M H, et al. Depositional controls on mudstone lithofacies in a basinal setting: Implications for the delivery of sedimentary organic matter[J]. Journal of Sedimentary Research, 2014, 84(3): 198-214.
    [140] 聂银兰,谢庆宾,朱筱敏,等. 基于岩相表征的细粒沉积物沉积机制和研究展望[J]. 断块油气田,2021,28(3):305-310.

    Nie Yinlan, Xie Qingbin, Zhu Xiaomin, et al. The sedimentary mechanism and research prospect of fine grain sediments based on lithofacies characterization[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 305-310.
    [141] 宁方兴,王学军,郝雪峰,等. 东营凹陷细粒沉积岩岩相组合特征[J]. 西南石油大学学报(自然科学版),2020,42(4):55-65.

    Ning Fangxing, Wang Xuejun, Hao Xuefeng, et al. Fine-grained sedimentary rock lithofacies assemblage characteristics in Dongying Depression[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(4): 55-65.
    [142] Jones R W. Organic facies[M]//Brooks J, Welte D. Advance in petroleum geochemistry. London: Academic Press, 1987: 1-90.
    [143] 施振生,邱振. 海相细粒沉积层理类型及其油气勘探开发意义[J]. 沉积学报,2021,39(1):181-196.

    Shi Zhensheng, Qiu Zhen. Main bedding types of marine fine-grained sediments and their significance for oil and gas exploration and development[J]. Acta Sedimentologica Sinica, 2021, 39(1): 181-196.
    [144] Lobza V, Schieber J. Biogenic sedimentary structures produced by worms in soupy, soft muds; observations from the Chattanooga Shale (Upper Devonian) and experiments[J]. Journal of Sedimentary Research, 1999, 69(5): 1041-1049.
    [145] 钟摇,朱利东,杨文光,等. 重庆云阳地区沙溪庙组软沉积物变形构造及其地质意义[J]. 成都理工大学学报(自然科学版),2021,48(2):165-177.

    Zhong Yao, Zhu Lidong, Yang Wenguang, et al. Soft sediment deformation structures in Shaximiao Formation and its geological significance in Yunyang area, Chongqing, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2021, 48(2): 165-177.
    [146] Rodrı́guez-Pascua M A, Calvo J P, De Vicente G, et al. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene[J]. Sedimentary Geology, 2000, 135(1/2/3/4): 117-135.
    [147] Neuendorf K K E, Mehl J P, Jackson A. Glossary of geology[M]. 5th ed. Alexandria: American Geological Institute, 2005.
    [148] Campbell C V. Lamina, laminaset, bed and bedset[J]. Sedimentology, 1967, 8(1): 7-26.
    [149] 刘庆,曾翔,王学军,等. 东营凹陷沙河街组沙三下—沙四上亚段泥页岩岩相与沉积环境的响应关系[J]. 海洋地质与第四纪地质,2017,37(3):147-156.

    Liu Qing, Zeng Xiang, Wang Xuejun, et al. Lithofacies of mudstone and shale deposits of the Es 3z-Es 4s Formation in Dongying Sag and their depositional environment[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 147-156.
    [150] 刘姝君,操应长,梁超. 渤海湾盆地东营凹陷古近系细粒沉积岩特征及沉积环境[J]. 古地理学报,2019,21(3):479-489.

    Liu Shujun, Cao Yingchang, Liang Chao. Lithologic characteristics and sedimentary environment of fine-grained sedimentary rocks of the Paleogene in Dongying Sag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2019, 21(3): 479-489.
    [151] 邓远,陈世悦,蒲秀刚,等. 渤海湾盆地沧东凹陷孔店组二段细粒沉积岩形成机理与环境演化[J]. 石油与天然气地质,2020,41(4):811-823,890.

    Deng Yuan, Chen Shiyue, Pu Xiugang, et al. Formation mechanism and environmental evolution of fine-grained sedimentary rocks from the Second member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2020, 41(4): 811-823, 890.
    [152] 周立宏,韩国猛,马建英,等. 歧口凹陷西南缘沙河街组一段下亚段古环境特征与沉积模式[J]. 石油学报,2020,41(8):903-917.

    Zhou Lihong, Han Guomeng, Ma Jianying, et al. Palaeoenvironment characteristics and sedimentary model of the lower submember of member 1 of Shahejie Formation in the southwestern margin of Qikou Sag[J]. Acta Petrolei Sinica, 2020, 41(8): 903-917.
    [153] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
    [154] 滕建彬,刘惠民,邱隆伟,等. 东营凹陷古近系湖相细粒混积岩沉积成岩特征[J]. 地球科学,2020,45(10):3808-3826.

    Teng Jianbin, Liu Huimin, Qiu Longwei, et al. Sedimentary and diagenetic characteristics of lacustrine fine-grained hybrid rock in Paleogene formation in Dongying Sag[J]. Earth Science, 2020, 45(10): 3808-3826.
    [155] Boles J R, Franks S J. Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 49(1): 55-70.
    [156] Thyberg B, Jahren J, Winje T, et al. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals[J]. Marine and Petroleum Geology, 2010, 27(8): 1752-1764.
    [157] Metwally Y M, Chesnokov E M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale[J]. Applied Clay Science, 2012, 55: 138-150.
    [158] 王小军,宋永,郭旭光,等. 陆相咸化湖盆细粒沉积岩分类及其石油地质意义[J]. 沉积学报,2023,41(1):303-317.

    Wang Xiaojun, Song Yong, Guo Xuguang, et al. Classification of fine-grained sedimentary rocks in saline lacustrine basins and its petroleum geological significance[J]. Acta Sedimentologica Sinica,2023,41(1):303-317.
    [159] 张顺,陈世悦,鄢继华,等. 东营凹陷西部沙三下亚段—沙四上亚段泥页岩岩相及储层特征[J]. 天然气地球科学,2015,26(2):320-332.

    Zhang Shun, Chen Shiyue, Yan Jihua, et al. Characteristics of shale lithofacies and reservoir space in the 3rd and 4th members of Shahejie Formation, the west of Dongying Sag[J]. Natural Gas Geoscience, 2015, 26(2): 320-332.
    [160] 杜学斌,刘晓峰,陆永潮,等. 陆相细粒混合沉积分类、特征及发育模式:以东营凹陷为例[J]. 石油学报,2020,41(11):1324-1333.

    Du Xuebin, Liu Xiaofeng, Lu Yongchao, et al. Classification, characteristics and development models of continental fine-grained mixed sedimentation: A case study of Dongying Sag[J]. Acta Petrolei Sinica, 2020, 41(11): 1324-1333.
    [161] 王岚,曾雯婷,夏晓敏,等. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学,2019,30(8):1125-1133.

    Wang Lan, Zeng Wenting, Xia Xiaomin, et al. Study on lithofacies types and sedimentary environment of black shale of Qingshankou Formation in Qijia-Gulong Depression, Songliao Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1125-1133.
    [162] 柳波,孙嘉慧,张永清,等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发,2021,48(3):521-535.

    Liu Bo, Sun Jiahui, Zhang Yongqing, et al. Reservoir space and enrichment model of shale oil in the First member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535.
    [163] 耳闯,罗安湘,赵靖舟,等. 鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征[J]. 地学前缘,2016,23(2):108-117.

    Chuang Er, Luo Anxiang, Zhao Jingzhou, et al. Lithofacies features of organic-rich shale of the Triassic Yanchang Formation in Huachi aera, Ordos Basin[J]. Earth Science Frontiers, 2016, 23(2): 108-117.
    [164] 范柏江,梅启亮,王小军,等. 泥岩与页岩地化特征对比:以鄂尔多斯盆地安塞地区延长组7段为例[J]. 石油与天然气地质,2020,41(6):1119-1128.

    Fan Bojiang, Mei Qiliang, Wang Xiaojun, et al. Geochemical comparison of mudstone and shale: A case study of the 7th member of Yanchang Formation in Ansai area, Ordos Basin[J]. Oil & Gas Geology, 2020, 41(6): 1119-1128.
    [165] 赵文智,朱如凯,胡素云,等. 陆相富有机质页岩与泥岩的成藏差异及其在页岩油评价中的意义[J]. 石油勘探与开发,2020,47(6):1079-1089.

    Zhao Wenzhi, Zhu Rukai, Hu Suyun, et al. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation[J]. Petroleum Exploration and Development, 2020, 47(6): 1079-1089.
    [166] 刘群,袁选俊,林森虎,等. 鄂尔多斯盆地延长组湖相黏土岩分类和沉积环境探讨[J]. 沉积学报,2014,32(6):1016-1025.

    Liu Qun, Yuan Xuanjun, Lin Senhu, et al. The classification of lacustrine mudrock and research on its’ depositional environment[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1016-1025.
    [167] 吴松涛. 松辽盆地青山口组页岩纹层结构与储集性能评价[C]//中国石油学会石油地质专业委员会,中国地质学会石油地质专业委员会,中国石油学会非常规油气专业委员会,等. 第六届非常规油气地质评价暨新能源学术研讨会. 2021:7.

    Wu Songtao. Shale laminar structure and reservoir performance evaluation of Qingshankou Formation in Songliao Basin[C]//Petroleum Geology Committee of China Petroleum Society, Petroleum Geology Committee of China Geological Society, Unconventional Oil and Gas Committee of China Petroleum Society, et al. The 6th symposium on unconventional oil and gas geological evaluation and new energy. 2021: 7.
    [168] 付金华,邓秀芹,楚美娟,等. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义[J]. 沉积学报,2013,31(5):928-938.

    Fu Jinhua, Deng Xiuqin, Chu Meijuan et al. Features of deepwater lithofacies, Yanchang Formation in Ordos Basin and its petroleum significance[J]. Acta Sedimentologica Sinica, 2013, 31(5): 928-938.
    [169] 李森,朱如凯,崔景伟,等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境:以铜川地区瑶页1井为例[J]. 沉积学报,2020, 38(3):554-570.

    Li Sen, Zhu Rukai, Cui Jingwei, et al. Sedimentary characteristics of fine-grained sedimentary rock and paleo-environment of Chang 7 member in the Ordos Basin: A case study from well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570.
    [170] 白静,徐兴友,陈珊,等. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复:以吉页油1井为例[J]. 中国地质,2020,47(1):220-235.

    Bai Jing, Xu Xingyou, Chen Shan, et al. Sedimentary characteristics and paleo-environment restoration of the First member of Qingshankou Formation in Qian’an area, Changling Sag, Songliao Basin: A case study of Jiyeyou 1 well[J]. Geology in China, 2020, 47(1): 220-235.
    [171] Calvert S E, Bustin R M, Ingall E D. Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales[J]. Geochimica et Cosmochimica Acta, 1996, 60(9): 1577-1593.
    [172] Pedersen T F, Calvert S E. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466.
    [173] Selvaraj K, Lin B Z, Lou J Y, et al. Lacustrine sedimentological and geochemical records for the last 170 years of climate and environmental changes in southeastern China[J]. Boreas, 2016, 45(1): 165-179.
    [174] Thill A, Moustier S, Garnier J M, et al. Evolution of particle size and concentration in the Rhône river mixing zone: Influence of salt flocculation[J]. Continental Shelf Research, 2001, 21(18/19): 2127-2140.
    [175] Mulder T, Chapron E. Flood deposits in continental and marine environments: Character and significance[M]//Slatt R M, Zavala C. Sediment transfer from shelf to deep water: Revisiting the delivery system. Tulsa: AAPG Studies in Geology, 2011: 1-30.
    [176] Curran K J, Hill P S, Milligan T G. Fine-grained suspended sediment dynamics in the Eel River flood plume[J]. Continental Shelf Research, 2002, 22(17): 2537-2550.
    [177] 范二平,唐书恒,张成龙,等. 湘西北下古生界黑色页岩扫描电镜孔隙特征[J]. 古地理学报,2014,16(1):133-142.

    Fan Erping, Tang Shuheng, Zhang Chenglong, et al. Scanning-electron-microscopic micropore characteristics of the Lower Paleozoic black shale in northwestern Hunan province[J]. Journal of Palaeogeography, 2014, 16(1): 133-142.
    [178] Wolanski E, Gibbs R J. Flocculation of suspended sediment in the Fly River estuary, Papua New Guinea[J]. Journal of Coastal Research, 1995, 11(3): 754-762.
    [179] Tourney J, Ngwenya B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132.
    [180] Malarkey J, Baas J H, Hope J A, et al. The pervasive role of biological cohesion in bedform development[J]. Nature Communications, 2015, 6: 6257.
    [181] Eisma D. Flocculation and de-flocculation of suspended matter in estuaries[J]. Netherlands Journal of Sea Research, 1986, 20(2/3): 183-199.
    [182] Parsons D R, Schindler R J, Hope J A, et al. The role of biophysical cohesion on subaqueous bed form size[J]. Geophysical Research Letters, 2016, 43(4): 1566-1573.
    [183] Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183.
    [184] Schindler R J, Parsons D R, Ye L P, et al. Sticky stuff: Redefining bedform prediction in modern and ancient environments[J]. Geology, 2015, 43(5): 399-402.
    [185] Kranck K, Smith P C, Milligan T G. Grain-size characteristics of fine-grained unflocculated sediments I: ‘One-round’ distributions[J]. Sedimentology, 1996, 43(3): 589-594.
    [186] Asmolov E S. Numerical simulation of rarefied suspension sedimentation in a container[J]. Fluid Dynamics, 2007, 42(3): 410-418.
    [187] 黄建维. 粘性泥沙在静水中沉降特性的试验研究[J]. 泥沙研究,1981(2):30-41.

    Huang Jianwei. Experimental study of settling properties of cohesive sediment in still water[J]. Journal of Sediment Research, 1981(2): 30-41.
    [188] 谢宗奎. 柴达木台南地区第四系细粒沉积岩相与沉积模式研究[J]. 地学前缘,2009,16(5):245-250.

    Xie Zongkui. Research on the Quaternary fine-fraction lithofacies and sedimentation model in Tainan area, Qaidam Basin[J]. Earth Science Frontiers, 2009, 16(5): 245-250.
    [189] McCave I N. Transport and escape of fine-grained sediment from shelf areas[M]//Swift D J P, Duane D B, Pilkey O H. Shelf sediment transport: Process and pattern. Stroudsburg: Dowden, Hutchinson & Ross, 1972.
    [190] Nittrouer C A, Wright L D. Transport of particles across continental shelves[J]. Reviews of Geophysics, 1994, 32(1): 85-113.
    [191] Arthur M A, Sageman B B. Marine black shales: Depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 499-551.
    [192] 逄勇,颜润润,余钟波,等. 风浪作用下的底泥悬浮沉降及内源释放量研究[J]. 环境科学,2008,29(9):2456-2464.

    Pang Yong, Yan Runrun, Yu Zhongbo, et al. Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu affected by wind[J]. Environmental Science, 2008, 29(9): 2456-2464.
    [193] 胡开明,王水,逄勇. 太湖不同湖区底泥悬浮沉降规律研究及内源释放量估算[J]. 湖泊科学,2014,26(2):191-199.

    Hu Kaiming, Wang Shui, Pang Yong. Suspension-sedimentation of sediment and release amount of internal load in Lake Taihu[J]. Journal of Lake Sciences, 2014, 26(2): 191-199.
    [194] 杨茜,杨庶,宋娴丽,等. 桑沟湾夏、秋季悬浮颗粒物的沉降通量及再悬浮的影响[J]. 海洋学报,2014,36(12):85-90.

    Yang Qian, Yang Shu, Song Xianli, et al. Vertical flux and resuspension of settling particulate matter of Sanggou Bay in summer and autumn[J]. Acta Oceanologica Sinica, 2014, 36(12): 85-90.
    [195] 徐志刚. 长江口细颗粒泥沙的絮凝特性试验[J]. 东海海洋,1984(3):45-50.

    Xu Zhigang. Experiment on flocculation characteristics of fine sediments from the Changjiang estuary[J]. Journal of Marine Sciences, 1984(3): 45-50.
    [196] 陈洪松,邵明安. NaCl对细颗粒泥沙静水絮凝沉降动力学模式的影响[J]. 水利学报,2002(8):63-67.

    Chen Hongsong, Shao Ming’an. Effect of NaCl concentration on dynamic model of fine sediment flocculation and settling in still water[J]. Journal of Hydraulic Engineering, 2002(8): 63-67.
    [197] Heiskanen A S. Contamination of sediment trap fluxes by vertically migrating phototrophic micro-organisms in the coastal Baltic Sea[J]. Marine Ecology Progress, 1995, 122: 45-58.
    [198] 柴朝晖,方红卫,姚仕明,等. 黏性泥沙絮凝—沉降—再悬浮运动过程数学模型研究[J]. 水利学报,2016,47(12):1540-1547.

    Chai Zhaohui, Fang Hongwei, Yao Shiming, et al. A model for the flocculation-settling-resuspension process of cohesive sediment[J]. Journal of Hydraulic Engineering, 2016, 47(12): 1540-1547.
    [199] Yoshida H, Nurtono T, Fukui K. A new method for the control of dilute suspension sedimentation by horizontal movement[J]. Powder Technology, 2005, 150(1): 9-19.
    [200] Allen J R L. Current ripples: Their relation to patterns of water and sediment motion[M]. Amsterdam: North Holland Publishing Company, 1968: 1-433.
    [201] Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
    [202] Schieber J, Southard J B. Bedload transport of mud by floccule ripples: Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486.
    [203] 金成志,董万百,白云风,等. 松辽盆地古龙页岩岩相特征与成因[J]. 大庆石油地质与开发,2020,39(3):35-44.

    Jin Chengzhi, Dong Wanbai, Bai Yunfeng, et al. Lithofacies characteristics and genesis analysis of Gulong shale in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 35-44.
    [204] Tripsanas E K, Piper D J W, Jenner K A, et al. Submarine mass-transport facies: New perspectives on flow processes from cores on the eastern North American margin[J]. Sedimentology, 2008, 55(1): 97-136.
    [205] 潘树新,陈彬滔,刘华清,等. 陆相湖盆深水底流改造砂:沉积特征、成因及其非常规油气勘探意义[J]. 天然气地球科学,2014,25(10):1577-1585.

    Pan Shuxin, Chen Bintao, Liu Huaqing, et al. Deepwater bottom current rework sand (BCRS) in lacustrine basins: Sedimentary characteristics, identification criterion, formation mechanism and its significance for unconventional oil/gas exploration[J]. Natural Gas Geoscience, 2014, 25(10): 1577-1585.
    [206] Sturm M, Matter A. Turbidites and varves in lake brienz (Switzerland): Deposition of clastic detritus by density currents[M]//Matter A, Tucker M E. Modern and ancient lake sediments. Oxford: Blackwell Scientific, 1978.
    [207] Middleton G V, Hampton M A. Sediment gravity flows: Mechanics of flow and deposition[M]//Middleton G V, Bouma A H. Turbidites and deep water sedimentation: Short course lecture notes, Part I. California: Los Angeles, 1973.
    [208] Lowe D R. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research, 1982, 52(1): 279-297.
    [209] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
    [210] 姜在兴,王俊辉,张元福,等. “风—源—盆”三元耦合油气储集体预测方法及其应用:对非主力物源区储集体的解释与预测[J]. 石油学报,2020,41(12):1465-1476.

    Jiang Zaixing, Wang Junhui, Zhang Yuanfu, et al. Ternary “Windfield-Source-Basin” system for the prediction of hydrocarbon reservoirs:interpretation and prediction of hydrocarbon reservoirs deviated from the main provenance areas[J]. Acta Petrolei Sinica, 2020, 41(12): 1465-1476.
    [211] Curran K J, Hill P S, Schell T M, et al. Inferring the mass fraction of floc-deposited mud: Application to fine-grained turbidites[J]. Sedimentology, 2004, 51(5): 927-944.
    [212] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
    [213] Baas J H, Manica R, Puhl E, et al. Processes and products of turbidity currents entering soft muddy substrates[J]. Geology, 2014, 42(5): 371-374.
    [214] Shanmugam G. New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 2013, 40(3): 316-324.
    [215] 李相博,刘化清,潘树新,等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报,2019,37(5):904-921.

    Li Xiangbo, Liu Huaqing, Pan Shuxin, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921.
    [216] 宋博,闫全人,向忠金,等. 广西凭祥盆地深水底流沉积类型及其研究意义[J]. 沉积学报,2016,34(1):58-69.

    Song Bo, Yan Quanren, Xiang Zhongjin, et al. Sedimentary types and significance of deep-water bottom currents deposit in the Pingxiang Basin, Guangxi[J]. Acta Sedimentologica Sinica, 2016, 34(1): 58-69.
    [217] 孙福宁,杨仁超,李冬月. 异重流沉积研究进展[J]. 沉积学报,2016,34(3):452-462.

    Sun Funing, Yang Renchao, Li Dongyue. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462.
    [218] Tran D, Strom K. Suspended clays and silts: Are they independent or dependent fractions when it comes to settling in a turbulent suspension?[J]. Continental Shelf Research, 2017, 138: 81-94.
    [219] Stow D A V, Bowen A J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents[J]. Sedimentology, 1980, 27(1): 31-46.
    [220] Schieber J, Yawar Z. A new twist on mud deposition-mud ripples in experiment and rock record[J]. The Sedimentary Record, 2009, 7(2): 4-8.
    [221] Schieber J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 2016, 331: 162-169.
    [222] Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34.
    [223] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer-Verlag, 2004: 1-976.
    [224] Boggs Jr S. Principles of sedimentology and stratigraphy[M]. 4th ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2006: 1-688.
    [225] Chen C, Mu C L, Zhou K K, et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J]. Marine and Petroleum Geology, 2016, 76: 159-175.
    [226] Shinn E A, Steinen R P, Dill R F, et al. Lime-mud layers in high-energy tidal channels: A record of hurricane deposition[J]. Geology, 1993, 21(7): 603-606.
    [227] Schieber J, Southard J B, Kissling P, et al. Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(11): 1026-1032.
    [228] Tyson R V. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study[J]. Organic Geochemistry, 2001, 32(2): 333-339.
    [229] Ma Y Q, Fan M J, Lu Y C, et al. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: Implications for depositional controls on organic matter accumulation[J]. Marine and Petroleum Geology, 2016, 75: 291-309.
    [230] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
    [231] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
    [232] Chen G, Gang W Z, Liu Y Z, et al. Organic matter enrichment of the Late Triassic Yanchang Formation (Ordos Basin, China) under dysoxic to oxic conditions: Insights from pyrite framboid size distributions[J]. Journal of Asian earth sciences, 2019, 170: 106-117.
    [233] Zou C N, Qiu Z, Wei H Y, et al. Euxinia caused the Late Ordovician extinction: Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 1-11.
    [234] Röhl H J, Schmid-Röhl A, Oschmann W, et al. Erratum to “The Posidonia Shale (Lower Toarcian) of SW-Germany: An oxygen-depleted ecosystem controlled by sea level and palaeoclimate”: [Palaeogeogr., Palaeoclimatol., Palaeocol. 165 (2001) 27⁃52][J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 273-299.
    [235] Zhang W Z, Yang H, Xie L Q, et al. Lake-bottom hydrothermal activities and their influence on high-quality source rock development: A case from Chang 7 source rocks in Ordos Basin[J]. Petroleum Exploration and Development, 2010, 37(4): 424-429.
    [236] Xie S C, Pancost R D, Wang Y B, et al. Cyanobacterial blooms tied to volcanism during the 5-million-year Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.
    [237] Procesi M, Ciotoli G, Mazzini A, et al. Sediment-hosted geothermal systems: Review and first global mapping[J]. Earth-Science Reviews, 2019, 192: 529-544.
    [238] Santillan-Jimenez E, Pace R, Morgan T, et al. Co-processing of hydrothermal liquefaction algal bio-oil and petroleum feedstock to fuel-like hydrocarbons via fluid catalytic cracking[J]. Fuel Processing Technology, 2019, 188: 164-171.
    [239] Langmann B, Zakšek K, Hort M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry and Physics, 2010, 10(8): 3891-3899.
    [240] Lovell C J, Rose C W. Measurement of soil aggregate settling velocities. 1. A modified bottom withdrawal tube method[J]. Australian Journal of Soil Research, 1988, 26(1): 55-71.
    [241] 王倩茹,陶士振,关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学,2020,31(3):417-427.

    Wang Qianru, Tao Shizhen, Guan Ping. Progress in research and exploration & development of shale oil in continental basins in China[J]. Natural Gas Geoscience, 2020, 31(3): 417-427.
    [242] 胡涛,庞雄奇,姜福杰,等. 陆相断陷咸化湖盆有机质差异富集因素探讨:以东濮凹陷古近系沙三段泥页岩为例[J]. 沉积学报,2021,39(1):140-152.

    Hu Tao, Pang Xiongqi, Jiang Fujie, et al. Factors controlling differential enrichment of organic matter in saline lacustrine rift basin: A case study of Third member Shahejie Fm in Dongpu Depression[J]. Acta Sedimentologica Sinica, 2021, 39(1): 140-152.
    [243] Zimmerle W. New aspects on the formation of hydrocarbon source rocks[J]. Geologische Rundschau, 1985, 74(2): 385-416.
    [244] 刘全有,朱东亚,孟庆强,等. 深部流体及有机—无机相互作用下油气形成的基本内涵[J]. 中国科学(D辑):地球科学,2019,49(3):499-520.

    Liu Quanyou, Zhu Dongya, Meng Qingqiang, et al. The scientific connotation of oil and gas formations under deep fluids and organic-inorganic interaction[J]. Science China (Seri. D): Earth Sciences, 2019, 49(3): 499-520.
    [245] Wright V P. Lacustrine carbonates in rift settings: The interaction of volcanic and microbial processes on carbonate deposition[J]. Geological Society, London, Special Publications, 2012, 370(1): 39-47.
    [246] 庞军刚,李赛,杨友运,等. 湖盆深水区细粒沉积成因研究进展:以鄂尔多斯盆地延长组为例[J]. 石油实验地质,2014,36(6):706-711,724.

    Pang Jungang, Li Sai, Yang Youyun, et al. Study progress of origin of fine-grained sedimentary rocks in deep-water area of lacustrine basin: Taking Yangchang Formation in Ordos Basin as an example[J]. Petroleum Geology & Experiment, 2014, 36(6): 706-711, 724.
    [247] 梁超. 含油气细粒沉积岩沉积作用与储层形成机理[D]. 北京:中国地质大学(北京),2015.

    Liang Chao. The sedimentation and reservoir formation mechanism of hydrocarbon-bearing fine-grained sedimentary rocks[D]. Beijing: China University of Geosciences (Beijing), 2015.
    [248] 朱筱敏,钟大康,袁选俊,等. 中国含油气盆地沉积地质学进展[J]. 石油勘探与开发,2016,43(5):820-829.

    Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, et al. Development of sedimentary geology of petroliferous basins in China[J]. Petroleum Exploration and Development, 2016, 43(5): 820-829.
    [249] 赵贤正,蒲秀刚,韩文中,等. 细粒沉积岩性识别新方法与储集层甜点分析:以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油勘探与开发,2017,44(4):492-502.

    Zhao Xianzheng, Pu Xiugang, Han Wenzhong, et al. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2017, 44(4): 492-502.
    [250] 刘可禹,刘畅. “化学—沉积相”分析:一种研究细粒沉积岩的有效方法[J]. 石油与天然气地质,2019,40(3):491-503.

    Liu Keyu, Liu Chang, “Chemo-sedimentary facies” analysis: An effective method to study fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2019, 40(3): 491-503.
    [251] 郭英海,赵迪斐,陈世悦. 细粒沉积物及其古地理研究进展与展望[J]. 古地理学报,2021,23(2):263-283.

    Guo Yinghai, Zhao Difei, Chen Shiyue. Research progress and prospect of fine-grained sediments and palaeogeography[J]. Journal of Palaeogeography, 2021, 23(2): 263-283.
    [252] Slatt R M, Rodriguez N D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 68-84.
    [253] 李圯,刘可禹,蒲秀刚,等. 沧东凹陷孔二段混合细粒沉积岩相特征及形成环境[J]. 地球科学,2020,45(10):3779-3796.

    Li Yi, Liu Keyu, Pu Xiugang, et al. Lithofacies characteristics and formation environments of mixed finegrained sedimentary rocks in Second member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin[J]. Earth Science, 2020, 45(10): 3779-3796.
    [254] Hammes U, Frébourg G. Haynesville and Bossier mudrocks: A facies and sequence stratigraphic investigation, East Texas and Louisiana, USA[J]. Marine and Petroleum Geology, 2012, 31(1): 8-26.
    [255] 李鹏,刘全有,毕赫,等. 火山活动与海侵影响下的典型湖相页岩有机质保存差异分析[J]. 地质学报,2021,95(3):632-642.

    Li Peng, Liu Quanyou, Bi He, et al. Analysis of the difference in organic matter preservation in typical lacustrine shale under the influence of volcanism and transgression[J]. Acta Geologica Sinica, 2021, 95(3): 632-342.
    [256] Bradley W H, Eugster H P. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming[R]. U.S. Geological Survey Professional Paper 496-B, Washington: United States Government Printing Office, 1969: 53.
    [257] Hill P S, Fox J M, Crockett J S, et al. Sediment delivery to the seabed on continental margins[M]//Nittrouer C A, Austin J A, Field M E, et al. Continental margin sedimentation: From sediment transport to sequence stratigraphy. Malden: Blackwell Publishing Ltd., 2007.
    [258] Snedden J W, Nummedal D. Origin and geometry of storm-deposited sand beds in modern sediments of the texas continental shelf[M]//Swift D J P, Oertel G F, Tillman R W, et al. Shelf sand and sandstone bodies: Geometry, facies and sequence stratigraphy. Oxford: Blackwell Publishing Ltd., 1991.
    [259] Eugster H P, Surdam R C. Depositional environment of the Green River Formation of wyoming: A preliminary report[J]. Geological Society of America Bulletin, 1973, 84(4): 1115-1120.
    [260] Desborough G A. A biogenic-chemical stratified lake model for the origin of oil shale of the Green River Formation: An alternative to the playa-lake model[J]. Geological Society of America Bulletin, 1978, 89(7): 961-971.
    [261] 柳蓉,张坤,刘招君,等. 中国油页岩富集与地质事件研究[J]. 沉积学报,2021,39(1):10-28.

    Liu Rong, Zhang Kun, Liu Zhaojun, et al. Oil shale mineralization and geological events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28.
    [262] 李友川. 中国近海湖相优质烃源岩形成的主要控制因素[J]. 中国海上油气,2015,27(3):1-9.

    Li Youchuan. Main controlling factors for the development of high quality lacustrine hydrocarbon source rocks in offshore China[J]. China Offshore Oil and Gas, 2015, 27(3): 1-9.
    [263] 杨仁超,尹伟,樊爱萍,等. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义[J]. 古地理学报,2017,19(5):791-806.

    Yang Renchao, Yin Wei, Fan Aiping, et al. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin[J]. Journal of Palaeogeography, 2017, 19(5): 791-806.
    [264] Shiah F K, Liu K K, Kao S J, et al. The coupling of bacterial production and hydrography in the southern East China Sea: Spatial patterns in spring and fall[J]. Continental Shelf Research, 2000, 20(4/5): 459-477.
    [265] Fishman N, Guthrie J, Honarpour M. The stratigraphic distribution of hydrocarbon storage and its effect on producible hydrocarbons in the Eagle Ford Formation, South Texas[C]//Proceedings of the unconventional resources technology conference. Denver: SEG, 2013.
    [266] Hemmesch N T, Harris N B, Mnich C A, et al. A sequence-stratigraphic framework for the Upper Devonian Woodford Shale, Permian Basin, west Texas[J]. AAPG Bulletin, 2014, 98(1): 23-47.
    [267] Houseknecht D W, Rouse W A, Paxton S T, et al. Upper Devonian⁃Mississippian stratigraphic framework of the Arkoma Basin and distribution of potential source-rock facies in the Woodford⁃Chattanooga and Fayetteville⁃Caney shale-gas systems[J]. AAPG Bulletin, 2014, 98(9): 1739-1759.
    [268] 张凯棣. 东海陆架近代泥质沉积源汇过程的矿物学响应[D]. 青岛:中国科学院大学(中国科学院海洋研究所),2017.

    Zhang Kaidi. Mineralogical response of source to sink processes in modern muddy sediments of the East China Sea continental shelf[D]. Qingdao: Institute of Oceanology, Chinese Academy of Science, 2017.
    [269] Breyer J A, Denne R, Kosanke T, et al. Facies, fractures, pressure and production in the eagle ford shale (Cretaceous) between the Maverick Basin and the San Marcos Arch, Texas, USA[C]//Proceedings of the unconventional resources technology conference. Denver: SEG, 2013.
    [270] Kelts K, Talbot M. Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions[M]//Tilzer M M, Serruya C. Large lakes: Ecological structure and function. Berlin Heidelberg: Springer, 1990.
    [271] 蒋宜勤,柳益群,杨召,等. 准噶尔盆地吉木萨尔凹陷凝灰岩型致密油特征与成因[J]. 石油勘探与开发,2015,42(6):741-749.

    Jiang Yiqin, Liu Yiqun, Yang Zhao, et al. Characteristics and origin of tuff-type tight oil in Jimusar Depression, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6): 741-749.
    [272] Soulsby R L, Manning A J, Spearman J, et al. Settling velocity and mass settling flux of flocculated estuarine sediments[J]. Marine Geology, 2013, 339: 1-12.
    [273] Zhang Y, Ren J, Zhang W Y. Flocculation under the control of shear, concentration and stratification during tidal cycles[J]. Journal of Hydrology, 2020, 586: 124908.
    [274] 钱宁,万兆慧. 泥沙运动力学[J]. 北京:科学出版社,2003.

    Qian Ning, Wan Zhaohui. Mechanics of sediment transport[J]. Beijing: Science Press, 2003.
    [275] Wheatcroft R A, Ilhan I, Pink F X. Particle bioturbation in Massachusetts Bay: Preliminary results using a new deliberate tracer technique[J]. Journal of Marine Research, 1994, 52(6): 1129-1150.
    [276] Amoudry L O, Souza A J. Deterministic coastal morphological and sediment transport modeling: A review and discussion[J]. Reviews of Geophysics, 2011, 49(2): RG2002.
    [277] Zhang W Y, Harff J, Schneider R, et al. Holocene morphogenesis at the southern Baltic Sea: Simulation of multi-scale processes and their interactions for the Darss⁃Zingst peninsula[J]. Journal of Marine Systems, 2014, 129: 4-18.
    [278] French J, Payo A, Murray B, et al. Appropriate complexity for the prediction of coastal and estuarine geomorphic behaviour at decadal to centennial scales[J]. Geomorphology, 2016, 256: 3-16.
    [279] Zhang W Y. Sediment transport models[M]//Harff J, Meschede M, Petersen S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 764-767.
    [280] Diaz M, Grasso F, Le Hir P, et al. Modeling mud and sand transfers between a macrotidal estuary and the continental shelf: Influence of the sediment transport parameterization[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015643.
    [281] Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom[J]. Journal of Geophysical Research: Oceans, 1979, 84(C4): 1797-1808.
  • [1] 田纳新, 龚承林, 吴高奎, 朱一杰, 李军.  转换陆缘海底扇的沉积特征与沉积模式 . 沉积学报, 2023, 41(6): 1798-1809. doi: 10.14027/j.issn.1000-0550.2023.075
    [2] 张佩, 钱其豪, 姜明忠, 陈续琴, 王爱明, 柴新, 宋祖勇, 冯文杰.  干旱湖盆边缘浅水三角洲沉积特征与沉积模式 . 沉积学报, 2023, 41(3): 839-854. doi: 10.14027/j.issn.1000-0550.2021.135
    [3] 单祥.  准噶尔盆地阜康凹陷深层二叠系上乌尔禾组致密砂砾岩储层特征、成因及勘探方向 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.097
    [4] 黄迟强, 陈世悦, 赫庆庆, 李强, 马培领, 韩长伟, 陈湘飞, 刘军.  山东杨庄地区寒武系风暴沉积特征及沉积模式 . 沉积学报, 2022, 40(4): 1073-1082. doi: 10.14027/j.issn.1000-0550.2021.022
    [5] 余烨, 蔡灵慧, 尹太举, 张兴强, 许泓, 黄俨然, 曹涛涛.  湖相重力流沉积特征及沉积模式 . 沉积学报, 2022, 40(1): 34-46. doi: 10.14027/j.issn.1000-0550.2021.057
    [6] 卢斌, 邱振, 周川闽, 董大忠, 梁萍萍.  泥页岩沉积物理模拟研究进展与发展趋势 . 沉积学报, 2021, 39(4): 781-793. doi: 10.14027/j.issn.1000-0550.2021.016
    [7] 施振生, 邱振.  海相细粒沉积层理类型及其油气勘探开发意义 . 沉积学报, 2021, 39(1): 181-196. doi: 10.14027/j.issn.1000-0550.2020.097
    [8] 龚大兴, 郭佳, 罗俊峰, 岳相元, 周雄, 周家云.  川西马尔康—金川地区晚三叠世松潘甘孜残留洋盆复理石建造沉积特征与沉积模式 . 沉积学报, 2019, 37(6): 1210-1223. doi: 10.14027/j.issn.1000-0550.2019.031
    [9] 孙福宁, 杨仁超, 樊爱萍, 尤靖茜.  灵山岛下白垩统软沉积物变形构造类型划分及其地质意义 . 沉积学报, 2018, 36(6): 1105-1118. doi: 10.14027/j.issn.1000-0550.2018.085
    [10] 孙雨, 向尧, 马世忠, 李伟瑞, 贺子恩, 齐殿军.  辽河盆地西部凹陷曙二区大凌河油层湖底扇沉积特征与沉积模式探讨 . 沉积学报, 2016, 34(4): 725-734. doi: 10.14027/j.cnki.cjxb.2016.04.013
    [11] 冯荣昌, 吴因业, 杨光, 杨家静, 刘敏, 张天舒, 岳婷.  川中大安寨段风暴沉积特征及分布模式 . 沉积学报, 2015, 33(5): 909-918. doi: 10.14027/j.cnki.cjxb.2015.05.007
    [12] 徐政语, 蒋恕, 熊绍云, 梁兴, 王高成, 郭燕玲, 何勇, 饶大骞.  扬子陆块下古生界页岩发育特征与沉积模式 . 沉积学报, 2015, 33(1): 21-35. doi: 10.14027/j.cnki.cjxb.2015.01.003
    [13] 孙立春, 汪洪强, 何娟, 王龙, 郭丽娜, 倪军娥.  尼日利亚海上区块近海底深水水道体系地震响应特征与沉积模式 . 沉积学报, 2014, 32(6): 1140-1152.
    [14] 准噶尔盆地西北缘二叠系云质碎屑岩地球化学特征及成因机理研究 . 沉积学报, 2013, 31(05): 898-906.
    [15] 袁 静.  山东惠民凹陷古近系风暴岩沉积特征及沉积模式 . 沉积学报, 2006, 24(1): 43-49.
    [16] 江苏中部淤泥质潮滩潮汐层理成因机理和风暴沉积判别标志 . 沉积学报, 2006, 24(4): 562-569.
    [17] 徐德兵, 白志达, 张秉良, 洪汉净.  吉林龙岗火山群火山碎屑基浪堆积特征与成因机理 . 沉积学报, 2005, 23(1): 60-66.
    [18] 辛仁臣, 蔡希源, 王英民.  松辽坳陷深水湖盆层序界面特征及低位域沉积模式 . 沉积学报, 2004, 22(3): 387-392.
    [19] 董冬.  断陷湖盆陡坡带碎屑流沉积单元的沉积序列和储集特征——以东营凹陷永安地区为例 . 沉积学报, 1999, 17(4): 566-571.
    [20] 朱筱敏, 信荃麟, 张晋仁.  断陷湖盆滩坝储集体沉积特征及沉积模式 . 沉积学报, 1994, 12(2): 20-28.
  • 加载中
图(9) / 表 (1)
计量
  • 文章访问数:  847
  • HTML全文浏览量:  218
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-17
  • 修回日期:  2021-09-05
  • 录用日期:  2021-09-28
  • 网络出版日期:  2021-09-28
  • 刊出日期:  2023-04-10

目录

    陆相湖盆细粒沉积岩特征及形成机理研究进展

    doi: 10.14027/j.issn.1000-0550.2021.117
      基金项目:

      国家自然科学基金项目 41872158

      黑龙江省自然科学基金项目 YQ2019D002

      作者简介:

      王鑫锐,女,1995年出生,博士研究生,沉积与储层地质学,E-mail: wangxr_2017@163.com

      通讯作者: 孙雨,男,教授,E-mail: sunyu_hc@163.com
    • 中图分类号: P581

    摘要: 细粒沉积岩是最为常见的岩石类型之一,蕴藏着丰富的油气资源,伴随着非常规油气的发展,有关细粒沉积的研究逐渐成为了热点,但由于陆相细粒沉积岩岩石类型丰富,形成机制复杂,缺乏统一科学的分类方案。对目前常见的陆相细粒沉积岩分类方法进行总结,并依据岩石组分将其分为混合型和碎屑型细粒沉积岩两种,并指明其常见的岩石类型特征;梳理与其相关的成因动力学物理模拟实验成果,其中有关泥级颗粒的搬运—沉积机理已经取得了重大突破。而细粒沉积模式方面,可以分为有机质富集模式,岩相模式以及成因模式,三个模式的内涵和所要解决的地质问题各不相同。在此基础上,提出加强细粒沉积岩不同矿物成分微观结构特征、沉积—成岩机理认识,将岩石微观成因分类方案与宏观成因模式有效融合是未来细粒沉积研究的关键。

    English Abstract

    王鑫锐, 孙雨, 刘如昊, 李钊. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117
    引用本文: 王鑫锐, 孙雨, 刘如昊, 李钊. 陆相湖盆细粒沉积岩特征及形成机理研究进展[J]. 沉积学报, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117
    WANG XinRui, SUN Yu, LIU RuHao, LI Zhao. Research Progress into Fine-grained Sedimentary Rock Characteristics and Formation in a Continental Lake Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117
    Citation: WANG XinRui, SUN Yu, LIU RuHao, LI Zhao. Research Progress into Fine-grained Sedimentary Rock Characteristics and Formation in a Continental Lake Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 349-377. doi: 10.14027/j.issn.1000-0550.2021.117
      • 细粒沉积岩(fine-grained sedimentary rocks)约占地层记录的三分之二,是最为常见的岩石类型之一[14]。与早期印象中简单均一的细粒“泥岩”不同,该类岩石沉积结构及矿物组成十分复杂[1,57],且由于粒度小,观测难度大,围绕细粒沉积岩的争论从未停止。早在细粒沉积岩概念提出之时,便针对粉砂级颗粒是否属于细粒沉积岩范畴产生了一定争议,以Krumbein[6]为典型代表的部分学者通过颗粒在水体中分散机制及沉降状态将粉砂级颗粒纳入细粒沉积岩的范畴,并将下限定为0.1 mm[6,89],而Lewan[9]则通过岩石中不同矿物的微观特征及体积/重量百分比,认为只有粒径小于0.005 mm的泥级颗粒方能参与细粒沉积岩的构成。目前,国内外学者就细粒沉积岩的概念已达成共识,将由粒径小于0.062 5 mm的泥级和粉砂级黏土矿物、陆源碎屑、碳酸盐、有机质等不同类型沉积物颗粒构成,且含量大于50%的岩石称为细粒沉积岩[2,1013]。然而不难看出,细粒沉积岩的概念涵盖了泥级和粉砂级两个截然不同的粒度等级[1417],且碳酸盐、火山碎屑等特殊成分以及成岩作用改造特征的难以辨认[18]为细粒沉积岩的分类定名研究带来了新的问题。细粒沉积岩[1920]、粉砂岩[2122]、泥岩[2328]、黏土岩[29]、泥质岩[30]、泥状岩[6,10],甚至涵盖一定沉积结构、石油行业特征的泥页岩[31]、页岩[21,3242]、油泥/页岩[4344]等都用来描述细粒沉积岩,不仅在国内,国际上仅“泥岩”一词就存在shale、clay、mudrock、mudstone、claystone、lutite、pelite、argillite等截然不同的表达方式[13,4552]。混乱的定名在生产中引起了一些麻烦,如目前非常规油气开采的对象中,涵盖了大量不同矿物成分、不同页理发育程度的岩石类型[53],如粉砂质页岩,灰质泥岩等。而上述沉积结构、成分特征不同的细粒沉积岩在油气富集规律及脆性、各向异性等工程特征上存在较大差异[5455],对非常规油气开采尤其是水平井部署及压裂造成了极大的影响。

        随着美国Barnett页岩、Marcellus页岩以及Wood ford页岩的顺利开采,细粒沉积岩的分类描述以及成因分析逐渐成为研究页岩油气富集规律的主要手段[5661]。国外学者主要通过野外露头以及岩心薄片观察、化验分析[5759]、测井[60]、地震[5859,61]等多种手段,选取诸如颜色、矿物成分、沉积结构、层理类型、生物化石等特征对细粒沉积岩进行分类[10,1213,46,56,6268]。如Loucks et al.[56]在Fort Worth盆地Barnett层系中利用矿物成分、沉积结构以及生物化石类型构建分类标准;McKee et al.[62]利用沉积结构中的层理规模、力学特征进行分类,但这种基于某种或某几种特征的分类方法更加侧重于原始沉积构造以及生物活动轨迹的研究,以重建细粒沉积古环境[56,6364]。此外,部分学者采用三端元图解的结构分类法对细粒沉积岩进行分类,并用“mudstone”作为所有细粒沉积岩的分类主名,但同样在术语上造成了混淆。随后,Lazer et al.[12]在上述基于粒度的结构分类标准之上,增加岩石成分(硅质、钙质、泥质等)及层理特征(块状、层状等)等术语进行综合定名,并利用其生物扰动程度、化石类型、有机质丰度、成岩特征和颜色对其名称进行修饰[10,12,46]。在针对细粒物质沉积来源的复杂性上[6566],Milliken[13]根据沉积及成岩特征将盆内和盆外颗粒进行区分,其中盆内碎屑多为生物成因,而盆外碎屑来源则更加丰富,据此建立了Tarl/Varl(盆外的陆源碎屑/火山碎屑组分达75%以上),Carl(盆外碎屑小于75%,盆内碎屑中生物钙质含量>生物硅质含量)和Sarl(盆外碎屑小于75%,盆内碎屑中生物钙质含量小于生物硅质含量)的三端元岩石分类方案。该分类方案有效地区分了不同矿物的沉积、成岩特征,对恢复细粒沉积岩形成过程以及后期成岩改造具有重大的推进作用,但由于矿物微观特征识别以及成因解释难度较大,该分类方案一直存在争议[6768]

        整体而言,国外学者所讨论的细粒沉积岩分类及模式均集中在海相环境,而我国目前开发的非常规含油气层系中,除四川、滇黔桂、塔里木地区的海相及海陆过渡相体系外,渤海湾盆地古近系,松辽盆地白垩系,鄂尔多斯盆地上三叠统,准噶尔盆地上二叠统、侏罗统等均属于陆相细粒沉积体系[6972]图1)。与分布面积大,厚度稳定,成分相对单一的海相细粒沉积相比,陆相湖盆由于距离物源较近且水体深度较小,受环境、气候因素影响更加显著[7273],陆相细粒沉积发育规模更小,非均质性更强;并且,由于岩石矿物成分、结构、组合方式在成因上的复杂性和多解性[65,74],国外的海相细粒沉积岩分类方案在陆相湖盆中变得不再适用。针对国内复杂的陆相湖盆细粒沉积体系,国内外学者进行了不懈的努力,主流采用兼顾成因以及特征描述的“三端元”岩相学分类方法对我国独特的陆相细粒沉积岩进行划分及定名。岩相是在一定沉积环境中形成的岩石类型及岩石组合[7577],任何可以反映沉积环境变化的参数都可以作为岩相的划分标准[78]。依据矿物成分、沉积构造、有机质丰度进行岩相划分时[12],矿物成分是确定细粒沉积岩岩石类型的关键,通常以能够代表其物质来源的陆源碎屑矿物、黏土矿物和盆内自生的碳酸盐矿物作为三端元共同进行岩石类型的划分[18,74,7982]。但由于同成分不同成因颗粒、晶体组合识别困难[10,1213,17,46,49],以及有机质含量精细测算的实验条件限制[83],导致现场简陋条件细粒沉积岩分类工作难以进行;其次,不同沉积盆地中细粒沉积岩的物质来源、沉积机制各异,使得各盆地的分类方案被限制在了某个地区之内难以向外推广,如松辽盆地青山口组沉积时期,由于陆源供给充足,盐度低,以石英、斜长石为主,碳酸盐矿物含量低[39],是否选择三端元分类方案仍然需要进一步讨论;而在使用三端元综合分类方案的盆地中,端元的选择同样具有差异性,如张少敏等[84]针对吉木萨尔凹陷芦草沟组火山活动频繁的特征,依据成因—成分将陆源碎屑、火山碎屑和碳酸盐替换作为细粒沉积岩岩石类型三角形图解的三个端元。但由于火山作用形成的火山碎屑矿物组合同样复杂多变,目前有关火山—热液是否应该参与细粒沉积岩的分类定名仍然存在一定争议[8588];此外,由于具体要解决科学问题的差异[11,8991],不同学者在分类中往往添加一些特殊的修饰词,如陈世悦等[91]依据混合沉积机制将东营凹陷细粒沉积岩分为均匀混合/纹层叠置混合/不均匀团块混合长英质/黏土质/碳酸盐质细粒混积岩。目前的分类方法均具有一定的地区性和局限性,至今尚未形成统一的,能够应用于石油、地质等多领域研究的细粒沉积岩分类方案[1213,46]

        图  1  中国富有机质页岩平面分布及构造背景[73]

        Figure 1.  Plane distribution and tectonic setting of organic⁃rich shale in China[73]

        缺乏统一的细粒沉积岩分类方案同样为细粒沉积模式的构建带来了困难,不同学者建立模式想要解决的问题不同,面对盆地的地质条件不同,沉积模式的建立相较于细粒沉积岩分类方案更加的混乱,“逐盆逐建,逐次逐建”是细粒沉积模式构建的常态。如Plint et al.[92]基于水槽实验及原位海洋学检测,为明确陆架淤泥迁移沉降方式构建了泥浆沉积中心的形成动力学模型。袁选俊等[93]为寻找富有机质页岩的富集规律,构建了“湖侵—水体分层”的有机质聚集机理模型。Frébourg et al.[94]基于对野外露头的高分辨率图像采集,为确定火山活动与沉积物生产力的相互作用关系,从细粒沉积物生产、运输、富集的角度构建了美国德克萨斯州Eagle Ford/Boquillas层系的细粒沉积模式。针对上述情况,本文系统地总结、归纳了近年来陆相盆地细粒沉积分类方案,明确了我国陆相细粒沉积岩中常见的岩石类型、特征及形成动力学机制,理清了常见细粒沉积模式的建立原则及适用范围,并指出了目前存在的问题和未来发展方向,以期丰富陆相细粒沉积岩石学基础理论,指导陆相非常规油气资源的评价与优选。

      • 我国陆相细粒沉积岩具有岩石类型复杂、结构样式多样、空间分布非均质性强的特征[7071,95],因此在进行陆相湖盆细粒沉积岩研究时,分类标准及命名方案众多:从有机成因以及石油开采的角度[9697],中国陆相细粒沉积岩可以分为腐泥型、腐殖腐泥型和腐泥腐殖型[9798]细粒沉积岩;从沉积环境角度,可以划分为湖泊和湖泊—沼泽成因[99101]细粒沉积岩;从水体性质角度,可以划分为淡水细粒沉积岩和咸水—半咸水[95]细粒沉积岩。由上述分类可知,细粒沉积岩的有机质特征及所处盆地的构造样式、沉积环境是细粒沉积岩初步分类的重要依据,目前广泛应用的分类方法往往也基于上述标准,即结合细粒沉积岩成分、结构、构造等特征,采用岩相学分类方法[7578],既可以有效地反映岩石的沉积环境,沉积水动力变化,也可以兼顾岩石成分、结构、构造等特征。

        伴随着不同盆地细粒沉积岩岩石成分及微观组构特征研究的不断深入,发现盆地水体咸化程度不同,细粒沉积岩岩石学特征差异极大[102106]。以其中典型的渤海湾盆地和松辽盆地为例,渤海湾盆地沙河街组沉积时期是典型的咸化湖盆,发育的细粒沉积岩本质上是一种混积岩[107110],是陆源输入的机械沉积作用和(生物)化学沉积作用共同作用的结果,由碳酸盐矿物,石英、长石等长英质矿物,和少量黏土矿物组成[79]图2a),其中碳酸盐组分和陆源碎屑组分杂乱混合在一起或以纹层的形式交替叠置[31,82,114115]。而松辽盆地青山口组沉积时期形成的细粒沉积岩在岩石成分上碳酸盐组分明显较低,以石英、长石等长英质组分和黏土组分为主[39,111113]图2b),笔者通过对松辽盆地南部长岭凹陷青山口组页岩层系中碳酸盐组分高值样品点进行观察发现,碳酸盐组分通常以方解石、白云石胶结物的形式呈薄膜状或粒状镶嵌充填在石英、长石颗粒边缘。此外也有部分学者认为松辽盆地青山口组沉积时期碳酸盐岩异常高值带为介形虫等生物灭绝形成[116]。总体来说,淡水湖盆主要发生机械沉积作用,以陆源碎屑成分为主,而咸化湖盆沉积作用更为复杂,除机械沉积外,化学及生物沉积作用产生的盆内粒屑同样参与细粒沉积岩的构成。故笔者依据其岩石学特征将陆相湖盆细粒沉积岩进一步细分为混合型细粒沉积岩(咸化—半咸化湖盆)和碎屑型细粒沉积岩(淡水湖盆)两大类,分别对二者的分类方案进行总结,以便更好地认识不同类型细粒沉积体系中岩石成分、结构、构造等特征。

        图  2  混合型细粒沉积岩以及碎屑型细粒沉积岩岩石学特征[39,76,111113]

        Figure 2.  Petrological characteristics of mixed and clastic fine⁃grained sedimentary rocks[39,76,111113]

      • 在咸化—半咸化湖盆中[117118],当陆源供应、盆地内生物化学反应与火山活动达到一定平衡时[119],长英质碎屑组分、火山碎屑组分以及碳酸盐岩组分会共存并形成一个连续的统一体[120],此类由于混合沉积作用形成的岩石可称作混合型细粒沉积岩。“混合沉积”的概念最早由Mount[121]在1984年提出,90年代引入中国后取得了一系列的成果[101103,122124]。混合沉积形成的岩石类型丰富,陆源碎屑组分与火山碎屑、碳酸盐等其他组分在微观结构上混合构成的狭义混积岩[123124],和碎屑岩与碳酸盐岩、火山岩等其他同期异相岩体在空间上横向相变,纵向互层或无规律零星交叉、夹层等层系上的混合形成的宏观广义混积岩[103]均属于混合沉积岩的范畴[101102]。我国渤海湾盆地东营凹陷、济阳凹陷、沧东凹陷、歧口凹陷的沙河街组、孔店组等[78,125],四川盆地下侏罗统[78,90,126128]、龙马溪组[129130],准噶尔盆地吉木萨尔凹陷芦草沟组[131132],柴达木盆地克鲁克组、干柴沟组[133135],三塘湖盆地条湖组、芦草沟组等[136],广泛发育混合细粒沉积岩。

        最初进行混合型细粒沉积岩分类时,仅简单地根据其岩石学特征,页理发育程度以及有机质丰度将其简单命名为页岩、泥岩、油页岩等,但由于此类方案过于简单,单一岩石类型中往往包含大量信息而被快速摒弃。目前基于岩相对细粒沉积岩进行分类和定名已经在国内外形成共识[137140],岩相由于包含能够反映沉积环境变化的岩石学以及构造特征参数,可以有效地帮助我们恢复不同盆地的沉积过程以及地质条件。目前常用的岩相分类指标主要包括细粒沉积岩的矿物成分、沉积构造以及有机质丰度等。与前两者具有一定的通用性不同,在非常规油气勘探开发领域的研究学者更倾向于将能够表征细粒沉积岩生烃能力及含油气性的有机质纳入评价指标中来[7,125,140142],考虑到不同岩相类型细粒沉积岩有机质含量及赋存状态不同,采用总有机碳含量(TOC)作为评价其有机质富集程度的参数,我国通常以2%和4%为界,将混合型细粒沉积岩划分为富有机质、中有机质和贫有机质三种[2325]。而沉积构造参数的使用上,成层性是细粒沉积岩最显著的特征之一[65],但目前有关层理的研究多集中在层理的成分、形态、连续性以及组合特征上[19,109,143],针对层理规模的划分标准少有笔墨,本文综合不同学者进行岩相分类时采用的层理规模参数对层理规模以及名称进行了总结。与常规岩石的宏观块状(>1 m)以及层状构造(根据规模进一步细分0.5~1 m为厚层、0.1~0.5 m为中层、0.01~0.1 m为薄层、小于0.01 m为页状层)不同,细粒沉积岩的“纹层”更倾向于是一个微观结构上的成因概念,宏观为块状构造的岩石内部同样可以存在纹层结构[94],细粒沉积岩中使用的“层理”规模由小到大可以分为纹层状(小于1 mm,主要集中在0.01~0.5 mm)、层状(1 mm~1 m)以及块状构造(内部均一,部分发育负荷构造、液化砂脉、生物扰动等软沉积变形构造)[19,82,144148]。然而,无论采取上述何种特征进行修饰,在岩相分类中,细粒沉积岩的矿物成分一直是其中的关键[140,149152]。通常采用三端元的岩石学分类方法,选取长英质矿物、碳酸盐矿物和黏土矿物作为三个端元确定细粒沉积岩的岩石主名,如常见的黏土岩、石灰岩/白云岩、混合沉积岩等[90,131132]。最终形成以有机质含量+沉积构造+岩石学主名的混合型细粒沉积岩岩相综合命名方法[149152]。此类基于物质成分及特征描述的分类方法由于具有易于观察描述,现场操作简便的优点[51],目前大多采用此种分类手段。

        然而,基于矿物成分的岩石学特征分类方案无可避免地存在一个问题,即相同的成分往往代表着不同的物质来源以及成因过程[65,153]。随着显微观测手段的不断进步,多数学者通过对矿物特征(粒度、晶体结构等)以及赋存状态(颗粒/胶结物)的显微特征研究[127,154156],以及对矿物在沉积及成岩过程中的演变过程进行了实验室模拟[157],在一定程度上恢复了细粒沉积岩中不同矿物的来源及形成机制。由此,基于矿物来源及成因的细粒沉积分类方法开始逐渐被大众所接受。如王小军等[158]基于颗粒粒度、成分、结构,选取粒屑(代表砂屑、生屑等生物化学沉积作用的碳酸盐组分),泥(碳酸盐泥和陆源碎屑泥),粉砂(石英、长石岩屑等机械沉积的陆源碎屑组分)作为成因分类的三端元对混合型细粒沉积岩进行划分,同时增加盐组分对岩石类型加以修饰,有效恢复陆相湖盆的咸化过程。但成因分类受到研究技术手段以及端元选取的限制,至今尚未形成统一的分类标准。

        无论采用何种分类方法,其最终划分的岩石类型均具有相似的特征。混合型细粒沉积岩整体具有黏土矿物含量普遍较低,碳酸盐矿物含量较高的特点,沉积构造以纹层状构造为主,次为块状构造,有机质含量较高。本文采用以岩石学为基础的岩相分类法进行归纳,混合型细粒沉积岩中最常见的岩相类型为富有机质层状/纹层状灰岩相、富有机质页状黏土岩相、中有机质纹层状灰质混合沉积岩相、贫有机质块状长英质/黏土质混合沉积岩相等[78,159160]。其中富有机质层状/纹层状灰岩相以浅色碳酸盐纹层与深色富有机质黏土纹层互层为典型特征。浅色碳酸盐纹层厚度大,出现频率高,界限清晰,局部呈脉状或不连续夹层状;黏土纹层内部可见石英颗粒半定向分布,指示牵引流搬运特征;有机质赋存方式以顺层状为主,兼有分散状富集的特点,形成暗色的富有机质层。富有机质页状黏土岩相,也是我们最常见的“黑色页岩”,页理发育,硬度较小,岩心上多沿层理面破碎呈薄片状,镜下观察石英颗粒顺层性及定向性较差,以散乱分布的形式分布其中。中有机质纹层状灰质细粒混合沉积岩相是混合咸化湖盆中最为发育的一类岩相,由颜色较浅的碳酸盐纹层、长英质纹层与暗色有机质含量较高的黏土质纹层在垂向上频繁叠置构成,浅色纹层通常呈连续或不连续透镜状产出,有机质以分散状、断续纹层状及短线状分布在岩石内部[7]。除上述岩相类型外,还包括在物源强度较高或生物贫瘠的条件下形成的贫有机质块状灰质混合沉积岩相、层状粉砂岩相等,通常不作为重点研究内容。

      • 碎屑型细粒沉积岩主要分布在我国松辽盆地的青山口组以及鄂尔多斯盆地的延长组中,与混合型细粒沉积岩不同的是,碎屑型细粒沉积岩所在的淡水湖盆陆源碎屑供应能量较强,以陆源碎屑的机械沉积作用为主,少见盆内自生的生物及化学沉淀物[45]。碎屑型细粒沉积岩分类中同样将有机质丰度[161162]以及沉积构造[111,163166]作为分类标准之一,但在岩石学主名方面,由于碳酸盐的赋存方式、分布及成因存在一定争议,目前碎屑型细粒沉积岩岩石学命名主要存在两种方案。

        第一种“三端元”的岩石学分类方法,即参照混合型细粒岩分类方法,选择黏土矿物、长英质矿物,碳酸盐矿物作为三端元[161162],将岩石类型分为黏土质页岩、长英质页/泥岩、(介壳)灰岩、和混合质页岩等。其中块状长英质泥岩多在浅湖水体动荡的环境下快速沉积形成,有机质含量低,孔隙条件及含油性较差,而纹层发育良好的纹层状混合质页岩是页岩油富集的有利岩相[39]。但随着研究的不断进行,吴松涛[167]通过对松辽盆地古龙页岩油富集部位与岩石类型进行拟合,发现与其他盆地不同,松辽盆地黏土纹层与长英质及钙质纹层相比油气富集情况更好,对此类碎屑型细粒沉积岩分类是否需要如此繁琐再次提出了质疑。且松辽盆地发育以机械沉积作用为主的长英质细粒沉积岩,具有高碳酸盐含量的样品个数较少且集中,多为介壳灰岩呈夹层形式零星分布在细粒沉积的纵向序列之中[39,162],更像是由于突发性事件导致水体生物繁盛后大批量死亡产生钙质骨骼富集从而引起的钙质组分增多,潘树新等[116]也已经证实松辽盆地青山口组存在多期由于介形虫集群性死亡事件产生的介形虫层,并认为基准面的周期性下降造成水体变浅、矿化度增高以及陆源碎屑输入量增高都会导致局部钙质骨骼富集。总体上看,松辽盆地细粒沉积以粉砂和黏土交替出现为主,碳酸盐含量较低,通常作为胶结物或夹层形式存在。因此,笔者更倾向于第二种碎屑型细粒沉积岩岩石学分类方案。

        第二种划分方案不再拘泥于岩石成分,而是将碎屑岩粒度作为确定岩石主名的标准,首先利用宏观构造特征将其分为页理(单层厚度小于0.01 m)发育的“页岩”以及块状构造的“泥岩”[10,165166],随后结合粒度特征将其分为泥岩/页岩、粉砂质泥岩、粉砂质页岩[164,168]。并针对其中含油气性较好的页岩,根据其内部纹层的产状以及连续性[169170]将页岩相进一步细分为波状纹层页岩,水平纹层状页岩,透镜纹层状页岩,(均质)页岩等。整体来说,与混合型细粒沉积岩相比,碎屑型细粒沉积的岩石类型简单,岩石分类方案单一,以粒级、沉积构造作为分类依据,结合有机质含量将其划分为“贫、中、富有机质的泥岩或页岩”,更有利于后续研究工作的开展。

        碎屑型细粒沉积岩中泥岩与页岩在空间上互补交替出现[169170],其中泥岩颜色变化范围较大,石英、长石等长英质矿物含量较高且呈纹层、脉状分布其中,取心过程中不易破碎,单层厚度较大,块状泥岩内部槽模、沟模、火焰构造等变形构造发育[111,165,169],指示高能环境中的快速沉积过程,推测此类泥岩形成于水体动荡,含氧量高,物源碎屑供给丰富的环境,不利于有机质的生成和保存,故有机质丰度较低[171];而页岩的黏土矿物含量更高,颜色更深,以黑色、黑褐色为主,页理发育,取心时易沿层理面发生破碎,存在少量生物碎屑,指示陆源碎屑供给不足,沉积速率低,有机质富集,是碎屑型细粒沉积岩开发的有利岩相[34,172]

        对不同细粒沉积体系分类方案总结(表1)发现,无论是哪种类型的细粒沉积体系,何种岩相分类方案,其目的都是为了结合区域沉积构造背景,通过对不同岩石类型组合、不同沉积构造特征的样品进行环境特征恢复乃至成因过程的耦合,建立具有代表性的细粒沉积模式,以指导非常规油气的勘探与开发。但由于细粒沉积过程的复杂性和多解性,我们很难找到某个或某几个泛用性极高的岩相类型表征其形成环境及成因过程,目前通常采用模拟细粒沉积岩的特殊构造,尤其是“纹层”形成过程的方法,近似恢复其形成时期的流体特征及搬运—沉积的动力学机制。

        表 1  陆相混合型细粒沉积岩与碎屑型细粒沉积岩划分方案

        岩石大类分类依据典型研究者及研究对象分类结果
        混合型细粒沉积岩岩石学特征赵建华等[90] 四川盆地龙马溪组李书琴等[131],葸克来等[132]吉木萨尔凹陷芦草沟组粉砂岩、黏土岩,灰岩白云岩,灰质混合沉积岩, 长英质混合沉积岩,黏土质混合沉积岩等
        沉积构造岩石学特征刘姝君等[150]东营凹陷沙三下—沙四上亚段邓远等[151] 沧东凹陷孔店组二段周立宏等[152] 歧口凹陷沙一段下亚段块状长英质页岩、纹层状长英质页岩;纹层状黏土质页岩; 纹层状灰质页岩;块状白云质页岩、白云岩; 纹层状碳酸盐质/长英质/黏土质混合页岩等
        有机质含量沉积构造岩石学特征吴靖等[77],张顺等[159]彭丽等[125]济阳凹陷沙三下亚段渤海湾盆地东营凹陷沙三下—沙四上亚段刘忠宝等[128]四川盆地中下侏罗统含有机质纹层状泥质灰岩、富有机质纹层状泥质灰岩、 富有机质纹层状灰质泥岩、富有机质层状灰质泥岩、 富有机质层状泥质灰岩以及富有机质块状泥质灰岩等
        有机质含量沉积构造成因类型陈世悦等[91],宁方兴等[141] 渤海湾盆地东营凹陷王小军等[158]吉木萨尔凹陷芦草沟组块状/纹层状/团块状(长英质黏土质)碳酸盐型细粒混积岩等; 富有机质纹层状隐晶泥质灰岩等
        碎屑型细粒沉积岩有机质含量沉积构造岩石学特征柳波等[39],王岚等[161]松辽盆地古龙凹陷青山口组张君峰等[111]松辽盆地南部青山口组富有机质黏土质页岩、富有机质长英质页岩、贫有机质长英质泥岩、 富有机质混合质页岩(如含生屑长英质页岩、长英质泥灰岩)、贫有机质介壳灰岩
        有机质含量(沉积构造)碎屑岩粒级柳波等[162]松辽盆地长岭凹陷青山口组耳闯等[163],付金华等[168]鄂尔多斯盆地延长组高有机质薄片状页岩相、中有机质块状泥岩相、 中有机质纹层状页岩相、低有机质纹层状页岩相和低有机质砂岩夹层相
      • Selvaraj et al.[173]通过对我国东南部湖泊沉积岩心的沉积学、物理学、地球化学分析,证实湖泊中细粒沉积物组分构成显示出多种搬运—沉积特征,揭示了细粒沉积过程的复杂性。本文总结了有关细粒沉积岩中最为常见的黏土质、长英质、灰质/白云质细粒沉积岩形成以及有机质赋存过程的相关成果,旨在加深细粒沉积岩成因机理的相关认识。

      • 黏土是细粒沉积岩中最常见的组分,与满足斯托克定律的非黏性颗粒不同,单黏土颗粒在流体中长时间处于悬浮状态不易发生沉积,需要依靠絮凝作用发生沉降[6,174175]。Curran et al.[176]通过对美国鳗鱼河入海泥浆粒度及成分的测量,证实絮状物是细黏土颗粒物质发生沉积时最主要的形态,且絮凝体的尺寸与泥浆浓度、流体流量、动能、距离河口远近、风速、波高等环境常量无关,这是因为絮凝是黏性颗粒物质本身固有的属性。细颗粒泥沙在水中呈悬浮状态时,由于表面物理化学作用而带有一定符号的电荷,吸引周围的异号离子及水分子紧密围绕在其周围并形成吸附水膜。当同样带有吸附水膜的两颗粒相互靠近时就会形成公共的扩散层即反离子层,使他们紧紧地结合成絮团,扩散层越薄,吸附能力越强,絮团尺寸越大[173]。上述由于细颗粒表面物化作用产生吸附力形成的聚集往往被称为“盐絮凝”[177178],而由真菌、细菌和浮游生物排泄的产生的黏性胞外聚合物物质(EPS)使细颗粒发生聚集的过程则被称为“生物絮凝”[179181],二者可能同时存在,并相互促进,但生物絮凝作用始终占据主导地位[181]。综上所述,细粒物质形成的絮凝体大小只与颗粒表面的物理化学作用强度以及生物作用的强弱有关[182],但总览目前细粒沉积过程模拟实验,虽然明确了生物黏聚力对于细粒沉积形态存在影响[180182],但仍然未找到合适的表征参数将生物作用纳入细粒沉积成因过程模拟[183184],导致模拟的结果与自然界存在一定偏差。

        当黏土以絮凝体形式发生沉积时,主要存在两种方式,其一为悬浮沉降模式[185186]。Kranck et al.[185]通过将实验室构建的重力沉降物理模型与现实中不同地理环境细粒沉积物质粒度图谱进行比对,证实细粒沉积体系中存在“一次”悬浮沉降形成的黏土物质,此类黏土沉积不经过后期搬运、改造,只与自身粒径、形态与水动力强度有关。陆相湖盆中该过程主要发生在湖泊中心静水区[187191],形成无特殊纹层构造的块状泥岩。此外由河流、风力及大气粉尘、气溶胶带来的细粒物质通过环流和混合扩散的方式以悬移质迁移至湖盆中心[185,189190],过程中较粗的颗粒由于水体流速降低不断从温跃层中沉降形成长英质纹层,而较细的黏土及有机质则以弥散悬浮状态集中在温跃层内,后期由于气候[192193]、温度[194]、盐度[195196]、生物作用强度[197]变化使得温跃层消失,平衡状态破坏,悬浮物静沉降通量增大,并在水体分层的条件下被保存,最终形成与季节和气候相关的纹层状或层状泥岩[188,198199]

        随着细粒沉积相关水槽实验及现场监测数据分析研究的不断深入,由于黏性细颗粒物质组成的絮凝体在搬运及沉积过程中可以表现出与粗粒碎屑等效的非黏性特征[200],絮凝体沉积存在第二种方式,即“平流运输”模式[200202],该模式下通常形成纹层状页岩。Schieber et al.[201]通过模拟不同类型黏土颗粒在不同水体盐度、沉积物浓度及流速下混合泥浆中的搬运沉积过程时,发现絮状体丰度会随着流速的降低不断增加,当到达临界沉积速度后,絮状体会形成流线型波纹并不断向下游移动(图3)。该临界速度与初始沉积物浓度有关,沉积物的临界速度在浓度较低时最低至10 m/s,而当沉积物浓度升高至1~2 g/L时,该临界速度可上升至26 m/s,该速度区间内,黏土物质均可以形成絮状波纹发生迁移而不被破坏,打破了黏土物质只能在低能静水条件下沉积的局限性。此类絮状波纹通过朵叶体不断崩塌前积向下游移动,内部存在低角度倾斜纹层,但由于其在底面流动时存在30~40 cm的间距,沉积后一旦被完全压实,波纹内部倾斜薄层将不可识别,最终形成平行的黏土质纹层[201202]

        图  3  水流速度、悬浮物浓度和波纹形态关系图[201]

        Figure 3.  Flow velocity,suspended sediment concentration, and ripple appearance[201]

      • 陆相湖盆中长英质沉积物多指陆源碎屑组分,主要发生机械沉积作用,为典型的非黏性颗粒,沉积过程满足斯托克定律[110]。当长英质碎屑由陆源河流搬运进入湖盆时,受到重力、浮力、底床剪切引起的拖曳力、上举力的共同作用,当负载其的水动力减弱,颗粒运动速度降低,重力逐渐占据主导地位,长英质沉积物在近岸处发生机械分异并沉降形成块状具有波状层理或低角度交错层理的粉砂岩及长英质泥岩,向湖盆中心水动力逐渐减弱,粒度减小直至过渡为泥岩沉积[203]。而在湖盆细粒沉积岩的实际分布中不难发现,湖盆内部甚至中心处同样存在代表快速沉积、较高能水流层理的块状、层状甚至纹层状长英质泥岩相[196,204205],证明除上述机理外,存在其他的动力学机制,将长英质矿物长距离搬运至湖盆深处沉积。

        现代沉积及古代沉积地层均可证实粉砂级的长英质沉积物可以受到后续风暴流、底流等作用发生剥蚀呈再悬浮状态,并作为推移质与黏土絮凝体一起在湖底发生长距离运输,沉降形成层状、纹层状粉砂质泥岩[197,203204]。能够使沉积物发生长距离运输的流体包括但不仅限于洪水成因异轻流、异重流[66,175,206]、浊流[207209]的长距离搬运和风力驱动环流形成絮凝羽状流[83,210]等。早在2002年,Curran et al.[176]便证实黏土絮凝体与非黏性粗长英质颗粒是河水密度羽流的重要组成部分,并在密度羽流向湖盆中心运移时,风力驱动的上升流和环流会为细粒沉积碎屑物质进行二次补给,且粗粒成分在斜坡处略有增加,证实高密度流如浊流、风驱底流同样会对细粒沉积产生影响。异重流、浊流、碎屑流等不同形式底流主要通过牵引作用搬运碎屑物质,既可以单独对细粒沉积作用,也可以交互共同作用于湖盆深水细粒沉积体系,形成丘状层理、脉状层理、粒序层理等特殊沉积构造特征[91,205,211217]。陈世悦等[91]通过小尺度岩心、微观结构分析发现位于洼陷中部的樊页1井广泛发育砂质团块及不同类型纹层互层的特征,内部脉状、水平、波状、透镜状层理等典型的牵引流成因构造发育。并在北部陡坡深水区对应岩心上找到了与激发型重力流对应的揉皱、变形和滑动面构造,以及代表浊流的粒序层理浊积岩,证实渤海湾盆地东营凹陷沙河街组细粒沉积为重力流与浊流共同作用的结果。潘树新等[205]利用松辽盆地的岩心及青海湖卫星照片资料,对湖盆深水区底流改造沉积物特征、识别标志、分布特征进行了分析,识别出湖盆中心存在重力块体流、浊流、风驱底流改造沉积,并认为风驱底流是形成深水细粒沉积的主要成因。笔者在松辽盆地长岭凹陷同样发现了具有牵引流特征的细粒沉积物证实了这一说法(图4)。

        图  4  松辽盆地南部青山口组细粒沉积周期性底流作用标志

        Figure 4.  Periodic underflow of fine⁃grained sediments of Qingshankou Formation in southern Songliao Basin

        通过上述流体搬运最终形成粉砂纹层的过程是复杂的,絮凝体的内部并非由纯黏土物质构成,而是由底部边界沉积层中湍流悬浮的所有颗粒组分共同构成的,这其中既包含较粗的长英质碎屑又包含较细的黏土质碎屑[218]。由于絮凝体可以在搬运过程中呈现与长英质沉积物相似的非黏性特征,故二者共同在流体中被搬运时,在相对较高的区域,由于水体能量周期性变化发生机械分异作用,形成层状或块状的粉砂岩及粉砂质泥岩,黏土纹层以夹层的形式分布其中[201,219]。而随着水体不断向湖盆中心迁移,流速逐渐下降至25 cm/s时,粗粒的长英质沉积物基本沉积完毕,絮凝体构成主要的推移质载荷,稳定沉降至湖底,并在底面翻滚和弹跳,絮凝体发生破坏,内部粗颗粒被释放,粉砂和黏土颗粒分离,分别形成粉砂质波纹和泥质波纹,同一时间内在湖底发生迁移,并在尾部形成薄薄的沉积层[201202,220222]。大量波纹随着时间的推移不断在湖底移动,形成随机分布的粉砂及泥质纹层,但若想持续形成此类互层结构,需要存在持续稳定的沉积物供应,并使粉砂及泥质波纹保持该状态在底床发生长距离迁移。因此,在岩心上往往看不到大段完整泥质及粉砂纹层互层结构,而是显示如图4a中由于物源供给不充分导致的微细纹层、不连续纹层甚至透镜体等沉积构造特征(图5)。除此之外,近岸处未完全固结的粉砂级碎屑被剥蚀并发生二次搬运至湖盆中心,与上述饱含水的黏土絮团共同沉降至湖底,在上覆埋深作用下发生差异压实作用同样可以形成粉砂质透镜体[221222]

        图  5  不同沉积物供应量下的纹层形成过程[222]

        Figure 5.  Lamina formation for different sediment supply[222]

      • 钙质(碳酸盐)混合细粒沉积沉积岩常见于咸水—半咸水的混合沉积体系[223]。过去碳酸盐组分往往代表低能的沉积环境[224225],春秋两季富含碳酸钙的底层水体由于温跃层的消失,发生循环进入表层水,并在冬夏水体分层时期由于水体盐度不断增大,在表层形成细粒方解石并发生沉淀形成碳酸盐纹层[78,224]

        此外,部分学者认为碳酸盐沉积物与黏土物质颗粒类似,可以通过絮凝体发生沉积[224,226]。Schieber et al.[227]对碳酸盐的絮凝沉积进行了补充实验,通过观察从自然界中收集的含碳酸盐泥浆在水槽中的沉积过程,建立了不同流速及床面剪切应力下泥浆迁移形态。如图6所示,首先明确粒径大于50 μm的颗粒为絮状体,可以观察到在水流速度以及剪切应力逐渐增大的过程中,颗粒构成中絮凝体比例随流速提升逐渐降低,非黏性“粗”颗粒占比逐渐升高,最终作为主要的推移质进行移动并形成椭圆状粗粒波纹;与之相反的是,当水流速度下降时,由于絮凝体在砂纹中所占比例增加,波纹形态也发生变化,尾部伸长合并,黏性特征越来越明显。甚至当流速低于15 m/s以下时,粗粒非黏性颗粒彻底消失,仅保留由絮凝体形成的波纹尾部前后相连形成的宽阔带状体。在实验观察过程中发现,当流速达到28 m/s,剪切应力达到0.25 Pa时,絮状体强度能够克服剪切应力保持稳定,砂砾大小的絮状颗粒和非黏性的颗粒将同时作为推移质向前移动,逐渐向前垮塌使尾部堆积伸长,形成凹凸不平的床形,该底床载荷由富含粉砂及碳酸盐絮凝体的薄层组成,经后期压实后形成长英质及灰质纹层互层现象。该实验有效证实碳酸盐絮凝作用的存在,并丰富了灰质/长英质混合沉积岩的成因机理,即除沉积供应能量及水体性质的变化导致间歇性沉积作用和后期改造形成的异期纹层外[78],底流携带载荷类型变化同样可以形成由碳酸盐及长英质沉积物构成的同期纹层[226]

        图  6  碳酸盐沉积波纹形态与流速及剪切应力的关系[227]

        Figure 6.  Relationship between ripple shape of carbonate deposition and velocity and shear stress[227]

      • 细粒沉积岩中的有机质存在分散状及层状两种富集形式[113,166],富集程度受原始生产力和同沉积期及后期保存条件的双重控制[225,228229]。Tyson[228]通过对现代沉积中的沉积速率与有机碳含量的多元回归分析拟合得出沉积速率与有机质含量呈负相关关系,同时发现,当水中溶解氧量小于4 mL/L时,有机质富集总量是富氧条件下的2.5~4倍,证实贫氧、低沉积速率是确保有机物堆积不被稀释的关键。各大盆地烃源岩层系中广泛发育的黄铁矿[230231]也为该理论提供支撑,黄铁矿粒径越小,证实沉积时期水体含氧量越低,越有利于有机质的保存[232234]

        除上述保存条件外,由于水体咸度变化[166]和火山、热液活动及[235238]盆外火山物质注入都[94,239]会造成有机物的生产能力提高,从而引起有机质的富集。如赵文智等[165]通过对鄂尔多斯衣食村剖面的沉积物及有机质含量测算,发现当水体盐度从1%增加到3%时,有机质捕获效率提高300%;当沉积物浓度从2%上升至4%时,有机质捕获效率提高100%,证实适当的咸化环境可以有效促进有机质絮凝从而提高有机质捕获效率,更有利于有机质的富集[166,240242]。另一方面,早在1985年Zimmerle[243]通过对世界广泛分布页岩层系的横向对比,发现有机质富集带中往往含有大量的火山物质,证实火山活动可以有效提高生物生产力,促进有机质的富集。这是由于火山活动时,深层热液注入以及火山灰沉落都会为藻类勃发提供充分的营养物质,有效提高有机质原始生产力[85,236237,242246],最终形成富含有机质的纹层状及透镜状页岩,其中透镜状页岩是由于与火山活动相伴生的强烈构造作用引起底流的二次改造,在差异压实作用下形成粉砂或生物颗粒的透镜体[94,246]

      • 如何表征不同类型细粒沉积岩的宏观分布规律及影响因素,刻画不同沉积组分的成因机理及控制因素,将细粒沉积体系纳入现有的宏观大尺度沉积体系是建立陆相湖盆细粒沉积模式需要解决的主要问题[246250]。针对上述问题,目前有关细粒沉积模式建立主要可以分为三个主要方向:1)指向油气分布评价的“细粒沉积有机质富集模式”[1,38,161,251256];2)指向湖盆古环境重建的以不同岩石类型空间分布规律为核心的“细粒沉积岩相分布模式”[111,160161,163,166,168]

        3)指向以建立与常规体系统一的“源—汇”系统为目的,以形成过程、机制响应恢复为核心的“细粒沉积成因模式”[31,82,92,257258]。三种方向侧重点不同,在进行陆相湖盆细粒沉积模式研究时,需要明确研究方向,选择合适的标准进行细粒沉积模式的构建。

        郭英海等[251]基于文献计量学对近年来细粒沉积研究动态分析时发现,无论是细粒沉积岩分类相关的成分、成因以及结构研究,还是作为源—储一体的非常规油气载体的生烃能力以及含油气性能研究,其最终目的都是为了指导非常规油气地质勘探与选区评价。国内外学者针对具有良好开发潜力的富有机质页岩,构建了一系列以有机质富集为核心的沉积模式[1,38,161,252256],概括起来主要包括水体分层模式,湖侵模式和门槛模式三种[38]。第一种湖侵模式(图7a)[125,161,252254]通常与层序地层学中基准面旋回联系在一起,是由于相对湖平面上升,氧气无法到达湖底,在深水区形成大面积缺氧环境,从而使有机质富集形成黑色页岩。然而仍有部分学者认为仅靠湖平面的快速上升无法有效的使沉积物聚集[161,255],如王岚等[161]在对青山口组的沉积环境参数测算中发现,代表湖泊盐度的Sr/Ba值在青一段初期部分样品点中大于3.3,指示盐度在淡水及咸水之间变化,推测青一段存在间歇性海侵作用。以潘树新等[116]为代表的一些学者认为松辽盆地缺乏海相地层沉积特征,且古生物学、矿物学、地球化学等资料均不能提供海水入侵的可靠证据,是否存在海侵仍需要进一步的验证。第二种的水体分层模式[256,259262]是指在温度、盐度或生物活动强度等差异作用下,汇水盆地中由于水体温度不同而形成纵向密度分层,表层水体与底层水体不发生物质交换,底层水体含氧量骤减,形成适合有机质富集的贫氧环境。生物在底层水体中难以存活,有利于有机质的保存,可以说水体分层是绝大多数富有机质细粒沉积岩形成的前提条件[262]。第三种门槛沉积模式[38]可以分为高门槛和低门槛两种,“高门槛模式”(图7b,c)与第二种水体分层模式类似,指湖盆一侧存在由退覆体或断层岩体造成遮挡,外源水体无法影响湖盆深部水体而造成水体分层现象,使得底部水体呈有利于有机质富集的贫氧、还原条件。而“低门槛模式”则不再具有水体分层特征,是在水体较浅的情况下,由于生物分解过程中将水体氧气大量消耗,使得整个水体呈还原环境,形成以高等植物为主要有机质类型的煤系泥页岩沉积。此类沉积模式可以有效评价盆地含油气性,但由于缺少空间上岩相或沉积相的约束,始终无法精准确定富有机质细粒沉积岩特征及其分布规律,且由于不同类型细粒沉积岩的脆性、各向异性等工程特征差异巨大,在一定程度上制约了非常规油气的开采效率。

        图  7  陆相湖盆富有机质细粒页岩沉积模式图[38]

        Figure 7.  Sedimentary pattern of fine⁃grained shale enrichment in continental lake basin[38]

        为了更好地了解不同岩相类型细粒沉积岩的空间分布规律,部分学者提出了基于岩相—沉积环境耦合的细粒沉积模式构建方法[113,160161,168],即利用不同沉积环境参数特征恢复细粒沉积岩石类型在平面及纵向的变化规律,建立不同岩相的空间展布样式。该类型在混合型细粒沉积岩中更为常见,如杜学斌等[160]将东营凹陷分为了陡坡带、湖心区、缓坡带和台地礁滩,不同岩相类型的细粒沉积岩在平面上呈环带分布。其中盆地缓坡边缘蒸发作用较强烈,常见碳酸盐沉积,向湖依次发育缓坡混合带(包括灰—泥二元混积外带、砂—灰—泥三元混积内带)的层状或块状混积岩相,湖心处陆源碎屑较少,以纹层状的灰—泥混积岩相为主。而陆源输入占主导的陡坡区,以机械沉积作用为主,近岸处能量较高,主要发育块状粉砂质泥岩相,近湖一侧黏土矿物成分增多呈现砂—灰—泥三元混合沉积特征,发育层状粉砂质及灰质混积岩相,局部可见块状变形构造(图8)。陆源碎屑湖盆同样可以采用此种方案[113,163,166,168],即浅水近岸斜坡处以粉砂质泥岩和暗色泥岩组合为主,深湖则多见暗色富有机质页岩,泥岩与页岩的分布范围基本不重合,平面上呈互补式分布[113,166]。而垂向上,岩相类型及组合方式主要受沉积环境的演化过程控制[163,168],若湖盆水体萎缩变浅,湖盆逐渐充填,湖相细粒沉积岩中粉砂纹层出现频率逐渐升高,岩相组合将呈现由富有机质页岩岩相向暗色泥岩岩相、粉砂质泥岩岩相,甚至是粉砂岩岩相过渡的特征[168]。此类岩相—环境耦合的沉积模式可以有效指示不同类型岩相的空间分布范围对非常规油气勘探具有重要的指导作用,但由于盆地地质条件的差异,此类沉积模式具有极强的区域性,难以进行推广和类比。

        图  8  基于岩相—沉积环境的陆相细粒沉积模式[160]

        Figure 8.  Continental fine⁃grained sedimentary model based on lithofacies sedimentary environment[160]

        因此,为建立宏观统一的“源—汇”系统,将细粒沉积与常规沉积体系有机融合。部分学者尝试将成因机制引入细粒沉积模式,恢复湖盆内不同位置的沉积作用类型、过程机理,构建不同成因类型岩相空间分布模式[31,82,92,257258]。其中海相细粒沉积岩率先采用此种方案[92,257258],Plint et al.[92]通过恢复泥浆在陆架上的输送过程及其对古环境及地层层序的响应,构建了加拿大西部前陆盆地陆架海侵—高位域和海退—低位域两种细粒沉积模式。其中的海侵模式与陆相湖盆湖侵作用形成的碎屑型细粒沉积特征类似[263],洪水期陆源注入的碎屑物质进入湖盆后形成半固结的泥床,并在后期风暴及波浪的作用下被反复改造再次悬浮后,经混合流搬运沿湖底运输,与经悬浮羽流搬运,由枯水期河流、风浪作用搬运而来的沉积物一道进入湖盆中心并发生沉积(图9b)。然而,咸化湖盆沉积作用更为复杂[82,264],如刘惠民等[82]在对东营凹陷沙四上亚段细粒混积岩组构与沉积环境分析后认为,该时期具有断陷特征,存在缓坡以及陡坡两个截然不同的沉积环境,湖盆中心位于近陡坡一侧;上述不同的环境中的水体特征以及发生的主要沉积作用类型与盆地内细粒沉积的岩石组分、有机质丰度、沉积构造存在良好的耦合关系,因此将东营凹陷沙四上亚段细粒沉积体系进行浅湖—半深湖—深湖的成因空间分区。浅湖区陆源碎屑物源供给充分,黏土絮团与长英、长石构成的粗颗粒在进入湖盆后发生机械分异作用,粗颗粒物质不断沉降,部分黏土絮团仍以层间流形式向湖盆中心继续迁移,随着水体能量逐渐下降,最终以机械作用的形式沉降下来,在浅湖区粗碎屑边缘形成带状分布的层状砂/灰质泥岩相;半深湖区水体安静、清澈,阳光充足,由于浅湖区和深湖区(季节性水体交换)带来的大量营养物质,生物通常呈季节性爆发生长,以生物化学作用为主,碳酸盐类矿物明显富集;深湖区由于靠近陡坡带,水动力强,负载量大,且存在不同方向不同性质的水体混合,局部发育快速堆积形成块状或层状(砂质)泥岩相,湖盆中心静水区则多以黏土与藻类的悬浮沉降作用为主,形成具有黏土—有机质纹层的纹层状泥质灰岩或灰质泥岩相(图9a)。值得注意的是,此类成因分类方案中,依然采用细粒沉积的岩石学类型分布作为耦合标准[31,82],与细粒沉积的成因分类方案结合并不紧密。

        图  9  陆相混合型及碎屑型细粒沉积岩成因模式(修改自刘惠民等[82]

        Figure 9.  Genetic model of continental mixed and clastic fine⁃grained sedimentary rocks (modified from Liu et al.[82])

      • 目前有关陆相湖盆细粒沉积岩分类、成因及沉积模式的研究仍然存在以下问题。

        (1) 有关陆相细粒沉积的分类方案众多,但受微观尺度下细粒沉积岩中不同成因矿物特征识别的限制,仍然以描述性的分类为主。截至目前,已有无数的研究证实细粒沉积的过程可以与层序地层学[264267]以及源—汇系统理论[268269]相结合,跨学科的细粒沉积研究可以更加有效地预测细粒沉积岩岩石类型以及空间组合模式。这就要求我们必须加强关于细粒沉积岩微观岩石学、矿物学[90]甚至古生物学[269]的研究,如通过微观结构及地球化学特征对具有不同物质来源自生石英以及不同成岩特征的次生石英加以区分,可以进一步明确细粒沉积成岩改造的影响[90]。建立科学统一的成因分类,恢复细粒沉积形成过程及成因机制,才能构建全面且具有泛用性的细粒沉积模式,如若不然,与诸如三角洲等常规“粗粒”沉积模式进行连接和统一时终究会面对不小的麻烦。

        (2) 具体进行陆相混合型细粒沉积岩成因分类时,如何选取三个成因端元仍然存在一定问题。目前有关细粒沉积的“多物质来源,多成因机制”已经被逐渐认可[74,245,270],但国内外有关混合型细粒沉积岩的研究多集中在硅质碎屑—碳酸盐混合沉积作用之上。通过前文可发现无论是在进行细粒沉积分类时选取的三端元图解中缺少代表火山碎屑成分的端元,还是在沉积模式建立上将此类混合沉积岩简单地归为陆源碎屑注入和湖相生物—化学沉淀的混合,都忽略了火山活动以及热液喷流对细粒沉积带来的影响。近年来,已有不少学者证实火山活动频繁的地区与现今油田分布范围存在一定的重合[237],如准噶尔吉木萨尔凹陷便存在大量的火山活动的证据,且对细粒沉积存在一定的改造作用[80,271]。但火山及热液活动对有机质富集促进作用的研究也仅停留在观察统计的层面上[94],缺乏更深层次的机理分析及实验模拟。此外,地球深部物质在细粒沉积岩形成时以何种相互作用机理,何种演变方式,何种赋存状态与碳酸盐以及陆源碎屑组分进行混合,更需要进一步地探索,以期在未来能够找到恰当的火山作用表征参数,被应用到细粒沉积的成因分类以及相关模式的建立。

        (3) 细粒沉积岩的成因分类以及成因模式建立目前已经有了长足的进步,但二者相关性依然较差,目前的成因模式中讨论的岩石类型依然是基于岩石学特征进行划分的。如何将细粒沉积的显微结构与具体的成因过程相结合,规范细粒沉积成因模式中的岩相成因类型,是目前细粒沉积成因模式建立亟需解决的重点问题。

        (4) 细粒沉积成因过程模拟采用的实验设备和技术相对落后,无法恢复自然界中复杂的沉积现象,且细粒沉积由于粒度过小,容易受到内部其他颗粒以及实验中边界条件的影响使实验结果产生偏差[271274]。此外,由于目前实验设计过于简单,往往集中于某个小尺度单一过程通量的搬运、沉积模拟,缺乏代表生物作用、成岩作用的环境常量[274276]。上述两点问题的存在,导致目前细粒沉积模拟实验模型能否直接应用到百年乃至千年尺度的自然界中备受质疑[277278]。亟需加强沉积过程中小尺度模拟实验研究[279281],尤其针对细颗粒内部相互作用、沉降机制和近底床沉积过程的模拟,从而建立细粒沉积中沉积物搬运—沉积方式与流体流变特征的关系,恢复颗粒“触发—搬运—沉降”过程。同时,加强不同学科融合,探索能够有效表征参与细粒沉积过程的生物作用、火山活动以及成岩改造的环境参数,构建与自然界等效性更好的实验模型。

      • (1) 与海相沉积不同,陆相湖盆细粒沉积岩由于矿物成分、结构各异,沉积—成岩机制复杂,加之不同学者的研究领域及目的不同,有关陆相湖盆细粒沉积分类方案以及沉积模式一直没有达成共识。

        (2) 依据不同陆相湖盆细粒沉积岩的岩石学特征,将我国陆相细粒沉积岩分为混合型细粒沉积岩以及碎屑型细粒沉积岩,混合型细粒沉积岩主要采用“有机质含量+沉积构造+(三端元)岩石学主名”的岩相分类法,碎屑型细粒沉积岩除上述分类方法外,可以用岩石粒度特征替代以碳酸盐、黏土、石英/长石为三端元的岩石学特征进行岩性主名的确定。

        (3) 系统归纳了目前有关细粒沉积岩中黏土质、长英质、钙质(碳酸盐)组分以及有机质的迁移、沉降、保存机理的认识。突破以往细颗粒只能在静水条件下沉积的限制,泥级的碳酸盐、黏土矿物通过絮凝作用形成絮团,以与粗颗粒等效的方式通过湖盆内不同类型流体搬运而发生长距离运输并与较粗的粉砂级颗粒共同发生沉积。向湖盆中心靠近时,由于水体能量下降,絮团崩解,内部较粗的粉砂颗粒被释放,与黏土颗粒一道以絮状波纹的形式不断迁移,沉积压实后可以形成水平/波状纹层、透镜状纹层等典型的细粒沉积岩结构。

        (4) 细粒沉积岩的有机质含量主要受原始生产力和同沉积期及后期保存条件的双重控制,其中高原始生产力、贫氧、低沉积速率、适当咸化的水体、火山物质和热液注入都有利于有机质的富集。

        (5) 根据研究方向的差异,将目前细粒沉积模式分为三种,即指向油气分布评价的“有机质富集模式”,指向湖盆古环境重建的以不同岩石类型空间分布规律为核心的“岩相分布模式”,以及指向以建立与常规体系统一的“源—汇”系统为目的,以形成过程、机制响应恢复为核心的“成因模式”。指出加强细粒沉积岩中不同矿物成分的微观结构特征、沉积—成岩机理认识,将岩石的微观成因分类方案与宏观成因模式有效融合是未来细粒沉积研究的关键。

    参考文献 (281)

    目录

      /

      返回文章
      返回