高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三种主要源储配置油源断裂厘定方法及其应用

付广 于桐 梁木桂

付广, 于桐, 梁木桂. 三种主要源储配置油源断裂厘定方法及其应用[J]. 沉积学报, 2023, 41(3): 909-918. doi: 10.14027/j.issn.1000-0550.2021.114
引用本文: 付广, 于桐, 梁木桂. 三种主要源储配置油源断裂厘定方法及其应用[J]. 沉积学报, 2023, 41(3): 909-918. doi: 10.14027/j.issn.1000-0550.2021.114
FU Guang, YU Tong, LIANG MuGui. Methods of Determining Oil-source Faults in Three Major Source-reservoir Configurations and Their Application[J]. Acta Sedimentologica Sinica, 2023, 41(3): 909-918. doi: 10.14027/j.issn.1000-0550.2021.114
Citation: FU Guang, YU Tong, LIANG MuGui. Methods of Determining Oil-source Faults in Three Major Source-reservoir Configurations and Their Application[J]. Acta Sedimentologica Sinica, 2023, 41(3): 909-918. doi: 10.14027/j.issn.1000-0550.2021.114

三种主要源储配置油源断裂厘定方法及其应用

doi: 10.14027/j.issn.1000-0550.2021.114
基金项目: 

国家自然科学基金项目 41872157

国家自然科学基金项目 42072157

详细信息
    作者简介:

    付广,男,1962年出生,博士,教授,油气藏形成与保存研究,E-mail: fuguang2008@126.com

  • 中图分类号: P618.13

Methods of Determining Oil-source Faults in Three Major Source-reservoir Configurations and Their Application

Funds: 

National Natural Science Foundation of China 41872157

National Natural Science Foundation of China 42072157

  • 摘要: 为了研究含油气盆地三种主要源储配置油气分布规律,在油气运聚机制及油源断裂类型研究的基础上,通过分别叠合储层内输导断裂和源岩排烃分布区,储层内输导断裂、源岩排烃分布区和分隔层渗漏区,以及储层内输导断裂和油气倒灌运移源岩分布区,建立了一套厘定下源上储紧邻配置、下源上储分隔配置和上源下储紧邻配置油源断裂的方法,并将其分别应用于渤海湾盆地歧口凹陷板桥地区沙一下亚段、东三段和松辽盆地北部三肇凹陷扶余油层油源断裂的厘定。结果表明:板桥地区沙三段源岩与沙一下亚段储层为下源上储紧邻配置,油源断裂主要分布在东北部和东南部边部地区,少量分布在中部局部地区;沙三段源岩与东三段储层被沙一中亚段泥岩盖层分隔,属于下源上储分隔配置,油源断裂主要分布在东南部地区,少量分布在东北部地区。松辽盆地北部三肇凹陷青一段源岩与扶余油层为上源下储紧邻配置,油源断裂除东北边部和东南边部局部地区外,在整个凹陷均有分布。三种主要源储配置油源断裂处或附近有利于油气成藏,与目前板桥地区沙一下亚段、东三段和三肇凹陷扶余油层已发现油气均主要分布在油源断裂处或附近相吻合,表明该方法用于厘定三种主要源储配置油源断裂是可行的。
  • 图  1  三种主要源储配置油源断裂类型示意图

    (a)下源上储紧邻配置;(b)下源上储分隔配置;(c)上源下储紧邻配置

    Figure  1.  Schematic diagram of oil⁃source fault types for three major source⁃reservoir configurations

    (a) lower⁃source/upper⁃reservoir adjacent configuration; (b) lower⁃source/upper⁃reservoir segregated configuration; (c) upper⁃source/lower⁃reservoir adjacent configuration

    图  2  三种主要源储配置油源断裂厘定示意

    (a)下源上储紧邻配置;(b)下源上储分隔配置;(c)上源下储紧邻配置

    Figure  2.  Determination of oil⁃source faults with three major source⁃reservoir configurations

    (a) lower⁃source/upper⁃reservoir adjacent configuration; (b) lower⁃source/upper⁃reservoir segregated configuration; (c) upper⁃source/lower⁃reservoir adjacent configuration

    图  3  板桥地区沙一下亚段油源断裂与油气分布关系

    Figure  3.  Relationship between oil⁃source faults and oil and gas distribution in the Es1x formation in Banqiao area

    Fig.3

    图  4  板桥地区沙一中亚段泥岩分隔层分布

    Figure  4.  Distribution of mudstone separation layer in the Es1z formation in Banqiao area

    Fig.4

    图  5  歧口凹陷沙一中亚段泥岩分隔层封油气所需的最小断接厚度厘定

    Figure  5.  Determination of minimum juxtaposition thickness required for oil and gas sealing in mudstone separation layer of the Es1z formation in the Qikou Sag

    Fig.5

    图  6  板桥地区沙一中亚段泥岩分隔层渗漏区分布

    Figure  6.  Distribution of leakage area of the mudstone separation layer in the Es1z formation in Banqiao area

    Fig.6

    图  7  板桥地区东三段油源断裂与油气分布关系

    Figure  7.  Relationship between oil⁃source faults and oil and gas distribution in the Ed3 formation in Banqiao area

    Fig.7

    图  8  三肇凹陷扶余油层油源断裂与油气分布关系

    Figure  8.  Relationship between oil⁃source faults and oil and gas distribution in Fuyu oil layer in Sanzhao Sag

    Fig.8

    图  9  三肇凹陷青一段源岩古超压分布

    Figure  9.  Distribution of paleo⁃overburden pressure in source rocks in the K2qn1 formation of Sanzhao Sag

    Fig.9

  • [1] 邹华耀,周心怀,鲍晓欢,等. 渤海海域古近系、新近系原油富集/贫化控制因素与成藏模式[J]. 石油学报,2010,31(6):885-893,899.

    Zou Huayao, Zhou Xinhuai, Bao Xiaohuan, et al. Controlling factors and models for hydrocarbon enrichment/depletion in Paleogene and Neogene, Bohai Sea[J]. Acta Petrolei Sinica, 2010, 31(6): 885-893, 899.
    [2] 彭辉界,庞雄奇,李洪博,等. 珠江口盆地珠一坳陷断裂控藏定量表征与有利勘探区预测[J]. 现代地质,2016,30(6):1318-1328.

    Peng Huijie, Pang Xiongqi, Li Hongbo, et al. Quantitative evaluation of control of faults on hydrocarbon accumulation and play fairway prediction in Zhu I Depression of Pearl River Mouth Basin[J]. Geoscience, 2016, 30(6): 1318-1328.
    [3] 王冠民,熊周海,张健,等. 渤海湾盆地渤中凹陷油藏断裂特征及对成藏的控制作用[J]. 石油与天然气地质,2017,38(1):62-70.

    Wang Guanmin, Xiong Zhouhai, Zhang Jian, et al. Characterization of fault system and its control on reservoirs in the Bozhong Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2017, 38(1): 62-70.
    [4] 娄国泉. 高邮凹陷断裂对始新统油气成藏的控制作用[J]. 石油天然气学报,2011,33(1):1-5.

    Lou Guoquan. Control of faults on Eocene hydrocarbon accumulation in Gaoyou Depression of Subei Basin[J]. Journal of Oil and Gas Technology, 2011, 33(1): 1-5.
    [5] 宗奕,邹华耀,滕长宇. 郯庐断裂带渤海段断裂活动差异性对新近系油气成藏的影响[J]. 中国海上油气,2010,22(4):237-239,242.

    Zong Yi, Zou Huayao, Teng Changyu. Impacts of differential faulting along Bohai segment of Tanlu fault zone on Neogene hydrocarbon accumulation[J]. China Offshore Oil and Gas, 2010, 22(4): 237-239, 242.
    [6] 宗奕,徐长贵,姜雪,等. 辽东湾地区主干断裂活动差异性及对油气成藏的控制[J]. 石油天然气学报,2009,31(5):12-17.

    Zong Yi, Xu Changgui, Jiang Xue, et al. The influence of differential activities of faults on petroleum accumulation in Liaodongwan area[J]. Journal of Oil and Gas Technology, 2009, 31(5): 12-17.
    [7] 田飞,金强,曾翔,等. 东营凹陷营26断层调节带特征及其对油气分布的控制作用[J]. 中国地质,2013,40(4):1150-1158.

    Tian Fei, Jin Qiang, Zeng Xiang, et al. The Ying 26 fault accommodation zone and its control effects on hydrocarbon distribution in Dongying Sag[J]. Geology in China, 2013, 40(4): 1150-1158.
    [8] 蒋有录,刘培,宋国奇,等. 渤海湾盆地新生代晚期断层活动与新近系油气富集关系[J]. 石油与天然气地质,2015,36(4):525-533.

    Jiang Youlu, Liu Pei, Song Guoqi, et al. Late Cenozoic faulting activities and their influence upon hydrocarbon accumulations in the Neogene in Bohai Bay Basin[J]. Oil & Gas Geology, 2015, 36(4): 525-533.
    [9] 庄新兵,邹华耀,滕长宇. 新构造运动期断裂活动对油气的控制作用:以渤中地区为例[J]. 中国矿业大学学报,2012,41(3):452-459.

    Zhuang Xinbing, Zou Huayao, Teng Changyu. Controlling of hydrocarbons by Neotectonics and tectonics fault activities: A case study of Bozhong area[J]. Journal of China University of Mining & Technology, 2012, 41(3): 452-459.
    [10] 周心怀,牛成民,滕长宇. 环渤中地区新构造运动期断裂活动与油气成藏关系[J]. 石油与天然气地质,2009,30(4):469-475,482.

    Zhou Xinhuai, Niu Chengmin, Teng Changyu. Relationship between faulting and hydrocarbon pooling during the Neotectonic movement around the central Bohai Bay[J]. Oil & Gas Geology, 2009, 30(4): 469-475, 482.
    [11] 姜丽娜,邹华耀. 郯庐断裂带渤中—渤南段新构造运动期断层活动与油气运聚[J]. 石油与天然气地质,2009,30(4):462-468,482.

    Jiang Lina, Zou Huayao. Fault activities and hydrocarbon migration and accumulation during the Neotectonic Period in the Bozhong-Bonan segment of the Tanlu fault zone[J]. Oil & Gas Geology, 2009, 30(4): 462-468, 482.
    [12] 吕延防,许辰璐,付广,等. 南堡凹陷中浅层盖—断组合控油模式及有利含油层位预测[J]. 石油与天然气地质,2014,35(1):86-97.

    Yanfang Lü, Xu Chenlu, Fu Guang, et al. Oil-controlling models of caprock-fault combination and prediction of favorable horizons for hydrocarbon accumulation in middle-shallow sequences of Nanpu Sag[J]. Oil & Gas Geology, 2014, 35(1): 86-97.
    [13] 史集建,李丽丽,杜琳,等. 断层对盖层的动态破坏及其对油气输导的影响:以渤海湾盆地歧口凹陷港东断裂为例[J]. 石油学报,2019,40(8):956-964.

    Shi Jijian, Li Lili, Du Lin, et al. Dynamic damage of fault to caprock and its influence on hydrocarbon transport: A case study of Gangdong fault in Qikou Sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2019, 40(8): 956-964.
    [14] 李晓敏. 源储被泥岩盖层分隔型油源断裂厘定方法及其应用[J]. 大庆石油地质与开发,2020,39(5):34-39.

    Li Xiaomin. Calibrating method of the oil-source faults with source-reservoir separated by the mudstone caprock and its application[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(5): 34-39.
    [15] 罗群,宋子学. 油气沿断裂向下幕式运移的机理[J]. 新疆石油地质,2008,29(2):170-171.

    Luo Qun, Song Zixue. Mechanism of episode petroleum migration along faults down[J]. Xinjiang Petroleum Geology, 2008, 29(2): 170-171.
    [16] 付广,李晓伟. 源外上生下储成藏主控因素及有利区预测:以松辽盆地尚家地区泉二段为例[J]. 岩性油气藏,2009,21(1):1-5.

    Fu Guang, Li Xiaowei. Controlling factors of above-generation and below-storage reservoir accumulation and favorable area prediction: A case study from K1q2 in Shangjia region of Songliao Basin[J]. Lithologic Reservoirs, 2009, 21(1): 1-5.
    [17] 刘宗堡,吕延防,付晓飞,等. 三肇凹陷扶余油层沉积特征及油气成藏模式[J]. 吉林大学学报(地球科学版),2009,39(6):998-1006.

    Liu Zongbao, Yanfang Lü, Fu Xiaofei, et al. Sedimentary characteristics and hydrocarbon accumulation model of Fuyu reservoir in Sanzhao Depression[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(6): 998-1006.
    [18] 丛琳,赵天琦,刘洋,等. 油气垂向和侧向倒灌运移条件及其聚集规律的差异性[J]. 中国矿业大学学报,2016,45(5):951-957.

    Cong Lin, Zhao Tianqi, Liu Yang, et al. Conditions of oil-gas downward migration in vertical and lateral and their differences in accumulation laws[J]. Journal of China University of Mining & Technology, 2016, 45(5): 951-957.
    [19] 王浩然,付广,宿碧霖,等. 下生上储式油气运移优势路径确定方法及其应用[J]. 石油与天然气地质,2018,39(6):1237-1245.

    Wang Haoran, Fu Guang, Su Bilin, et al. A method to determine preferential pathways for hydrocarbon migration in “lower source rock and upper reservoir” combination and its application[J]. Oil & Gas Geology, 2018, 39(6): 1237-1245.
    [20] 孙同文,付广,吕延防,等. 断裂输导流体的机制及输导形式探讨[J]. 地质论评,2012,58(6):1081-1090.

    Sun Tongwen, Fu Guang, Yanfang Lü, et al. A discussion on fault conduit fluid mechanism and fault conduit form[J]. Geological Review, 2012, 58(6): 1081-1090.
    [21] 付广,王有功. 三肇凹陷青山口组源岩生成油向下“倒灌”运移层位及其研究意义[J]. 沉积学报,2008,26(2):355-360.

    Fu Guang, Wang Yougong. Migration horizons downward of oil from K1 qn source rock of F, Y oil layer in Sanzhao Depression and its significance[J]. Acta Sedimentologica Sinica, 2008, 26(2): 355-360.
    [22] 李美俊,王铁冠,刘菊,等. 由流体包裹体均一温度和埋藏史确定油气成藏时间的几个问题:以北部湾盆地福山凹陷为例[J]. 石油与天然气地质,2007,28(2):151-158.

    Li Meijun, Wang Tieguan, Liu Ju, et al. A discussion on hydrocarbon accumulation dating determined by homogenization temperature and burial history of fluid inclusions: An example from the Fushan Depression, Beibuwan Basin[J]. Oil & Gas Geology, 2007, 28(2): 151-158.
    [23] 庞雄奇,李素梅,金之钧,等. 排烃门限存在的地质地球化学证据及其应用[J]. 地球科学:中国地质大学学报,2004,29(4):384-390.

    Pang Xiongqi, Li Sumei, Jin Zhijun, et al. Geochemical evidences of hydrocarbon expulsion threshold and its application[J]. Earth Science: Journal of China University of Geosciences, 2004, 29(4): 384-390.
    [24] 曹强,叶加仁,王巍. 沉积盆地地层剥蚀厚度恢复方法及进展[J]. 中国石油勘探,2007,12(6):41-46.

    Cao Qiang, Ye Jiaren, Wang Wei. Methods of eroded strata thickness restoration in sedimentary basins and its advancement[J]. China Petroleum Exploration, 2007, 12(6): 41-46.
    [25] 郭颖,汤良杰,岳勇,等. 旋回分析法在地层剥蚀量估算中的应用:以塔里木盆地玉北地区东部中下奥陶统鹰山组为例[J]. 中国矿业大学学报,2015,44(4):664-672.

    Guo Ying, Tang Liangjie, Yue Yong, et al. Application of cycle analysis method to estimate the denuded strata thickness: A case study of Middle-Lower Ordovician Yingshan Formation of the eastern Yubei area, Tarim Basin[J]. Journal of China University of Mining & Technology, 2015, 44(4): 664-672.
    [26] 付广,王浩然,胡欣蕾. 断裂带盖层油气封盖断接厚度下限的预测方法及其应用[J]. 中国石油大学学报(自然科学版),2015,39(3):30-37.

    Fu Guang, Wang Haoran, Hu Xinlei. Prediction method and application of caprock faulted-contact thickness lower limit for oil-gas sealing in fault zone[J]. Journal of China University of Petroleum, 2015, 39(3): 30-37.
    [27] 胡安文,李慧勇,江涛,等. 超压和富氢背景下镜质组反射率计算模型:以渤海湾盆地渤中西次凹东三段烃源岩为例[J]. 石油实验地质,2017,39(1):106-111,119.

    Hu Anwen, Li Huiyong, Jiang Tao, et al. Vitrinite reflectance modeling under overpressure retardation and hydrogen suppression: A case study of source rocks from the Third member of Dongying Formation, west Bozhong sub-depression, Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2017, 39(1): 106-111, 119.
    [28] 赵靖舟,李军,徐泽阳. 沉积盆地超压成因研究进展[J]. 石油学报,2017,38(9):973-998.

    Zhao Jingzhou, Li Jun, Xu Zeyang. Advances in the origin of overpressures in sedimentary basins[J]. Acta Petrolei Sinica, 2017, 38(9): 973-998.
    [29] 付广,王有功,袁大伟. 三肇凹陷扶杨油层源断裂的再认识及其对成藏的控制作用[J]. 石油学报,2010,31(5):762-766,773.

    Fu Guang, Wang Yougong, Yuan Dawei. Source faults of F, Y oil layer in Sanzhao Depression and its control to oil accumulation[J]. Acta Petrolei Sinica, 2010, 31(5): 762-766, 773.
    [30] 王雅春,王胜男. 源岩、超压和断裂空间匹配对三肇凹陷扶杨油层油成藏的控制作用[J]. 吉林大学学报(地球科学版),2009,39(4):656-661.

    Wang Yachun, Wang Shengnan. Controlling of the match of source rock, overpressure and fault on oil accumulation of Fu-Yang oil layer in Sanzhao Depression[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 656-661.
    [31] 付广,王兴涛,方纯昌. 利用声波时差资料研究欠压实浓度盖层抑制封闭作用形成时期及其研究意义[J]. 石油地球物理勘探,2001,36(3):279-284.

    Fu Guang, Wang Xingtao, Fang Chunchang. Determining forming Period of restrained seal action of undercompacted concentration caprock by using interval travel time data and its research meaning[J]. Oil Geophysical prospecting, 2001, 36(3): 279-284.
    [32] 于润涛. 三肇凹陷青一段油气向扶杨油层“倒灌”运移的最小超压及其研究意义[J]. 大庆石油学院学报,2010,34(3):11-13,64.

    Yu Runtao. Fuyang oil layer in Sanzhao Depression minimum overpressure value required for oil-gas migration downward[J]. Journal of Daqing Petroleum Institute, 2010, 34(3): 11-13, 64.
  • [1] 郭奕浩, 曾德铭, 张芮, 王兴志, 黄董, 张本健, 谢圣阳.  川中—川东地区侏罗系大安寨段古环境及油气地质意义 . 沉积学报, 2024, 42(3): 1016-1031. doi: 10.14027/j.issn.1000-0550.2023.052
    [2] 祝海华, 朱光仪, 王明磊, 张本健, 李育聪, 张芮, 林思臣, 洪海涛, 李咏洲.  川东北下侏罗统大安寨段岩相特征及页岩油源储评价—以铁山金窝及梁平福禄镇剖面为例 . 沉积学报, 2023, (): -. doi: 10.14027/j.issn.1000-0550.2023.063
    [3] 付广, 于桐.  断裂附近源断砂空间配置油气运聚有利部位预测方法及其应用 . 沉积学报, 2023, 41(1): 270-279. doi: 10.14027/j.issn.1000-0550.2021.071
    [4] 朱扬明, 郝芳, 邹华耀, 李平平, 胡东风.  川北中、下侏罗统烃源岩重排藿烷组成变化与油源对比 . 沉积学报, 2022, 40(4): 1137-1150. doi: 10.14027/j.issn.1000-0550.2020.118
    [5] 杨棵, 朱筱敏, 杨怀宇, 朱世发, 董艳蕾, 金磊, 申婷婷, 叶蕾.  古物源体系多方法表征 . 沉积学报, 2022, 40(6): 1542-1560. doi: 10.14027/j.issn.1000-0550.2022.088
    [6] 厚刚福, 宋兵, 倪超, 陈薇, 王力宝, 窦洋, 李亚哲, 彭博.  致密油源储配置特征及油气勘探意义——以四川盆地川中地区侏罗系大安寨段为例 . 沉积学报, 2021, 39(5): 1078-1085. doi: 10.14027/j.issn.1000-0550.2020.122
    [7] 赵青芳, 李双林, 温珍河, 龚建明, 肖国林, 吴亮亮.  北黄海盆地LV井侏罗系烃源岩特征及油源对比 . 沉积学报, 2016, 34(4): 794-802. doi: 10.14027/j.cnki.cjxb.2016.04.019
    [8] 汤建荣, 王金友, 章诚诚, 宋广增, 石英涛, 张雷.  致密气源层内沉积特征及与致密砂岩气藏关系——以川东北元坝地区须三段为例 . 沉积学报, 2015, 33(6): 1224-1234. doi: 10.14027/j.cnki.cjxb.2015.06.015
    [9] 海相烃源岩二次生烃潜力定量评价新方法 . 沉积学报, 2012, 30(3): 594-602.
    [10] 辽东湾辽西凹陷沙河街组烃源岩评价及油源研究 . 沉积学报, 2012, 30(4): 739-746.
    [11] 烃源岩解析气获取新方法研究 . 沉积学报, 2012, 30(6): 1180-1184.
    [12] 马朗凹陷芦草沟组源岩油储集空间特征及其成因 . 沉积学报, 2012, 30(6): 1115-1122.
    [13] 马朗凹陷断裂—烃源岩空间配置关系与石油垂向运移特征 . 沉积学报, 2012, 30(6): 1140-1148.
    [14] 王雅春.  松辽盆地宋站南地区扶杨油层运聚成藏机制及主控因素 . 沉积学报, 2009, 27(4): 752-759.
    [15] 杨永才.  溱潼凹陷红庄油田凝析油的油源及成藏期 . 沉积学报, 2008, 26(3): 531-539.
    [16] 郭春清.  准噶尔盆地永进地区油源研究 . 沉积学报, 2008, 26(5): 864-871.
    [17] 马锦龙, 陶明信, 叶先仁, 张小军.  郯庐断裂带中段幔源包体单矿物中的气体释放特征与成因 . 沉积学报, 2004, 22(1): 176-181.
    [18] 张水昌, 龚再升, 梁狄刚, 吴克强, 汪建蓉, 宋孚庆, 王培荣, 王汇彤, 何忠华.  珠江口盆地东部油气系统地球化学-Ⅰ:油组划分、油源对比及混源油确定 . 沉积学报, 2004, 22(S1): 15-26.
    [19] 程克明, 熊英, 刘新月.  煤系源岩倾油倾气性研究 . 沉积学报, 2004, 22(S1): 56-60.
    [20] 杨家静, 胡伯良.  吐哈盆地原油和烃源岩单烃碳同位素组成特征及油源对比探讨 . 沉积学报, 1997, 15(2): 207-211.
  • 加载中
图(9)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  78
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 修回日期:  2021-08-19
  • 录用日期:  2021-09-28
  • 网络出版日期:  2021-09-28
  • 刊出日期:  2023-06-10

目录

    三种主要源储配置油源断裂厘定方法及其应用

    doi: 10.14027/j.issn.1000-0550.2021.114
      基金项目:

      国家自然科学基金项目 41872157

      国家自然科学基金项目 42072157

      作者简介:

      付广,男,1962年出生,博士,教授,油气藏形成与保存研究,E-mail: fuguang2008@126.com

    • 中图分类号: P618.13

    摘要: 为了研究含油气盆地三种主要源储配置油气分布规律,在油气运聚机制及油源断裂类型研究的基础上,通过分别叠合储层内输导断裂和源岩排烃分布区,储层内输导断裂、源岩排烃分布区和分隔层渗漏区,以及储层内输导断裂和油气倒灌运移源岩分布区,建立了一套厘定下源上储紧邻配置、下源上储分隔配置和上源下储紧邻配置油源断裂的方法,并将其分别应用于渤海湾盆地歧口凹陷板桥地区沙一下亚段、东三段和松辽盆地北部三肇凹陷扶余油层油源断裂的厘定。结果表明:板桥地区沙三段源岩与沙一下亚段储层为下源上储紧邻配置,油源断裂主要分布在东北部和东南部边部地区,少量分布在中部局部地区;沙三段源岩与东三段储层被沙一中亚段泥岩盖层分隔,属于下源上储分隔配置,油源断裂主要分布在东南部地区,少量分布在东北部地区。松辽盆地北部三肇凹陷青一段源岩与扶余油层为上源下储紧邻配置,油源断裂除东北边部和东南边部局部地区外,在整个凹陷均有分布。三种主要源储配置油源断裂处或附近有利于油气成藏,与目前板桥地区沙一下亚段、东三段和三肇凹陷扶余油层已发现油气均主要分布在油源断裂处或附近相吻合,表明该方法用于厘定三种主要源储配置油源断裂是可行的。

    English Abstract

    付广, 于桐, 梁木桂. 三种主要源储配置油源断裂厘定方法及其应用[J]. 沉积学报, 2023, 41(3): 909-918. doi: 10.14027/j.issn.1000-0550.2021.114
    引用本文: 付广, 于桐, 梁木桂. 三种主要源储配置油源断裂厘定方法及其应用[J]. 沉积学报, 2023, 41(3): 909-918. doi: 10.14027/j.issn.1000-0550.2021.114
    FU Guang, YU Tong, LIANG MuGui. Methods of Determining Oil-source Faults in Three Major Source-reservoir Configurations and Their Application[J]. Acta Sedimentologica Sinica, 2023, 41(3): 909-918. doi: 10.14027/j.issn.1000-0550.2021.114
    Citation: FU Guang, YU Tong, LIANG MuGui. Methods of Determining Oil-source Faults in Three Major Source-reservoir Configurations and Their Application[J]. Acta Sedimentologica Sinica, 2023, 41(3): 909-918. doi: 10.14027/j.issn.1000-0550.2021.114
      • 油气勘探的实践表明,人们对油源断裂(连接源岩和目的层,且在油气成藏期活动的断裂)在含油气盆地运聚成藏中所起作用的认识愈来愈深入,它不仅仅是连接源藏的油气输导通道,而且还能为油气聚集成藏提供遮挡条件,造成含油气盆地内油气聚集分布明显受到油源断裂分布的控制。然而,由于含油气盆地中源储配置方式(本文这里主要是指下源上储紧邻配置、下源上储分隔配置和上源下储紧邻配置)不同,造成连接其源藏的油源断裂类型及特征不同,其厘定方法也就不同。因此,能否厘定油源断裂,应是含油气盆地三种主要源储配置油气勘探的关键。

        关于下源上储紧邻配置油源断裂厘定方法,前人曾做过大量研究工作,归纳起来主要有以下三种:第一种方法是根据断裂活动时期与油气成藏期之间关系,结合断裂断穿层位与源岩和储层之间位置关系,厘定主要油源断裂类型[14],认为连接源岩和储层,且在油气成藏期活动的断裂才是主要油源断裂;第二种方法是根据断裂断穿层位与源岩和储层之间位置关系,结合断裂之上未断穿地层形态,厘定次要油源断裂类型[57],认为连接源岩和储层,虽在油气成藏期没有明显活动,但断裂之上地层形态弯曲,表明该断裂在油气成藏期活动,但规模小,也可以输导油气,应为次要油源断裂;第三种方法是根据断裂活动时期与油气成藏期之间关系,结合断裂与主要油源断裂之间关系,厘定次要油源断裂类型[811],认为储层内断裂虽未连接源岩,但油气成藏期活动,又与主要油源断裂连接,此类断裂也应是次要油源断裂。以上这些方法厘定的油源断裂,对于认识含油气盆地下源上储紧邻配置油气分布规律及指导油气勘探起到了非常重要的作用。

        前人对于下源上储分隔配置油源断裂厘定的研究较少[1214],主要是在下源上储紧邻配置油源断裂厘定方法的基础上,结合泥岩盖层不封闭区,厘定下源上储分隔配置油源断裂,认为只有在油气成藏期活动且连接源岩和目的储层,并穿过不封闭泥岩盖层的断裂才是下源上储分隔配置的油源断裂。而对于上源下储紧邻配置油源断裂厘定,虽然前人做过一定研究[1518],但也主要是套用下源上储紧邻配置油源断裂厘定方法,并没有考虑源岩是否排烃。这无疑表明油源断裂厘定方法还不够完善,尚不能满足含油气盆地三种主要源储配置油源断裂厘定的需要。因此,开展油源断裂厘定方法研究,对于正确认识含油气盆地三种主要源储配置油气分布规律及指导油气勘探均具重要意义。

      • 油气勘探证实,在含油气盆地中以油源断裂作为油气输导通道的源储组合按照源岩和储层之间空间组合关系,主要有下源上储和上源下储两种配置,其中下源上储配置按照源储之间是否有分隔层——区域性泥岩分隔层,可以分为源储紧邻配置(无区域性泥岩分隔层分隔)和源储分隔配置(有区域性泥岩分隔层分隔),如图1所示,上源下储配置只有紧邻配置。

        图  1  三种主要源储配置油源断裂类型示意图

        Figure 1.  Schematic diagram of oil⁃source fault types for three major source⁃reservoir configurations

      • 在下源上储紧邻配置中,下伏源岩生成的油气在剩余地层孔隙流体压力差和浮力的作用下沿油源断裂向上运移,因受区域性泥岩盖层阻挡向其下紧邻砂岩储层中发生侧向分流运移,最后油气在油源断裂附近聚集成藏[19]。该源储配置的油源断裂类型应为连接可排烃源岩和储层,且在油气成藏期活动的断裂(图1a)。

        在下源上储分隔配置中,下伏源岩生成油气在剩余地层孔隙流体压力差和浮力的作用下,沿油源断裂向上运移,并穿过分隔层(区域性泥岩盖层)再向其上砂岩储层中侧向分流运移,最后在油源断裂附近聚集成藏[20]。该源储配置的油源断裂类型应为连接可排烃源岩和储层,且穿过分隔层,并在油气成藏期活动的断裂(图1b)。

      • 在该源储配置中,上覆源岩生成的油气在超压的作用下,沿油源断裂向下伏紧邻砂岩储层中倒灌运移,遇到砂岩储层便发生侧向分流运移,最后在油源断裂附近聚集成藏[21]。该源储配置的油源断裂类型应为连接油气向下倒灌运移源岩和储层,且在油气成藏期活动的断裂(图1c)。

      • 要厘定下源上储紧邻配置油源断裂,就必须确定储层内输导断裂和源岩排烃分布区,二者叠合便可以厘定出油源断裂,即源岩排烃分布区内的输导断裂。利用三维地震资料划分储层内不同类型断裂,将连接源岩和储层,且在油气成藏期(可由储层流体包裹体均一温度资料,结合储层埋藏史和热史,由文献[22]中油气成藏期确定方法确定)活动的断裂,作为输导断裂(图2a)。利用源岩成熟度地化指标随埋深变化关系,由文献[23]中方法确定源岩排烃门限,据此确定源岩排烃分布区(图2a)。将上述已确定的储层内输导断裂和源岩排烃分布区叠合,便可以厘定下源上储紧邻配置油源断裂及其分布(图2a)。

        图  2  三种主要源储配置油源断裂厘定示意

        Figure 2.  Determination of oil⁃source faults with three major source⁃reservoir configurations

        要厘定下源上储分隔配置油源断裂,就必须确定储层内输导断裂、源岩排烃分布区和分隔层渗漏区,三者叠合便可以厘定油源断裂,即连接排烃源岩和储层,且穿过分隔层的输导断裂。储层内输导断裂和源岩排烃分布区可按上述方法确定。而对于分隔层渗漏区的确定可按如下步骤进行:首先,由钻井和地震资料统计分隔层厚度和其内输导断裂的断距,由地层古厚度恢复方法[24]和最大断距相减法[25]恢复分隔层和输导断裂在油气成藏期的古厚度和古断距,二者相减求取分隔层古断接厚度;然后,统计研究区已知井点处分隔层古断接厚度与其上下油气分布关系,按照文献[26]中的方法确定分隔层封油气所需的最小断接厚度;最后,将分隔层古断接厚度小于其封油气所需的最小断接厚度的区域圈在一起,即可确定分隔层渗漏区(图2b)。将上述已确定的储层内输导断裂、源岩排烃分布区和分隔层渗漏区叠合,便可以厘定下源上储分隔配置油源断裂及其分布(图2b)。

      • 要厘定上源下储紧邻配置油源断裂,就必须确定储层内输导断裂和油气倒灌运移源岩分布区,二者叠合便可以厘定油源断裂,即为连接油气倒灌运移源岩和储层的输导断裂。储层内输导断裂可按照上述方法确定。而要确定油气倒灌运移源岩分布区,则必须要确定源岩排烃分布区和油气倒灌运移源岩超压分布区,其中源岩排烃分布区可按照上述方法确定;油气倒灌运移源岩超压分布区的确定可按如下步骤进行。首先,读取声波时差资料,利用源岩超压值计算方法[27]和源岩古超压值恢复方法[28],计算源岩现今超压值,并恢复其在油气成藏期的古超压值;然后,统计研究区源岩古超压值与油气倒灌运移的最大深度(可用现今储层最大油底深度来表示)之间关系,取油气倒灌运移深度为零时所对应的古超压值作为油气倒灌运移所需的最小超压值;最后,圈出源岩古超压值大于油气倒灌运移所需的最小超压值的区域,即为油气倒灌运移源岩超压分布区(图2c)。将已确定的源岩排烃分布区和油气倒灌运移源岩超压分布区叠合,二者重合区即为油气倒灌运移源岩分布区(图2c)。将上述已确定的储层内输导断裂与油气倒灌运移源岩分布区叠合,便可以厘定上源下储紧邻配置油源断裂及其分布(图2c)。

      • 板桥地区位于歧口凹陷的北部,是其油气勘探的重点地区,构造上包括板桥次凹、板桥斜坡和歧北斜坡部分地区。该区发育的地层主要有古近系、新近系和第四系,其中古近系地层有孔店组、沙河街组和东营组,新近系地层有馆陶组和明化镇组。目前已发现油气主要分布在沙河街组,少量分布在东营组和馆陶组,其中沙一下亚段和东三段是其主要含油气层。油气源对比结果表明,沙一下亚段和东三段油气主要来自下伏沙三段源岩。沙三段源岩和沙一下亚段储层之间无区域性分隔层,属于下源上储紧邻配置;沙三段源岩和东三段储层之间被沙一中亚段区域性泥岩分隔层,属于下源上储分隔配置,可分别作为下源上储紧邻和下生上储分隔配置的应用实例厘定其油源断裂。

        三维地震资料解释成果表明,板桥地区沙一下亚段内发育不同类型的断裂,但连接沙三段源岩和沙一下亚段储层,且在油气成藏期——明化镇组沉积中晚期活动的输导断裂,主要分布在东南部、东北部地区和西部局部地区(图3)。根据沙三段源岩成熟度地化指标(S1+S2/TOC)与埋深变化之间关系,利用源岩排烃门限的确定方法[23],确定板桥地区沙三段源岩排烃门限(约为3 600 m),据此圈定板桥地区沙三段源岩排烃分布区。板桥地区沙三段源岩排烃分布区主要分布在东北部和中部局部地区,少量分布在东南边部地区(图3)。

        图  3  板桥地区沙一下亚段油源断裂与油气分布关系

        Figure 3.  Relationship between oil⁃source faults and oil and gas distribution in the Es1x formation in Banqiao area

        将上述已确定的板桥地区沙一下亚段输导断裂与沙三段源岩排烃分布区叠合,厘定其沙一下亚段油源断裂。板桥地区沙一下亚段油源断裂主要分布在东北部和东南部边部地区,少量分布在中部局部地区(图3)。板桥地区沙一下亚段目前已发现油气主要分布在东北部和东南边缘地区,少量分布在中部局部地区的油源断裂附近(图3),这是因为只有位于这些油源断裂处或附近,才有利于油源断裂从下伏沙三段源岩处获得油气在沙一下亚段聚集成藏,油气钻探才能有大量油气发现;反之则油气发现较少或无油气发现。

        钻井资料统计显示,板桥地区沙一中亚段泥岩分隔层厚度最大可达450 m,主要分布在东部、西部和南部局部地区,由这些高值区沙一中亚段泥岩分隔层厚度逐渐减少,在北部和东南部局部地区泥岩分隔层厚度减小至100 m以下(图4)。由钻井和地震资料统计沙一下亚段油源断裂在沙一中亚段泥岩分隔层内的断距和对应处泥岩分隔层厚度,利用最大断距相减法[24]和地层古厚度恢复方法[25]恢复其在油气成藏期——明化镇组沉积中晚期的古断距和古厚度,二者相减求取沙一中亚段泥岩分隔层古断接厚度。由歧口凹陷沙一中亚段分隔层封油气所需的最小断接厚度(约为139 m,图5),圈定板桥地区沙一中亚段泥岩分隔层渗漏区。板桥地区沙一中亚段分隔层渗漏区主要分布在东北部和东南部地区(图6)。

        图  4  板桥地区沙一中亚段泥岩分隔层分布

        Figure 4.  Distribution of mudstone separation layer in the Es1z formation in Banqiao area

        图  5  歧口凹陷沙一中亚段泥岩分隔层封油气所需的最小断接厚度厘定

        Figure 5.  Determination of minimum juxtaposition thickness required for oil and gas sealing in mudstone separation layer of the Es1z formation in the Qikou Sag

        图  6  板桥地区沙一中亚段泥岩分隔层渗漏区分布

        Figure 6.  Distribution of leakage area of the mudstone separation layer in the Es1z formation in Banqiao area

        将上述已确定的沙一下亚段油源断裂与沙一中亚段泥岩分隔层渗漏区叠合,厘定板桥地区东三段油源断裂。板桥地区东三段油源断裂主要分布在东南部地区,少量分布在东北部地区(图7)。板桥地区东三段目前已发现油气主要分布在东南部地区,少量分布在北部中部地区的油源断裂附近(图7),这是因为只有位于这些油源断裂附近,下伏沙三段源岩生成的油气才能通过油源断裂穿过沙一中亚段泥岩分隔层在东三段聚集成藏,油气钻探才能发现大量油气;反之则油气发现较少或无油气发现。

        图  7  板桥地区东三段油源断裂与油气分布关系

        Figure 7.  Relationship between oil⁃source faults and oil and gas distribution in the Ed3 formation in Banqiao area

      • 三肇凹陷位于松辽盆地北部中央坳陷区内,是油气勘探的重点地区。该区发育的地层有下白垩统、上白垩统及新生界,其中下白垩统地层有火石岭组、沙河子组、营城组、登娄库组和泉头组,上白垩统地层有青山口组、姚家组、嫩江组、四方台组和明水组。位于泉四段的扶余油层是主要含油气层位,油气主要来自上青一段,二者配置属于上源下储紧邻配置,可以作为应用实例,厘定其油源断裂。

        三维地震资料解释成果显示三肇凹陷扶余油层内发育多种类型断裂[29],连接青一段源岩和扶余油层,且在油气成藏期——明水组沉积末期[17]活动的输导断裂在全凹陷分布(图8)。由文献[30]可知,三肇凹陷青一段源岩的排烃分布区如图8所示,除东北边部和东南边部局部地区青一段源岩未进入排烃分布范围外,其余地区皆为源岩排烃分布区。

        图  8  三肇凹陷扶余油层油源断裂与油气分布关系

        Figure 8.  Relationship between oil⁃source faults and oil and gas distribution in Fuyu oil layer in Sanzhao Sag

        利用声波时差资料计算三肇凹陷青一段源岩的超压值,按照文献[31]中源岩古超压恢复方法恢复油气成藏期古超压值(图9),由三肇凹陷青一段源岩生成油气倒灌运移所需的最小超压值(约为5 MPa)[32],圈定三肇凹陷油气倒灌运移青一段源岩超压分布区。三肇凹陷除东南边部局部地区外,其余地区均为油气倒灌运移青一段源岩超压分布区(图9)。

        图  9  三肇凹陷青一段源岩古超压分布

        Figure 9.  Distribution of paleo⁃overburden pressure in source rocks in the K2qn1 formation of Sanzhao Sag

        将上述三肇凹陷青一段源岩排烃分布区和油气倒灌运移青一段源岩超压分布区叠合,二者重合区即为油气倒灌运移青一段源岩分布区。三肇凹陷除东北边部和东南边部地区外,其余地区皆为油气倒灌运移青一段源岩分布区(图8)。

        将上述已确定的三肇凹陷扶余油层内输导断裂与油气倒灌运移青一段源岩分布区叠合,厘定扶余油层油源断裂。三肇凹陷扶余油层除东北边部和东南边部局部地区外,油源断裂在整个凹陷均有分布(图8)。

        三肇凹陷扶余油层目前已发现油气均分布在中部和南部地区的油源断裂附近(图8)。这是因为只有位于这些油源断裂附近,上覆青一段源岩生成的油气才能在超压作用下通过油源断裂向下伏扶余油层倒灌运移,并在附近聚集成藏;反之则油气发现较少或无油气发现。

      • (1) 三种主要源储配置油源断裂类型不同,下源上储紧邻配置油源断裂为连接排烃源岩和储层的输导断裂;下源上储分隔配置油源断裂为连接排烃源岩和储层,且穿过分隔层的输导断裂;上源下储紧邻配置油源断裂为连接油气倒灌运移源岩和储层的输导断裂。

        (2) 建立了一套厘定下源上储紧邻配置、下源上储分隔配置和上源下储紧邻配置油源断裂的方法,实例应用结果证实了该方法的可行性。

        (3) 渤海湾盆地歧口凹陷板桥地区沙三段源岩与沙一下亚段储层为下源上储紧邻配置,油源断裂主要分布于东北部和东南边缘地区。沙三段源岩与东三段储层属于下源上储分隔配置,油源断裂主要分布在东南部地区。松辽盆地北部三肇凹陷青一段源岩与扶余油层为上源下储紧邻配置,油源断裂分布在除东北边部和东南边部局部地区外的整个凹陷区。上述研究区中油气均分布在油源断裂处及附近。

    参考文献 (32)

    目录

      /

      返回文章
      返回