-
微生物丘多由藻类或菌类微生物格架形成,其内部地震反射振幅能量弱,多为断续、空白或杂乱结构[18]。然而在微生物原地生长过程中,由于古地貌和相对海平面变化会出现丘、滩互层,垂向上会出现多种叠置样式,如加积、进积或退积等[19]。根据上述特点,分析研究区中、上寒武统微生物丘的发育期次及叠置样式(图5、表1)。
图 5 台缘带微生物丘内幕反射结构特征
Figure 5. Internal seismic reflection records for microbial mound at the platform margin
表 1 微生物丘特征参数
期次 地质时期 厚度范围/m 平均厚度/m 东西向宽度/km 平均宽度/km 构造埋深/m ④期 晚寒武世晚期 80~560 320 2.3~8.1 4.4 6 300~7 625 ③期 晚寒武世早期 130~580 360 5.8~9.2 7.1 6 500~7 750 ②期 中寒武世晚期 120~600 380 7~15.3 10.4 6 650~7 625 ①期 中寒武世早期 220~660 400 6.8~12.1 9.5 7 025~8 300
Sedimentary Evolution of Microbial Mound in Cambrian Regression Background, Southeastern Tarim Basin
-
摘要: 微生物丘作为新型的碳酸盐岩油气储层,是现今深层油气勘探和研究的热点。以塔东南地区寒武系微生物丘为例,综合利用岩心、测井、分析测试和高精度三维地震数据,在微生物丘微相组成和外部形态分析基础上,探究海退背景下微生物丘的发育期次、叠置样式及其生长发育、迁移演化特征。研究结果表明:1)研究区寒武系处于相对高能的台地边缘相带,有利于微生物丘的生长发育。钻井揭示微生物丘岩性为菌藻类微生物颗粒白云岩(局部硅化),储集空间为晶间(溶)孔、溶蚀孔洞及微缝隙。2)中、上寒武统发育4期微生物丘复合体,依次向广海方向推进叠置,近南北向条带状展布,叠合面积大于1 400 km2。3)①期微生物丘形成于早寒武世缓坡台地之上,“三明治”式垂向加积生长,形成较对称的丘状,生长规模大。②期发育在丘前塌积岩之上,古地貌坡度陡,可容纳空间大,水动力强,垂向加积—弱前积生长,形成不对称丘状。随着相对海平面快速下降和生物丘建隆进一步发展,③期丘体楔状前积于②期丘的靠海一侧,侧向叠置分布。④期丘体生长具有继承性,规模变小。寒武纪末期,海侵作用加强,微生物丘停止发育。总体上反映海退背景下研究区由缓坡—镶边型台地—淹没型台地的变化特征。Abstract: As a new type of carbonate reservoir, microbial mounds are becoming the focus of deep oil and gas exploration and research. This study of a Cambrian microbial mound in the southeastern Tarim Basin included an analysis of the microfacies composition and external morphology, the developmental stages, stacking patterns and sedimentary evolution against a Cambrian regressive background using high-resolution 3D seismic data from a newly drilled well. The results are as follows: (1) The Cambrian system in the study area is located in a relatively high-energy platform-edge facies belt, which is conducive to the growth and development of microbial mounds. Drilling data revealed that the physical properties in the core of the microbial mound are relatively suitable as a hydrocarbon reservoir. The lithology is bacteria-algal microbe particle dolomite with local silicification, containing intercrystal (dissolution) pores, dissolution pores, and fractures. (2) In the middle and upper Cambrian, four stages of microbial mound body complexes are evident, successively superimposed over a vast sea area of more than 1 400 km2, occurring in north-south planar stripes. (3) The first mound body was formed on a gentle slope platform in the Early Cambrian. Large-scale “sandwich-like” vertical accretions grew and eventually formed a symmetrical mound shape. The second mound body was developed on steeply sloping pre-mound colluvial rock, and contains a large volume of accommodation space. The hydrodynamic condition is strong. The mound body character is vertical accretion with weak forward growth, forming an asymmetrical mound. With the rapid fall in sea level, three more laterally superposed mound bodies developed, wedged on the seaward side of the original mound body. The last of these shows smaller-scale inherited development. The mound bodies ceased developing as the transgression was strengthened at the end of the Cambrian, reflecting the gradual evolution process of a carbonate platform from a low-angle sloping edge platform to a submerged platform in a regression environment.
-
Key words:
- microbial mound /
- developmental stage /
- sedimentary evolution /
- southeastern Tarim Basin
-
表 1 微生物丘特征参数
期次 地质时期 厚度范围/m 平均厚度/m 东西向宽度/km 平均宽度/km 构造埋深/m ④期 晚寒武世晚期 80~560 320 2.3~8.1 4.4 6 300~7 625 ③期 晚寒武世早期 130~580 360 5.8~9.2 7.1 6 500~7 750 ②期 中寒武世晚期 120~600 380 7~15.3 10.4 6 650~7 625 ①期 中寒武世早期 220~660 400 6.8~12.1 9.5 7 025~8 300 -
[1] 李建忠,陶小晚,白斌,等. 中国海相超深层油气地质条件、成藏演化及有利勘探方向[J]. 石油勘探与开发,2021,48(1):52-67. Li Jianzhong, Tao Xiaowan, Bai Bin, et al. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China[J]. Petroleum Exploration and Development, 2021, 48(1): 52-67. [2] 田雷,崔海峰,刘军,等. 塔里木盆地早、中寒武世古地理与沉积演化[J]. 石油与天然气地质,2018,39(5):1011-1021. Tian Lei, Cui Haifeng, Liu Jun, et al. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 1011-1021. [3] You X L, Sun S, Lin C S, et al. Microbial dolomite in the sabkha environment of the Middle Cambrian in the Tarim Basin, NW China[J]. Australian Journal of Earth Sciences, 2018, 65(1): 109-120. [4] Lai J, Wang S, Zhang C S, et al. Spectrum of pore types and networks in the deep Cambrian to Lower Ordovician dolostones in Tarim Basin, China[J]. Marine and Petroleum Geology, 2020, 112: 104081. [5] 李昂,鞠林波,张丽艳. 塔里木盆地古城低凸起古—中生界构造演化特征与油气成藏关系[J]. 吉林大学学报(地球科学版),2018,48(2):545-555. Li Ang, Ju Linbo, Zhang Liyan. Relationship between hydrocarbon accumulation and Paleo-Mesozoic tectonic evolution characteristics of Gucheng lower uplift in Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2008, 48(2): 545-555. [6] 朱可丹,张友,林彤,等. 基于CT成像的白云岩储层孔喉非均质性分析:以塔东古城地区奥陶系GC601井鹰三段为例[J]. 石油与天然气地质,2020,41(4):862-873. Zhu Kedan, Zhang You, Lin Tong, et al. Pore-throat heterogeneity in dolomite reservoirs based on CT imaging: A case study of the 3rd member of the Ordovician Yingshan Formation in well GC601 in Gucheng area, eastern Tarim Basin[J]. Oil & Gas Geology, 2020, 41(4): 862-873. [7] Grotzinger J, Al-Rawahi Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian Ara Group, Sultanate of Oman[J]. AAPG Bulletin, 2014, 98(8): 1453-1494. [8] 沈安江,张友,冯子辉,等. 塔东古城地区碳酸盐岩储层地质认识与勘探领域[J]. 中国石油勘探,2020,25(3):96-106. Shen Anjiang, Zhang You, Feng Zihui, et al. Geological understandings and exploration prospects of carbonate reservoirs in Gucheng area, Tadong, Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 96-106. [9] 马乃拜,金圣林,杨瑞召,等. 塔里木盆地顺北地区断溶体地震反射特征与识别[J]. 石油地球物理勘探,2019,54(2):398-403. Ma Naibai, Jin Shenglin, Yang Ruizhao, et al. Seismic response characteristics and identification of fault-karst reservoir in Shunbei area, Tarim Basin[J]. Oil Geophysical Prospecting, 2019, 54(2): 398-403. [10] 沈安江,付小东,张友,等. 塔里木盆地塔东地区震旦系:下古生界碳酸盐岩油气生储条件与勘探领域[J]. 天然气地球科学,2018,29(1):1-16. Shen Anjiang, Fu Xiaodong, Zhang You, et al. A study of source rocks & carbonate reservoirs and its implication on exploration plays from Sinian to Lower Paleozoic in the east of Tarim Basin, northwest China[J]. Natural Gas Geoscience, 2018, 29(1): 1-16. [11] 何治亮,云露,尤华东,等. 塔里木盆地阿—满过渡带超深层碳酸盐岩储层成因与分布预测[J]. 地学前缘,2019,26(1):13-21. He Zhiliang, Yun Lu, You Huadong, et al. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions, Tarim Basin[J]. Earth Science Frontiers, 2019, 26(1): 13-21. [12] 陈永权, 严威, 韩长伟,等. 塔里木盆地寒武纪/前寒武纪构造—沉积转换及其勘探意义[J]. 天然气地球科学, 2019, 30(1):43-54. Chen Yongquan, Yan Wei, Han Changwei, et al. Structural and sedimentary basin transformation at the Cambrian/Neoproterozoic interval in Tarim Basin: Implication to subsalt dolostone exploration[J]. Natural Gas Geoscience, 2019, 30(1):43-54. [13] 胡明毅,孙春燕,高达. 塔里木盆地下寒武统肖尔布拉克组构造—岩相古地理特征[J]. 石油与天然气地质,2019,40(1):12-23. Hu Mingyi, Sun Chunyan, Gao Da. Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(1): 12-23. [14] 曹颖辉,王珊,张亚金,等. 塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力[J]. 石油勘探与开发,2019,46(6):1099-1114. Cao Yinghui, Wang Shan, Zhang Yajin, et al. Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng area, Tarim Basin, China[J]. Petroleum Exploration and Development, 2019, 46(6): 1099-1114. [15] 贺锋,林畅松,刘景彦,等. 塔东南寒武系:中下奥陶统碳酸盐岩台缘带的迁移与相对海平面变化的关系[J]. 石油与天然气地质,2017,38(4):711-721. He Feng, Lin Changsong, Liu Jingyan, et al. Migration of the Cambrian and Middle-Lower Ordovician carbonate platform margin and its relation to relative sea level changes in southeastern Tarim Basin[J]. Oil & Gas Geology, 2017, 38(4): 711-721. [16] 张君龙. 碳酸盐岩层序沉积演化及海平面的控制作用:以塔里木盆地古城地区奥陶系为例[J]. 天然气工业,2017,37(1):46-53. Zhang Junlong. Carbonate sequence sedimentary evolution and control of sea level: A case study of Ordovician in the Gucheng area, Tarim Basin[J]. Natural Gas Industry, 2017, 37(1): 46-53. [17] 李朋威,罗平,宋金民,等. 微生物碳酸盐岩储层特征与主控因素:以塔里木盆地西北缘上震旦统—下寒武统为例[J]. 石油学报,2015,36(9):1074-1089. Li Pengwei, Luo Ping, Song Jinmin, et al. Characteristics and main controlling factors of microbial carbonate reservoirs: A case study of Upper Sinian-Lower Cambrian in the northwestern margin of Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(9): 1074-1089. [18] 白莹,罗平,王石,等. 台缘微生物礁结构特点及储集层主控因素:以塔里木盆地阿克苏地区下寒武统肖尔布拉克组为例[J]. 石油勘探与开发,2017,44(3):349-358. Bai Ying, Luo Ping, Wang Shi, et al. Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: A case study of Xiaoerbulak Formation, Lower Cambrian, Aksu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3): 349-358. [19] 兰才俊,徐哲航,马肖琳,等. 四川盆地震旦系灯影组丘滩体发育分布及对储层的控制[J]. 石油学报,2019,40(9):1069-1084. Lan Caijun, Xu Zhehang, Ma Xiaolin, et al. Development and distribution of mound-shoal complex in the Sinian Dengying Formation, Sichuan Basin and its control on reservoirs[J]. Acta Petrolei Sinica, 2019, 40(9): 1069-1084. [20] 张君龙,胡明毅,冯子辉,等. 塔里木盆地古城地区寒武系台缘丘滩体类型及与古地貌的关系[J]. 石油勘探与开发,2021,48(1):94-105. Zhang Junlong, Hu Mingyi, Feng Zihui, et al. Types of the Cambrian platform margin mound-shoal complexes and their relationship with paleogeomorphology in Gucheng area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(1): 94-105. [21] 石平舟,王振宇,东玉,等. 台缘礁分类、特征、发育模式及与可容空间耦合关系:以塔里木盆地中东部地区良里塔格组良二段为例[J]. 天然气地球科学,2019,30(5):673-685. Shi Pingzhou, Wang Zhenyu, Dong Yu, et al. The classification, characteristics and development model and coupling relation with different accommodation space of platform margin reef: Case study of L2 member of Lianglitage Formation in the eastern Tazhong area, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(5): 673-685. [22] 郑剑锋,潘文庆,沈安江,等. 塔里木盆地柯坪露头区寒武系肖尔布拉克组储集层地质建模及其意义[J]. 石油勘探与开发,2020,47(3):499-511. Zheng Jianfeng, Pan Wenqing, Shen Anjiang, et al. Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping outcrop area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 499-511. [23] Ngia N R, Hu M Y, Gao D. Tectonic and geothermal controls on dolomitization and dolomitizing fluid flows in the Cambrian-Lower Ordovician carbonate successions in the western and central Tarim Basin, NW China[J]. Journal of Asian Earth Sciences, 2019, 172: 359-382.