-
内蒙古霍各乞宝音图群大理岩岩层延续性差,多呈星散状分布,展布方向主要为NE向,产出状态主要为条带状、透镜状,出露厚度普遍为2~20 m,延伸长度约10~200 m,部分大理岩条带出露长度可超过500 m,甚至1 000 m以上。就岩性共生关系而言,大理岩与斜长角闪岩密不可分,两者大多呈整合状产出,且大理岩在斜长角闪岩附近出现的几率极高(图3a)。在野外露头一般可见清晰的变余层理构造(图3b~e),岩石一般为灰白色,粒状变晶结构,块状构造(图3e)。主要矿物为方解石,含量约大于80%,遇稀盐酸强烈起泡,次要矿物为白云母、石英等矿物,矿物颗粒定向排列特征显著(图3f,g)。局部可见大理岩变质变形的特有产物——变形花纹(图3h)。通过霍各乞宝音图群1∶10 000地质填图和1∶2 000地质剖面测量,在充分了解大理岩的分布状况、产出状态、共生关系等地质情况的基础上,选取层位稳定,延伸较远且风化程度较弱的大理岩岩层进行样品采集,后经室内手标本观察、茜素红染色获得裂隙少、足够新鲜、不含或含极少量白云石的样品并测试分析,样品的具体信息见表1。
图 3 内蒙古霍各乞宝音图群大理岩野外及镜下特征
Figure 3. Field and microscopic features of marble in the Huogeqi Buyant Group, Inner Mongolia
表 1 内蒙古霍各乞宝音图群大理岩样品信息
样品号 岩石类型 共生岩性 17mb-03 青灰色大理岩 石榴石斜长角闪岩 17mb-04 灰白色大理岩 含石榴石斜长角闪岩 17DL-03 灰白色大理岩 斜长角闪岩 17DL-04 灰白色大理岩 石英闪长岩、花岗岩 17DL-05 灰白色大理岩 石英闪长岩、花岗岩 17DL-06 灰白色大理岩 斜长角闪岩 17DL-08 灰白色大理岩 石英二云母片岩、花岗岩 17DL-12 灰白色大理岩 斜长角闪岩 17DL-13 灰白色大理岩 斜长角闪岩 17DL-14 灰白色大理岩 含石榴石斜长角闪片岩 17DL-17 青灰色大理岩 斜长角闪岩 17DL-18 灰色大理岩 斜长角闪岩 17DL-19 灰白色大理岩 斜长角闪岩、石英岩 17DL-20 灰色大理岩 斜长角闪岩、第四系 17DL-21 灰白色大理岩 花岗岩 17DL-29 青灰色大理岩 斜长角闪岩、白云母石英岩 -
主微量元素分析测试完成于中国地质大学(北京)科学研究院实验中心,其中主量元素分析完成于元素地球化学实验室,微量元素分析完成于等离子体质谱(ICP-MS)实验室。主量元素采取碱溶法,测定使用仪器为美国利曼公司(LEEMAN LABS.INC)Prodigy型等离子发射光谱仪(ICP-OES),分析误差优于2%。微量元素采用酸溶法,分析仪器为美国安捷伦公司生产的Agilent 7500 a型等离子质谱仪,分析误差优于5%。
碳氧同位素分析是在中国科学院地质与地球物理研究所完成的,分析方法为在线连续流分析。将约0.3 mg碳酸盐岩粉末样品装入样品管,充入氦气抽取真空,随后测试滴酸,反应温度70 ℃,恒温1 h。反应完毕后将纯化的二氧化碳气体导入MAT 253型质谱仪,测试其同位素比值。标准使用的是国家标准GBW04405(δ13C=+0.57‰;δ18O=-8.49‰);GBW04416(δ13C=+1.61‰;δ18O=-11.59‰)。同位素分析结果相对于国际V-PDB标准表示,分析测试精度优于0.2‰。
-
内蒙古霍各乞宝音图群大理岩化学成分以CaO为主,约为40.0%~55.3%,平均为49.4%,镁质成分较低,MgO含量均小于3%。SiO2的含量变化幅度较大,最小为0.68%,最大可达16.8%,平均为7.68%;再次为Al2O3和TFe2O3,其中Al2O3的含量为0.12%~4.66%,平均为1.71%;TFe2O3含量为0.10%~2.96%,平均为1.00%;此外,所有样品的TiO2、MnO、Na2O、K2O、P2O5含量均小于1%(表2)。
表 2 内蒙古霍各乞宝音图群大理岩主量元素化学成分(%)
样品号 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOl TAL m 17DL-03 2.49 0.02 0.31 0.22 0.02 1.87 53.9 0.03 0.01 0.05 41.6 101 612 17DL-04 16.80 0.48 4.66 2.96 0.13 2.35 40.0 0.99 0.52 0.11 31.5 101 50.4 17DL-05 0.96 0.01 0.12 0.10 0.01 2.28 53.6 0.01 0.01 0.03 43.4 101 1973 17DL-06 8.36 0.08 1.65 1.20 0.12 1.25 49.9 0.09 0.35 0.04 37.5 100 75.6 17DL-12 11.10 0.19 2.09 1.09 0.05 0.80 47.4 0.48 0.37 0.05 36.8 100 38.2 17DL-14 14.90 0.13 2.79 1.37 0.24 0.72 43.7 0.13 0.80 0.03 35.6 100 25.7 17DL-17 0.68 0.10 1.45 0.79 0.03 0.78 55.3 0.33 0.36 0.03 40.9 101 54.0 17DL-18 7.61 0.19 2.22 1.12 0.05 0.84 49.0 0.49 0.37 0.06 38.6 101 37.7 17DL-19 10.90 0.13 2.46 0.96 0.03 0.95 46.3 0.06 0.77 0.08 37.8 100 38.6 17DL-20 3.64 0.05 0.55 0.87 0.04 0.61 52.6 0.19 0.06 0.12 41.8 101 110 17DL-21 6.97 0.05 0.57 0.37 0.01 0.38 51.2 0.02 0.15 0.04 40.7 100 67.5 平均 7.68 0.13 1.71 1.00 0.07 1.16 49.40 0.26 0.34 0.06 38.80 101 280 岩石中SiO2含量较高,分别相对MgO、Al2O3、TFe2O3、CaO作图获得大理岩的哈克图解(图4)。由图4可知,SiO2含量与MgO相关性不明显,与Al2O3、TFe2O3含量具有较强的正相关关系,与CaO含量呈显著的负相关关系。
-
内蒙古霍各乞宝音图群大理岩微量元素特征如表3所示,由微量元素计算的Sr/Ba比值为1.90~55.8,均值为14.9;V/Cr比值为1.90~55.8,均值为14.9;Y/Ho比值为27.2~38.3,均值为32.9;Mn/Sr比值为0.17~8.38,均值为0.85;Mg/Ca比值为0.01~0.05,均值为0.02。霍各乞宝音图群大理岩具有弱的正Eu异常,δEu为0.93~2.75,平均值为1.47;弱的负Ce异常,δCe为0.78~0.97,平均值为0.87;弱的负La异常,δLa为0.84~1.12,平均值为0.91(表3)。
表 3 内蒙古霍各乞宝音图群大理岩微量元素化学成分(μg/g)
样号 17DL-03 17DL-04 17DL-05 17DL-06 17DL-12 17DL-14 17DL-17 17DL-18 17DL-19 17DL-20 17DL-21 平均 Mg 1.13 1.42 1.38 0.75 0.48 0.43 0.47 0.50 0.57 0.37 0.23 0.70 Ca 38.5 28.6 38.3 35.6 33.9 31.2 39.5 35.0 33.1 37.6 36.6 35.3 Mn 194 1083 123 1026 389 1994 240 420 212 297 132 555 V 19.8 53.1 2.18 27.3 22.9 22.1 8.95 24.3 54.8 36.9 17.1 26.3 Cr 4.85 46.80 4.73 15.10 10.90 16.50 9.35 11.40 16.60 10.60 5.77 13.90 Sr 497 712 321 407 772 238 1439 823 603 733 625 652 Ba 12.2 324 5.75 107 125 126 63.2 130 159 43.8 185 116 La 2.64 10.70 0.90 5.99 4.07 13.60 6.11 4.32 11.10 5.39 3.41 6.21 Ce 4.17 21.30 1.37 11.80 9.42 29.90 11.10 10.00 18.50 10.00 6.84 12.20 Pr 0.58 2.71 0.15 1.43 1.07 3.27 1.47 1.13 2.75 1.25 0.81 1.51 Nd 2.17 9.98 0.53 5.25 4.09 11.6 5.54 4.28 10.2 4.60 2.94 5.56 Sm 0.39 2.10 0.10 1.06 0.95 2.16 1.16 0.99 2.24 0.99 0.59 1.16 Eu 0.08 0.49 0.04 0.22 0.32 0.38 0.24 0.34 0.57 0.54 0.17 0.31 Gd 0.38 2.09 0.11 1.07 1.02 2.00 1.22 1.06 2.43 1.11 0.59 1.19 Tb 0.05 0.30 0.01 0.15 0.15 0.27 0.17 0.16 0.36 0.15 0.08 0.17 Dy 0.32 1.93 0.09 0.97 1.00 1.70 1.08 1.05 2.47 0.96 0.55 1.10 Ho 0.07 0.41 0.02 0.21 0.21 0.36 0.23 0.22 0.53 0.20 0.12 0.24 Er 0.20 1.11 0.06 0.60 0.59 1.00 0.60 0.61 1.44 0.52 0.32 0.64 Tm 0.03 0.16 0.01 0.09 0.08 0.15 0.09 0.09 0.21 0.07 0.05 0.09 Yb 0.17 0.99 0.05 0.54 0.51 0.89 0.51 0.53 1.26 0.39 0.29 0.56 Lu 0.03 0.15 0.01 0.09 0.08 0.14 0.07 0.08 0.19 0.06 0.05 0.09 Y 2.76 11.80 0.91 7.39 5.80 11.80 6.42 6.06 16.30 7.28 3.93 7.31 ∑REE 14.0 66.3 4.34 36.9 29.4 79.2 36.0 31.0 70.5 33.5 20.7 38.3 δLa 1.01 0.84 1.12 0.89 0.87 0.84 0.93 0.86 0.88 0.92 0.87 0.91 δCe 0.78 0.84 0.90 0.88 0.97 0.94 0.82 0.97 0.72 0.85 0.88 0.87 δEu 1.13 1.20 1.95 1.08 1.66 0.93 1.06 1.69 1.25 2.75 1.47 1.47 La/Yb 15.2 10.8 18.9 11.1 8.02 15.4 12.0 8.22 8.86 13.7 11.9 12.1 Sr/Ba 40.8 2.20 55.8 3.80 6.19 1.90 22.8 6.34 3.81 16.8 3.38 14.9 V/Cr 4.09 1.13 0.46 1.81 2.10 1.34 0.96 2.13 3.31 3.48 2.96 2.16 Y/Ho 38.3 29.1 45.0 34.4 27.2 32.2 28.3 27.3 30.7 36.4 33.5 32.9 Mn/Sr 0.39 1.52 0.38 2.52 0.50 8.38 0.17 0.51 0.35 0.40 0.21 0.85 Mg/Ca 0.01 0.01 0.02 0.01 0.02 0.01 0.05 0.04 0.03 0.01 0.01 0.02 注: 表中元素异常的计算方法据文献[8,24],δLa=LaPAAS/(3PrPAAS-2NdPAAS),δCe= CePAAS/(2PrPAAS-NdPAAS), δEu=EuPAAS/(0.67SmPAAS+0.33TbPAAS),PAAS标准化数据据文献[25]。 -
内蒙古霍各乞宝音图群大理岩的δ13CV-PDB为1.25‰~4.79‰,平均值为2.77‰;δ18OV-PDB为-24.6‰~
-11.8‰,平均值为-17.2‰;δ18OV-SMOW为5.60‰~18.8‰,平均值为13.2‰。由碳氧同位素计算获得的Z值为121~130,平均值为125(表4)。
表 4 内蒙古霍各乞宝音图群大理岩碳氧同位素组成(‰)
样品编号 δ13CV-PDB δ18OV-PDB δ18OV-SMOW Z值 17mb-03 3.08 -21.3 8.96 123 17mb-04 3.26 -24.6 5.60 122 17DL-05 1.49 -16.4 14.0 122 17DL-06 1.51 -19.7 10.6 121 17DL-08 1.25 -11.8 18.8 124 17DL-12 2.73 -15.4 15.1 125 17DL-13 2.86 -15.0 15.5 126 17DL-14 3.33 -18.7 11.7 125 17DL-17 4.79 -13.7 16.8 130 17DL-29 3.41 -15.2 15.3 127 平均值 2.77 -17.2 13.2 125 注: Z=2.048×(δ13CV⁃PDB+50)+0.498×(δ18OV⁃PDB+50)[10]。
Study on the Paleo-sedimentary Environment of Marble in the Huogeqi Buyant Group, Inner Mongolia
-
摘要: 宝音图群是华北地台北缘分布较广的地层单元之一,记录了华北地台北缘晚元古代—早新元古代期间的地质历史演化信息,研究宝音图群大理岩对于重建华北地台北缘的古地理环境具有非常重要的意义。对霍各乞宝音图群大理岩和地层组构特征研究显示,大理岩的Z值(121~130)、Sr/Ba比值(1.90~55.8)、m值(25.7~1973)、C同位素组成(δ13CV-PDB为1.25~4.79)以及地层中发育的变余层理和浪成波痕指示其古沉积环境为海相环境;大理岩弱的负Ce异常(δCe为0.78~0.97)、弱的正Eu异常(δEu为0.93~2.75)、V/Cr比值(0.46~4.09)以及地层中原生黄铁矿风化孔洞和碳质的存在指示原始沉积水体呈次氧化状态;大理岩的哈克图解、Y/Ho比值(27.2~45.0)、δLa-Yb图解及硅铝质矿物的发育指示原始沉积过程中有丰富的陆源碎屑物质输入。晚中元古代—早新元古代时期华北地台北缘为海洋环境。Abstract: The Buyant group is one of the most widely distributed stratigraphic units in the northern margin of the North China Platform. This paper presents the study of marbles from the Buyant group in Huogeqi, which is important for reconstructing the paleogeographic environment in the northern margin of the North China Platform. The study of marble and stratigraphic fabric characteristics of the Buyant Group in Huogeqi shows: Z value (121-130), Sr/Ba ratio (1.90⁃55.8), m value (25.7⁃1 973), and carbon isotope composition (δ13CV-PDB is 1.25 to 4.79) of marbles, as well as blastobedding structure and wave ripples in stratum, which indicate there was a marine environment. The weak negative Ce anomaly (δCe is 0.78⁃0.97), weak positive Eu anomaly (δEu is 0.93⁃2.75), V/Cr ratio (0.46⁃4.09) of marbles, and the existence of carbon and weathering pores of primary pyrite in stratum indicate that the original sedimentary water was in a sub-oxidized state. The Hucker diagram, Y/Ho ratio (27.2⁃45.0), δLa-Yb diagram, and the distribution of silica-alumina minerals in marbles show there was abundant input of terrestrial clastic materials in the original deposition process. From the late Mid-Proterozoic to early Neo-Proterozoic, the northern margin of the North China Platform was a marine environment.
-
图 1 内蒙古狼山西北部地质简图
(a)内蒙古构造纲要图(修改自文献[19]);(b)内蒙古中西部区域地质图(据文献[21])
Figure 1. Geological map of the northwest Langshan area, Inner Mongolia
(a) tectonic outline map of Inner Mongolia (modified from reference[19]); (b) geological map of the central and western regions of Inner Mongolia (after reference [21])
图 3 内蒙古霍各乞宝音图群大理岩野外及镜下特征
(a)大理岩与斜长角闪岩呈整合接触关系;(b)变余平行层理构造;(c)变余翻卷层理构造;(d)变余交错层理构造;(e)粒状变晶结构;(f)白云母大理岩:断面处可见大量白云母,多发生蚀变,偶见粗粒石英结核;(g)大理岩:主要为方解石(Cal),含少量白云母(Ms)以及石英(Qz)晶粒,定向排列(正交偏光,×5);(h)大理岩变质变形花纹
Figure 3. Field and microscopic features of marble in the Huogeqi Buyant Group, Inner Mongolia
(a) marble and amphibolite are in an integrated contact relationship; (b) palimpsest parallel bedding structure; (c) palimpsest rolled bedding structure; (d) palimpsest alternate cross⁃bedding structure; (e) granular metamorphic structure; (f) muscovite marble: A large amount of muscovite can be seen in the section, most of which have been altered, and occasionally coarse⁃grained quartz nodules can be seen; (g) marble, which contains mainly calcite (Cal), containing a small amount of muscovite (Ms) and quartz (Qz) grains, and all minerals are aligned (orthogonal polarized light, ×5); and (h) metamorphic deformation pattern of marble
图 9 内蒙古霍各乞宝音图群弱氧化性特征
(a)石英片岩中原生黄铁矿风化孔洞;(b)大理岩中碳质呈星散状和条带状分布(单偏光,×5)
Figure 9. Features of weak oxidation in the Huogeqi Buyant Group, Inner Mongolia
(a) the primary pyrite weathering holes in the quartz schist; (b) the carbon is distributed through marble in scattered and striped shapes (single polarized light, ×5)
图 10 内蒙古霍各乞宝音图群大理岩碎屑混染特征
方解石(Cal)代表原始钙质沉积物,石英(Qz)和白云母(Ms)代表硅铝质陆源碎屑(正交偏光,×5)
Figure 10. Clastic contamination characteristics of marble in the Huogeqi Buyant Group, Inner Mongolia
calcite (Cal) represents primitive calcareous sediments, while quartz (Qz) and muscovite (Ms) represent silico⁃aluminous terrigenous debris (orthogonal polarized light, ×5)
表 1 内蒙古霍各乞宝音图群大理岩样品信息
样品号 岩石类型 共生岩性 17mb-03 青灰色大理岩 石榴石斜长角闪岩 17mb-04 灰白色大理岩 含石榴石斜长角闪岩 17DL-03 灰白色大理岩 斜长角闪岩 17DL-04 灰白色大理岩 石英闪长岩、花岗岩 17DL-05 灰白色大理岩 石英闪长岩、花岗岩 17DL-06 灰白色大理岩 斜长角闪岩 17DL-08 灰白色大理岩 石英二云母片岩、花岗岩 17DL-12 灰白色大理岩 斜长角闪岩 17DL-13 灰白色大理岩 斜长角闪岩 17DL-14 灰白色大理岩 含石榴石斜长角闪片岩 17DL-17 青灰色大理岩 斜长角闪岩 17DL-18 灰色大理岩 斜长角闪岩 17DL-19 灰白色大理岩 斜长角闪岩、石英岩 17DL-20 灰色大理岩 斜长角闪岩、第四系 17DL-21 灰白色大理岩 花岗岩 17DL-29 青灰色大理岩 斜长角闪岩、白云母石英岩 表 2 内蒙古霍各乞宝音图群大理岩主量元素化学成分(%)
样品号 SiO2 TiO2 Al2O3 TFe2O3 MnO MgO CaO Na2O K2O P2O5 LOl TAL m 17DL-03 2.49 0.02 0.31 0.22 0.02 1.87 53.9 0.03 0.01 0.05 41.6 101 612 17DL-04 16.80 0.48 4.66 2.96 0.13 2.35 40.0 0.99 0.52 0.11 31.5 101 50.4 17DL-05 0.96 0.01 0.12 0.10 0.01 2.28 53.6 0.01 0.01 0.03 43.4 101 1973 17DL-06 8.36 0.08 1.65 1.20 0.12 1.25 49.9 0.09 0.35 0.04 37.5 100 75.6 17DL-12 11.10 0.19 2.09 1.09 0.05 0.80 47.4 0.48 0.37 0.05 36.8 100 38.2 17DL-14 14.90 0.13 2.79 1.37 0.24 0.72 43.7 0.13 0.80 0.03 35.6 100 25.7 17DL-17 0.68 0.10 1.45 0.79 0.03 0.78 55.3 0.33 0.36 0.03 40.9 101 54.0 17DL-18 7.61 0.19 2.22 1.12 0.05 0.84 49.0 0.49 0.37 0.06 38.6 101 37.7 17DL-19 10.90 0.13 2.46 0.96 0.03 0.95 46.3 0.06 0.77 0.08 37.8 100 38.6 17DL-20 3.64 0.05 0.55 0.87 0.04 0.61 52.6 0.19 0.06 0.12 41.8 101 110 17DL-21 6.97 0.05 0.57 0.37 0.01 0.38 51.2 0.02 0.15 0.04 40.7 100 67.5 平均 7.68 0.13 1.71 1.00 0.07 1.16 49.40 0.26 0.34 0.06 38.80 101 280 表 3 内蒙古霍各乞宝音图群大理岩微量元素化学成分(μg/g)
样号 17DL-03 17DL-04 17DL-05 17DL-06 17DL-12 17DL-14 17DL-17 17DL-18 17DL-19 17DL-20 17DL-21 平均 Mg 1.13 1.42 1.38 0.75 0.48 0.43 0.47 0.50 0.57 0.37 0.23 0.70 Ca 38.5 28.6 38.3 35.6 33.9 31.2 39.5 35.0 33.1 37.6 36.6 35.3 Mn 194 1083 123 1026 389 1994 240 420 212 297 132 555 V 19.8 53.1 2.18 27.3 22.9 22.1 8.95 24.3 54.8 36.9 17.1 26.3 Cr 4.85 46.80 4.73 15.10 10.90 16.50 9.35 11.40 16.60 10.60 5.77 13.90 Sr 497 712 321 407 772 238 1439 823 603 733 625 652 Ba 12.2 324 5.75 107 125 126 63.2 130 159 43.8 185 116 La 2.64 10.70 0.90 5.99 4.07 13.60 6.11 4.32 11.10 5.39 3.41 6.21 Ce 4.17 21.30 1.37 11.80 9.42 29.90 11.10 10.00 18.50 10.00 6.84 12.20 Pr 0.58 2.71 0.15 1.43 1.07 3.27 1.47 1.13 2.75 1.25 0.81 1.51 Nd 2.17 9.98 0.53 5.25 4.09 11.6 5.54 4.28 10.2 4.60 2.94 5.56 Sm 0.39 2.10 0.10 1.06 0.95 2.16 1.16 0.99 2.24 0.99 0.59 1.16 Eu 0.08 0.49 0.04 0.22 0.32 0.38 0.24 0.34 0.57 0.54 0.17 0.31 Gd 0.38 2.09 0.11 1.07 1.02 2.00 1.22 1.06 2.43 1.11 0.59 1.19 Tb 0.05 0.30 0.01 0.15 0.15 0.27 0.17 0.16 0.36 0.15 0.08 0.17 Dy 0.32 1.93 0.09 0.97 1.00 1.70 1.08 1.05 2.47 0.96 0.55 1.10 Ho 0.07 0.41 0.02 0.21 0.21 0.36 0.23 0.22 0.53 0.20 0.12 0.24 Er 0.20 1.11 0.06 0.60 0.59 1.00 0.60 0.61 1.44 0.52 0.32 0.64 Tm 0.03 0.16 0.01 0.09 0.08 0.15 0.09 0.09 0.21 0.07 0.05 0.09 Yb 0.17 0.99 0.05 0.54 0.51 0.89 0.51 0.53 1.26 0.39 0.29 0.56 Lu 0.03 0.15 0.01 0.09 0.08 0.14 0.07 0.08 0.19 0.06 0.05 0.09 Y 2.76 11.80 0.91 7.39 5.80 11.80 6.42 6.06 16.30 7.28 3.93 7.31 ∑REE 14.0 66.3 4.34 36.9 29.4 79.2 36.0 31.0 70.5 33.5 20.7 38.3 δLa 1.01 0.84 1.12 0.89 0.87 0.84 0.93 0.86 0.88 0.92 0.87 0.91 δCe 0.78 0.84 0.90 0.88 0.97 0.94 0.82 0.97 0.72 0.85 0.88 0.87 δEu 1.13 1.20 1.95 1.08 1.66 0.93 1.06 1.69 1.25 2.75 1.47 1.47 La/Yb 15.2 10.8 18.9 11.1 8.02 15.4 12.0 8.22 8.86 13.7 11.9 12.1 Sr/Ba 40.8 2.20 55.8 3.80 6.19 1.90 22.8 6.34 3.81 16.8 3.38 14.9 V/Cr 4.09 1.13 0.46 1.81 2.10 1.34 0.96 2.13 3.31 3.48 2.96 2.16 Y/Ho 38.3 29.1 45.0 34.4 27.2 32.2 28.3 27.3 30.7 36.4 33.5 32.9 Mn/Sr 0.39 1.52 0.38 2.52 0.50 8.38 0.17 0.51 0.35 0.40 0.21 0.85 Mg/Ca 0.01 0.01 0.02 0.01 0.02 0.01 0.05 0.04 0.03 0.01 0.01 0.02 注: 表中元素异常的计算方法据文献[8,24],δLa=LaPAAS/(3PrPAAS-2NdPAAS),δCe= CePAAS/(2PrPAAS-NdPAAS), δEu=EuPAAS/(0.67SmPAAS+0.33TbPAAS),PAAS标准化数据据文献[25]。表 4 内蒙古霍各乞宝音图群大理岩碳氧同位素组成(‰)
样品编号 δ13CV-PDB δ18OV-PDB δ18OV-SMOW Z值 17mb-03 3.08 -21.3 8.96 123 17mb-04 3.26 -24.6 5.60 122 17DL-05 1.49 -16.4 14.0 122 17DL-06 1.51 -19.7 10.6 121 17DL-08 1.25 -11.8 18.8 124 17DL-12 2.73 -15.4 15.1 125 17DL-13 2.86 -15.0 15.5 126 17DL-14 3.33 -18.7 11.7 125 17DL-17 4.79 -13.7 16.8 130 17DL-29 3.41 -15.2 15.3 127 平均值 2.77 -17.2 13.2 125 注: Z=2.048×(δ13CV⁃PDB+50)+0.498×(δ18OV⁃PDB+50)[10]。 -
[1] 陈井胜,李斌,邢德和,等. 赤峰东部宝音图群斜长角闪岩锆石U-Pb年龄及地质意义[J]. 地质调查与研究,2015,38(2):81-88,99. Chen Jingsheng, Li Bin, Xing Dehe, et al. Zircon U-Pb ages and geological significance of the plagioclase amphibolite in the Baoyintu Group eastern of Chifeng[J]. Geological Survey and Research, 2015, 38(2): 81-88, 99. [2] 张玉清. 内蒙古白云鄂博北部宝音图岩群变质基性火山岩的年龄、构造背景及地质意义[J]. 地质通报,2004,23(2):177-183. Zhang Yuqing. Ages, tectonic environment and geological significance of metabasic volcanic rocks of the Buyant Group-complex in the north of Bayan Obo, Inner Mongolia[J]. Geological Bulletin of China, 2004, 23(2): 177-183. [3] 徐备,刘树文,王长秋,等. 内蒙古西北部宝音图群Sm-Nd和Rb-Sr地质年代学研究[J]. 地质论评,2000,46(1):86-90. Xu Bei, Liu Shuwen, Wang Changqiu, et al. Sm-Nd, Rb-Sr geochronology of the Baoyintu Group in northwestern Inner Mongolia[J]. Geological Review, 2000, 46(1): 86-90. [4] 滕飞,滕学建,刘洋,等. 内蒙古宝音图—霍各乞地区宝音图岩群的时代约束及构造属性[J]. 地球科学,2019,44(1):161-178. Teng Fei, Teng Xuejian, Liu Yang, et al. Geochronological constraint on the Baoyintu Group and its tectonic significance in Baoyintu-Huogeqi area, Inner Mongolia[J]. Earth Science, 2019, 44(1): 161-178. [5] 孙立新,赵凤清,王惠初,等. 内蒙古狼山地区宝音图地块变质基底的锆石U-Pb年龄及构造意义[J]. 地质学报,2013,87(2):197-207. Sun Lixin, Zhao Fengqing, Wang Huichu, et al. Zircon U-Pb geochronology of metabase rocks from the Baoyintu block in the Langshan area, Inner Mongolia, and its tectonic significance[J]. Acta Geologica Sinica, 2013, 87(2): 197-207. [6] 杜理科,葛梦春. 内蒙古锡林浩特宝音图群斜长角闪岩原岩恢复的地球化学示踪[J]. 新疆地质,2010,28(2):200-203. Du Like, Ge Mengchun. Geochemical tracing on protolith reconstruction of amphibolite of Baoyintu Group in Xilinhot, Inner Mongolia[J]. Xinjiang Geology, 2010, 28(2): 200-203. [7] Viehmann S, Bau M, Smith A J B, et al. The reliability of ~2.9 Ga old Witwatersrand banded iron formations (South Africa) as archives for Mesoarchean seawater: Evidence from REE and Nd isotope systematics[J]. Journal of African Earth Sciences, 2015, 111: 322-334. [8] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79(1/2): 37-55. [9] Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications[J]. Precambrian Research, 1995, 73(1/2/3/4): 27-49. [10] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816. [11] 宋会侠,杨崇辉,杜利林,等. 华北克拉通几个地区古元古代碳酸盐岩地层C-O同位素特征[J]. 岩石矿物学杂志,2011,30(5):865-872. Song Huixia, Yang Chonghui, Du Lilin, et al. Carbon and oxygen isotopic characteristics of several Paleoproterozoic carbonate strata in North China Craton[J]. Acta Petrologica et Mineralogica, 2011, 30(5): 865-872. [12] 孔凡凡,袁训来,周传明. 古元古代冰期事件:山西五台地区滹沱群的碳同位素证据[J]. 科学通报,2011,56(32):2699-2707. Kong Fanfan, Yuan Xunlai, Zhou Chuanming. Paleoproterozoic glaciation: Evidence from carbon isotope record of the Hutuo Group, Wutai Mountain area of Shanxi province, China[J]. Chinese Science Bulletin, 2011, 56(32): 2699-2707. [13] 毕明丽,路来君,赵庆英,等. 内蒙古大青山地区孔兹岩系中大理岩岩组的地球化学特征及原岩建造[J]. 中国地质,2008,35(4):639-647. Bi Mingli, Lu Laijun, Zhao Qingying, et al. Geochemical characteristics and protoliths of the marble rock group of the khondalite series in the Daqing Mountains, Inner Mongolia[J]. Geology in China, 2008, 35(4): 639-647. [14] 冯伟民,郑永飞,周建波. 大别—苏鲁造山带大理岩碳氧同位素地球化学研究[J]. 岩石学报,2003,19(3):468-478. Feng Weimin, Zheng Yongfei, Zhou Jianbo. Carbon and oxygen isotope geochemistry of marbles from the Dabie-Sulu orogenic belt[J]. Acta Petrologica Sinica, 2003, 19(3): 468-478. [15] 储雪蕾,张同钢,张启锐,等. 蓟县元古界碳酸盐岩的碳同位素变化[J]. 中国科学(D辑):地球科学,2003,33(10):951-959. Chu Xuelei, Zhang Tonggang, Zhang Qirui, et al. Carbon isotopic variations of Proterozoic carbonates in Jixian, Tianjin, China[J]. Science China (Seri. D): Earth Sciences, 2003, 33(10): 951-959. [16] 郑永飞,傅斌,龚冰,等. 大别山与榴辉岩共生大理岩的碳同位素异常[J]. 科学通报,1997,42(21):2316-2320. Zheng Yongfei, Fu Bin, Gong Bing, et al. Carbon isotope anomaly in marbles associated with eclogites from the Dabie Mountains[J]. Chinese Science Bulletin, 1997, 42(21): 2316-2320. [17] 郑永飞,傅斌,龚冰. 大别造山带超高压变质岩稳定同位素地球化学[J]. 安徽地质,2000,10(3):161-165. Zheng Yongfei, Fu Bin, Gong Bing. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks[J]. Geology of Anhui, 2000, 10(3): 161-165. [18] 刘铁庚. 岩浆碳酸岩与沉积碳酸盐岩造岩元素的鉴别特征[J]. 矿物岩石,1988,8(2):50-60. Liu Tiegeng. Criterion distinguishing magmatic carbonatite and sedimentary carbonate rocks by rock-forming elements[J]. Journal of Mineralogy and Petrology, 1988, 8(2): 50-60. [19] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. [20] 彭润民,翟裕生,韩雪峰,等. 内蒙古狼山造山带构造演化与成矿响应[J]. 岩石学报,2007,23(3):679-688. Peng Runmin, Zhai Yusheng, Han Xuefeng, et al. Mineralization response to the structural evolution in the Langshan orogenic belt, Inner Mongolia[J]. Acta Petrologica Sinica, 2007, 23(3): 679-688. [21] Wang Z Z, Han B F, Feng L X, et al. Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the western North China Craton: Evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement[J]. Lithos, 2016, 261: 278-295. [22] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京:地质出版社,1991. Bureau of Geology and Mineral Resources of Inner Mongolia Autonomous Region. Regional geology of Inner Mongolia[M]. Beijing: Geological Publishing House, 1991. [23] 河北省区域地质矿产调查研究所. 内蒙古1:25万巴音查干幅区域地质调查报告[R]. 2012. Institute of Regional Geology and Mineral Investigation in Hebei. Regional geological survey report of the 1: 25 million Bayinchagan sheet in Inner Mongolia[R]. 2012. [24] Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of Early Archaean chemical sediments by trace element signatures[J]. Earth and Planetary Science Letters, 2004, 222(1): 43-60. [25] McLennan S M. Rare earth elements in sedimentary rocks; Influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200. [26] Hoefs J. Stable isotope geochemistry[M]. 3rd ed. Berlin, Heidelberg: Springer, 1987: 1-241. [27] 赵振华. 微量元素地球化学原理[M]. 北京:科学出版社,1997:1-238. Zhao Zhenhua. Geochemistry of trace elements[M]. Beijing: Science Press, 1997: 1-238. [28] 王鹏万,斯春松,张润合,等. 滇黔北坳陷寒武系碳酸盐岩古海洋环境特征及地质意义[J]. 沉积学报,2016,34(5):811-818. Wang Pengwan, Si Chunsong, Zhang Runhe, et al. Characteristic of the Cambrian carbonate paleo-ocean environment in the Dianqianbei Depression and its geological significance[J]. Acta Sedimentologica Sinica, 2016, 34(5): 811-818. [29] 刘士林,刘蕴华,林舸,等. 渤海湾盆地南堡凹陷新近系泥岩稀土元素地球化学特征及其地质意义[J]. 现代地质,2006,20(3):449-456. Liu Shilin, Liu Yunhua, Lin Ge, et al. Ree geochemical characteristics and geological significance of mudstones from Neogene, Nanpu Sag, Bohai Basin[J]. Geoscience, 2006, 20(3): 449-456. [30] 代堰锫,朱玉娣,张惠华,等. 川西江浪穹窿二叠纪大理岩微量元素与碳、氧同位素组成:对古沉积环境的指示[J]. 地球化学,2017,46(3):231-239. Dai Yanpei, Zhu Yudi, Zhang Huihua, et al. Trace element and C-O isotopic constraints on the ancient depositional environment of Permian marble in the Jianglang dome, western Sichuan province[J]. Geochimica, 2017, 46(3): 231-239. [31] 刘宝珺. 沉积岩石学[M]. 北京:地质出版社,1979:1-295. Liu Baojun. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1979: 1-295. [32] 张士三,陈承惠. 太平洋中部沉积柱样中镁铝含量比的研究[J]. 海洋学报,1991,13(1):114-120. Zhang Shisan, Chen Chenghui. A study on the ratio of magnesium to aluminum in sedimentary columns in the central Pacific[J]. Acta Oceanologica Sinica, 1991, 13(1): 114-120. [33] 张士三. 太平洋中部表层沉积物镁铝含量比的变化[J]. 台湾海峡,1990,9(3):244-250. Zhang Shisan. Changes of Mg/Al content ratio in surface sediments from central Pacific[J]. Journal of Oceanography in Taiwan Strait, 1990, 9(3): 244-250. [34] 张士三. 厦门港及九龙江口沉积物中镁铝含量比的研究[J]. 台湾海峡,1984,3(1):44-49. Zhang Shisan. The Mg/AI ratio in the sediment of the Xiamen harbour and the Jiulong River estuary[J]. Journal of Oceanography in Taiwan Strait, 1984, 3(1): 44-49. [35] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in Ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129. [36] 李厚民,刘明军,李立兴,等. 辽宁弓长岭铁矿区大理岩地质地球化学特征及其成矿意义[J]. 岩石学报,2012,28(11):3497-3512. Li Houmin, Liu Mingjun, Li Lixing,et al. Geology and geochemistry of the marble in the Gongchangling iron deposit in Liaoning province and their metallogenic significance[J]. Acta Petrologica Sinica, 2012, 28(11): 3497-3512.