-
宁南盆地北部贺家口子剖面清水营组石膏样品主量测试主要包括SiO2、Al2O3、MgO、CaO、Na2O、K2O和Ti2O的含量,测试结果见表1。根据测试结果来看,20件石膏样品中CaO含量最大,分布在26.16%~29.12%之间,平均值为28.33%。Ti2O含量最小,分布在0.006%~0.073%之间,平均值为0.026%。另外,Al2O3含量也较大,分布在0.126%~1.520%之间,平均值为0.492%。除此之外,MgO、Na2O和K2O的含量均较小,平均含量依次为0.298%、0.118%和0.120%。
表 1 宁南盆地贺清水营组石膏样品主量元素和锶同位素测试结果
样品 岩性 Sr同位素 主量元素/% 87Sr/86Sr 备注 SiO2 Al2O3 MgO CaO Na2O K2O Ti2O HP-01 石膏 0.711 094 引自文献[26] 4.84 0.76 0.237 27.63 0.188 0.17 0.05 HP-02 石膏 0.710 721 引自文献[26] 6.27 1.52 0.814 26.16 0.191 0.377 0.073 HP-03 石膏 0.710 542 引自文献[26] 4.51 0.695 0.893 27.64 0.165 0.16 0.041 HP-04 石膏 0.710 631 引自文献[26] 3.84 0.9 0.717 27.6 0.163 0.227 0.046 HP-05 石膏 0.710 744 引自文献[26] 0.801 0.21 0.105 28.81 0.093 0.045 0.013 HP-06 石膏 0.710 869 引自文献[26] 3.18 0.766 0.419 27.84 0.155 0.194 0.041 HP-07 石膏 0.710 987 引自文献[26] 2.33 0.576 0.272 28.14 0.148 0.147 0.026 HP-08 石膏 0.710 936 引自文献[26] 0.957 0.18 0.148 28.71 0.054 0.054 0.012 HP-09 石膏 0.711 074 本文 4.95 1.06 0.922 27.09 0.29 0.301 0.053 HP-10 石膏 0.711 179 引自文献[26] 0.667 0.195 0.123 28.89 0.106 0.056 0.01 HP-11 石膏 0.711 217 引自文献[26] 0.687 0.131 0.065 29.12 0.148 0.033 0.013 HP-12 石膏 0.711 568 引自文献[26] 1.6 0.478 0.115 28.57 0.07 0.103 0.021 HP-13 石膏 0.711 189 本文 1.55 0.468 0.219 28.39 0.065 0.129 0.024 HP-14 石膏 0.711 233 本文 0.974 0.247 0.121 28.85 0.063 0.046 0.012 HP-15 石膏 0.711 278 本文 0.526 0.169 0.069 29.01 0.094 0.042 0.009 HP-16 石膏 0.710 910 本文 1.33 0.257 0.087 28.81 0.093 0.04 0.017 HP-17 石膏 0.711 277 本文 0.35 0.126 0.067 28.99 0.062 0.022 0.006 HP-18 石膏 0.711 242 本文 1.15 0.348 0.304 28.83 0.06 0.091 0.019 HP-19 石膏 0.711 305 引自文献[26] 1.09 0.321 0.107 28.84 0.073 0.076 0.014 HP-20 石膏 0.711 375 本文 1.27 0.424 0.151 28.68 0.078 0.082 0.017 20件石膏样品的锶同位素87Sr/86Sr值在0.710 542~0.711 568之间,平均值为0.711 069,具体见表1。古近纪海水锶同位素87Sr/86Sr值在0.708~0.709之间[38],宁南盆地清水营组石膏锶同位素87Sr/86Sr值明显更大,表现陆相封闭湖盆的沉积特征。
宁南盆地清水营组5件泥岩样品的X衍射的测试结果显示,泥岩中的主要矿物有石英、长石,伊利石、蒙脱石、方解石、白云石和石膏,见表2。泥岩中伊利石含量最高,分布在29.8%~57.6%之间,平均值为46.8%,而蒙脱石含量分布在8.9%~18.9%之间,平均值为13.0%。由伊利石和蒙脱石组成的黏土矿物在泥岩中为主体,总含量分布在46.3%~66.5%之间,平均值为59.8%。另外,泥岩中石膏、石英和长石含量也较高,石膏含量分布在1.8%~9.8%之间,平均值为6.5%;石英含量分布在14.6%~19.4%之间,平均值为17.1%;长石含量分布在3.1%~11.0%,平均值为7.5%。除此之外,泥岩中方解石和白云石含量差异较大,方解石分布在0~15.9%之间,平均值为7.8%;白云石含量分布在0~2.2%之间,平均值为0.44%。
表 2 宁南盆地贺清水营组泥岩样品X衍射分析(XRD)和Ro测试结果
样品 X衍射分析(XRD) Ro/% 岩性 石英/% 长石/% 伊利石/% 蒙脱石/% 方解石/% 白云石/% 石膏/% 黏土矿物/% HP-21 泥岩 15 6.4 57.6 8.9 0 2.2 9.8 66.5 0.57 HP-22 泥岩 14.6 3.2 46.4 18.9 12 0 4.9 65.3 0.6 HP-23 泥岩 17.3 9.1 51.1 9.3 11.1 0 1.8 60.4 0.55 HP-24 泥岩 19 11 49.2 11.3 0 0 7.9 60.5 0.66 HP-25 泥岩 19.4 7.8 29.8 16.5 15.9 0 7.9 46.3 0.6 清水营组5件泥岩样品的Ro测试结果显示,泥岩中Ro差异较小,分布在0.55%~0.66%之间,平均值为0.60%,反映泥岩中有机质热演化程度较低[39],清水营组整体成岩作用较弱。
Late Paleogene Climate Change and Its Driving Mechanism in the Ningnan Basin, Northeastern Tibetan Plateau
-
摘要: 宁南盆地咸化湖相清水营组沉积记录,是研究青藏高原东北缘地区晚古近纪气候变化及其驱动机制的绝佳选择。以宁南盆地古近系清水营组为研究对象,通过野外地质调查、样品采集、石膏主量元素和锶同位素的测试,分析沉积地层记录的化学风化和古气候的变化;并通过与全球气候变化和青藏高原隆升过程的对比分析,研究青藏高原东北缘宁南盆地气候变化的驱动机制。结果表明:宁南盆地清水营组石膏中Al2O3/SiO2、Al2O3/Ti2O、K2O/Na2O和87Sr/86Sr等指标可以很好地反映晚古近纪气候变化,在38~36 Ma、34.5~33 Ma、32~31 Ma、30~27 Ma、26~23 Ma这5个时期,化学风化减弱,气候干旱化;在36~34.5 Ma、33~32 Ma、31~30 Ma、27~26 Ma这4个时期,化学风化增强,气候湿润化。晚古近纪38~26 Ma,青藏高原东北缘宁南盆地古气候变化主要受到全球气候变化的驱动;但在26~23 Ma之间,宁南盆地古气候变化受到了青藏高原隆升的重要影响。Abstract: The sedimentary record of the saline lacustrine Qingshuiying Formation is the perfect object for the study of the Late Paleogene climate change and its driving mechanism in the Ningnan Basin, northeastern Tibetan Plateau and is taken as the research target in this study. Through field geological investigation, sample collection, and the tests of the major elements and strontium isotopes in gypsum, the chemical weathering and paleoclimate changes recorded in sedimentary strata are analyzed. Based on the comparison with the global climate change and the uplifting process of the Tibetan Plateau, the driven mechanism of the Late Paleogene climate change in the Ningnan Basin, northeastern Tibetan Plateau is studied. The results show that the indices of Al2O3/SiO2, Al2O3/Ti2O, K2O/Na2O, and 87Sr/86Sr well reflect the Late Paleogene climate change. During the 5 periods of 38-36 Ma, 34.5-33 Ma, 32-31 Ma, 30-27 Ma, and 26-23 Ma, the chemical weathering decreased, and the climate was arid, while during the 4 periods of 36-34.5 Ma, 33-32 Ma, 31-30 Ma, and 27-26 Ma, the chemical weathering increased, and the climate was humid. During the Late Paleogene 38-26 Ma, the climate change in the study area was mainly driven by the global climate change. While during 26-23 Ma, the climate change in the basin was affected by the Tibetan Plateau uplift.
-
Key words:
- climatic change /
- saline lacustrine basin /
- Tibetan Plateau uplift /
- Late Paleogene /
- Ningnan Basin
-
表 1 宁南盆地贺清水营组石膏样品主量元素和锶同位素测试结果
样品 岩性 Sr同位素 主量元素/% 87Sr/86Sr 备注 SiO2 Al2O3 MgO CaO Na2O K2O Ti2O HP-01 石膏 0.711 094 引自文献[26] 4.84 0.76 0.237 27.63 0.188 0.17 0.05 HP-02 石膏 0.710 721 引自文献[26] 6.27 1.52 0.814 26.16 0.191 0.377 0.073 HP-03 石膏 0.710 542 引自文献[26] 4.51 0.695 0.893 27.64 0.165 0.16 0.041 HP-04 石膏 0.710 631 引自文献[26] 3.84 0.9 0.717 27.6 0.163 0.227 0.046 HP-05 石膏 0.710 744 引自文献[26] 0.801 0.21 0.105 28.81 0.093 0.045 0.013 HP-06 石膏 0.710 869 引自文献[26] 3.18 0.766 0.419 27.84 0.155 0.194 0.041 HP-07 石膏 0.710 987 引自文献[26] 2.33 0.576 0.272 28.14 0.148 0.147 0.026 HP-08 石膏 0.710 936 引自文献[26] 0.957 0.18 0.148 28.71 0.054 0.054 0.012 HP-09 石膏 0.711 074 本文 4.95 1.06 0.922 27.09 0.29 0.301 0.053 HP-10 石膏 0.711 179 引自文献[26] 0.667 0.195 0.123 28.89 0.106 0.056 0.01 HP-11 石膏 0.711 217 引自文献[26] 0.687 0.131 0.065 29.12 0.148 0.033 0.013 HP-12 石膏 0.711 568 引自文献[26] 1.6 0.478 0.115 28.57 0.07 0.103 0.021 HP-13 石膏 0.711 189 本文 1.55 0.468 0.219 28.39 0.065 0.129 0.024 HP-14 石膏 0.711 233 本文 0.974 0.247 0.121 28.85 0.063 0.046 0.012 HP-15 石膏 0.711 278 本文 0.526 0.169 0.069 29.01 0.094 0.042 0.009 HP-16 石膏 0.710 910 本文 1.33 0.257 0.087 28.81 0.093 0.04 0.017 HP-17 石膏 0.711 277 本文 0.35 0.126 0.067 28.99 0.062 0.022 0.006 HP-18 石膏 0.711 242 本文 1.15 0.348 0.304 28.83 0.06 0.091 0.019 HP-19 石膏 0.711 305 引自文献[26] 1.09 0.321 0.107 28.84 0.073 0.076 0.014 HP-20 石膏 0.711 375 本文 1.27 0.424 0.151 28.68 0.078 0.082 0.017 表 2 宁南盆地贺清水营组泥岩样品X衍射分析(XRD)和Ro测试结果
样品 X衍射分析(XRD) Ro/% 岩性 石英/% 长石/% 伊利石/% 蒙脱石/% 方解石/% 白云石/% 石膏/% 黏土矿物/% HP-21 泥岩 15 6.4 57.6 8.9 0 2.2 9.8 66.5 0.57 HP-22 泥岩 14.6 3.2 46.4 18.9 12 0 4.9 65.3 0.6 HP-23 泥岩 17.3 9.1 51.1 9.3 11.1 0 1.8 60.4 0.55 HP-24 泥岩 19 11 49.2 11.3 0 0 7.9 60.5 0.66 HP-25 泥岩 19.4 7.8 29.8 16.5 15.9 0 7.9 46.3 0.6 -
[1] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. [2] Zachos J C, Dickens G R, Zeebe R E. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7176): 279-283. [3] Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(2001): 20130096. [4] Sun J M, Windley B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 2015, 43(11): 1015-1018. [5] Raymo M E, Ruddiman W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391): 117-122. [6] Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. [7] Sun J M, Windley B F, Zhang Z L, et al. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the Late Eocene[J]. Journal of Asian Earth Sciences, 2016, 116: 222-231. [8] Sun J M, Jiang M S. Eocene seawater retreat from the southwest Tarim Basin and implications for Early Cenozoic tectonic evolution in the Pamir Plateau[J]. Tectonophysics, 2013, 588: 27-38. [9] Chen C H, Bai Y, Fang X M, et al. A Late Miocene terrestrial temperature history for the northeastern Tibetan Plateau’s Period of tectonic expansion[J]. Geophysical Research Letters, 2019, 4(14): 8375-8386. [10] Zhu C G, Meng J, Hu Y Y, et al. East⁃Central Asian climate evolved with the northward migration of the High Proto‐Tibetan Plateau[J]. Geophysical Research Letters, 2019, 46(14): 8397-8406. [11] 刘晓东, Dong Buwen, Yin Zhiyong,等. 大陆漂移、高原隆升与新生代亚—非—澳洲季风区和干旱区演化[J]. 中国科学(D辑):地球科学,2019,49(7):1059-1081. Liu Xiaodong, Dong Buwen, Yin Zhiyong, et al. Continental drift, plateau uplift, and the evolutions of monsoon and arid regions in Asia, Africa, and Australia during the Cenozoic[J]. Science China (Seri. D): Earth Sciences, 2019, 49(7): 1059-1081. [12] Sun J M, Ni X J, Bi S D, et al. Synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in Asia[J]. Scientific Reports, 2014, 4(1): 7463. [13] Jiang H C, Wan S M, Ma X L, et al. End-member modeling of the grain-size record of Sikouzi fine sediments in Ningxia (China) and implications for temperature control of Neogene evolution of East Asian winter monsoon[J]. PLoS One, 2017, 12(10): e0186153. [14] 鹿化煜,郭正堂. 晚新生代东亚气候变化:进展与问题[J]. 中国科学(D辑):地球科学,2013,43(12):1907-1918. Lu Huayu, Guo Zhengtang. Evolution of the monsoon and dry climate in East Asia during Late Cenozoic: A review[J]. Science China (Seri. D): Earth Sciences, 2013, 43(12): 1907-1918. [15] Sun J M, Gong Z J, Tian Z H, et al. Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421: 48-59. [16] Sun J M, Ye J, Wu W Y, et al. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 2010, 38(6): 515-518. [17] Shen X Y, Wan S M, France-Lanord C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling?[J]. Earth and Planetary Science Letters, 2017, 474: 296-308. [18] Wang X, Carrapa B, Chapman J B, et al. Parathethys last gasp in central Asia and Late Oligocene accelerated uplift of the Pamirs[J]. Geophysical Research Letters, 2019, 46(21): 11773-11781. [19] Warren J K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. Earth-Science Reviews, 2010, 98(3/4): 217-268. [20] 朱洪发,刘翠章,林付律. 四川盆地中下三叠系含盐系岩石类型的成因和沉积相特征[J]. 矿物岩石,1986,6(3):76-86. Zhu Hongfa, Liu Cuizhang, Lin Fulü. Characteristics of sedimentary facies of salt sequences and origin of their rock types in Lower and Middle Triassic, Sichuan Basin[J]. Minerals and Rocks, 1986, 6(3): 76-86. [21] 金强,查明. 柴达木盆地西部第三系蒸发岩与生油岩共生沉积作用研究[J]. 地质科学,2000,35(4):465-473. Jin Qiang, Zha Ming. Co-sedimentation of Tertiary evaporites and oil source rocks in the western Qaidam Basin[J]. Scientia Geologica Sinica, 2000, 35(4): 465-473. [22] 岳志鹏,曾俊,高志卫,等. 惠民凹陷孔店组—沙四段“膏盐岩”层沉积机理:以MS1井“膏盐岩”层分析为例[J]. 石油勘探与开发,2006,33(5):591-595. Yue Zhipeng, Zeng Jun, Gao Zhiwei, et al. Sedimentation mechanism of “gypsum rock” in Kongdian Formation and Sha 4 member of Shahejie Formation in Huimin Sag—With the “gypsum rock” of well MS1 as an example[J]. Petroleum Exploration and Development, 2006, 33(5): 591-595. [23] Zhang F, Jin Z D, West A J, et al. Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake[J]. Science Advances, 2019, 5(6): eaav7110. [24] Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346(6279): 29-34. [25] 吴小力,李荣西,胡建民,等. 中国北方宁南盆地古近纪晚期咸化湖盆演化及其区域地质意义[J]. 地质学报,2017,91(4):954-967. Wu Xiaoli, Li Rongxi, Hu Jianmin, et al. Late Paleogene saline lake evolution of the Ningnan Basin, northern China, and its regional geological significance[J]. Acta Geologica Sinica, 2017, 91(4): 954-967. [26] Wu X L, Li R X, Hu J M, et al. Late Paleogene saline lake evolution of the Ningnan Basin and its response to the regional paleoclimate and uplift of the Tibetan Plateau: Evidence from sedimentary strata, and S and Sr isotopes[J]. Geological Journal, 2018, 53(Suppl.2): 405-416. [27] 邓辉. 宁南盆地新生代沉积—构造面貌及其演化[D]. 西安:西北大学,2014. Deng Hui. Cainozoic appearance and evolution of sedimentation-tectonics in Ningnan Basin[D]. Xi’an: Northwestern University, 2014. [28] 房建军. 宁南盆地沉积构造演化与改造[D]. 西安:西北大学,2009. Fang Jianjun. Sedimentary-structural evolution and reformation of Ningnan Basin[D]. Xi’an: Northwestern University, 2009. [29] 申旭辉,田勤俭,丁国瑜,等. 宁夏贺家口子地区晚新生代地层序列及其构造意义[J]. 中国地震,2001,17(2):156-166. Shen Xuhui, Tian Qinjian, Ding Guoyu, et al. The Late Cenozoic stratigraphic sequence and its implication to tectonic evolution, Hejiakouzi area, Ningxia Hui Autonomous Region[J]. Earthquake Research in China, 2001, 17(2): 156-166. [30] 刘池洋,赵红格,桂小军,等. 鄂尔多斯盆地演化—改造的时空坐标及其成藏(矿)响应[J]. 地质学报,2006,80(5):617-638. Liu Chiyang, Zhao Hongge, Gui Xiaojun, et al. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 2006, 80(5): 617-638. [31] 王伟涛. 宁夏南部新生代盆地沉积演化及其对青藏高原东北角构造变形的响应[D]. 北京:中国地震局地质研究所,2011. Wang Weitao. Sedimentary responses to the Cenozoic tectonic evolution of the northeastern corner of the Tibetan Plateau[D]. Beijing: Institute of Geology, China Earthquake Administrator, 2011. [32] 赵晓辰,刘池洋,王建强,等. 南北构造带北部香山地区中—新生代构造抬升事件[J]. 岩石学报,2016,32(7):2124-2136. Zhao Xiaochen, Liu Chiyang, Wang Jianqiang, et al. Mesozoic-Cenozoic tectonic uplift events of Xiangshan Mountain in northern North-South Tectonic Belt, China[J]. Acta Petrologica Sinica, 2016, 32(7): 2124-2136. [33] 中科院南京地质古生物研究所. 宁夏灵武首次发现古近纪始新世大型哺乳动物雷兽化石[EB/OL]. (2019-04-19). http://www.nigpas.cas.cn/kxcb/kpwz/201904/t20190419_5277647.html. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences. The fossil of the large mammal Ultralisk of Paleogene Eocene was first discovered in Lingwu, Ningxia[EB/OL].(2019-04-19). http://www.nigpas.cas.cn/kxcb/kpwz/201904/t20190419_5277647.html. [34] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 14506.28—2010 硅酸盐岩石化学分析方法 第28部分:16个主次成分量测定 [S]. 北京:中国标准出版社,2011. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. GB/T 14506.28-2010. Methods for chemical analysis of silicate rocks: Part 28: Determination of 16 major and minor elements content [S]. Beijing: China Standard Press, 2011. [35] 国家质量技术监督局. GB/T 17672—1999 岩石中铅、锶、钕同位素测定方法 [S]. 北京:中国标准出版社,1999. State Bureau of Quality and Technical Supervision. GB/T 17672-1999 Determinations for isotopes of lead, strontium and neodymium in rock samples [S]. Beijing: China Standard Press, 1999. [36] 国家能源局. SY/T 5163—2010 沉积岩中黏土矿物和常见非黏土矿物X衍射分析方法 [S]. 北京:石油工业出版社,2010. National Energy Administration. SY/T 5163-2010 Analysis method for clay minerals and ordinary non-clay minerals in sedimentary rocks by the X-ray diffraction [S]. Beijing: Petroleum Industry Press, 2010. [37] 中国石油天然气总公司. SY/T 5124—1995 沉积岩中镜质组反射率测定方法 [S]. 北京:石油工业出版社,1996. [China National Petroleum Corporation. SY/T 5124-1995 Determination of vitrinite reflectance in hydrocarbon source rock[S]. Beijing: Petroleum Industry Press, 1996.] [38] 郑永飞,陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社,2000:1-315. Zheng Yongfei, Chen Jiangfeng. Stable isotope geochemistry[M]. Beijing: Science Press, 2000: 1-315. [39] 秦建中. 中国烃源岩[M]. 北京:科学出版社,2005. Qin Jianzhong. The hydrocarbon source rock of China[M]. Beijing: Science Press, 2005. [40] 邓宏文,钱凯. 沉积地球化学与环境分析[M]. 兰州:甘肃科技出版社,1993:1-154. Deng Hongwen, Qian Kai. Sedimentary geochemistry and environmental analysis[M]. Lanzhou: Gansu Science and Technology Press, 1993: 1-154. [41] 张虎才. 元素表生地球化学特征及理论基础[M]. 兰州:兰州大学出版社,1997:1-456. Zhang Hucai. Elemental epigenetic geochemical characteristics and theoretical basis[M]. Lanzhou: Lanzhou University Press, 1997: 1-456. [42] Nesbitt H W, Wilson R E. Recent chemical weathering of basalts[J]. American Journal of Science, 1992, 292(10): 740-777. [43] Wei G J, Liu Y, Li X H, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3/4): 331-342. [44] 马英军,刘丛强. 地壳风化系统中的Sr同位素地球化学[J]. 矿物学报,1998,18(3):350-358. Ma Yingjun, Liu Congqiang. Geochemistry of strontium isotopes in the crust weathering system[J]. Acta Mineralogica Sinica, 1998, 18(3): 350-358. [45] Åberg G, Jacks G, Joseph Hamilton P. Weathering rates and 87Sr/86Sr ratios: An isotopic approach[J]. Journal of Hydrology, 1989, 109(1/2): 65-78. [46] Bain D C, Bacon J R. Strontium isotopes as indicators of mineral weathering in catchments[J]. CATENA, 1994, 22(3): 201-214. [47] 刘晓惠,许强,丁林. 差异抬升:青藏高原新生代古高度变化历史[J]. 中国科学(D辑):地球科学,2017,47(1):40-56. Liu Xiaohui, Xu Qiang, Ding Lin. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2017, 47(1): 40-56. [48] Valdes P J, Lin D, Farnsworth A, et al. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”[J]. Science, 2019, 365(6459): eaax8474. [49] Ding L, Spicer R A, Yang J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45(3): 215-218. [50] Ding L, Xu Q, Yue Y H, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene⁃Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. [51] 陈正乐,李丽,刘健,等. 西天山隆升—剥露过程初步研究[J]. 岩石学报,2008,24(4):625-636. Chen Zhengle, Li Li, Liu Jian, et al. Preliminary study on the uplifting-exhumation process of the western Tianshan range, northwestern China[J]. Acta Petrologica Sinica, 2008, 24(4): 625-636. [52] 张玲,杨晓平,万景林,等. 中新生代南北天山差异性抬升历史的磷灰石裂变径迹证据[J]. 岩石学报,2018,34(3):837-850. Zhang Ling, Yang Xiaoping, Wan Jinglin, et al. Mesozoic and Cenozoic differential uplifting history of the North Tianshan and the South Tianshan from apatite fission-track date[J]. Acta Petrologica Sinica, 2018, 34(3): 837-850.