高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探

贾永斌 于文修 温汉捷 罗重光 杨光树 杨洋 崔燚

贾永斌, 于文修, 温汉捷, 罗重光, 杨光树, 杨洋, 崔燚. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 沉积学报, 2023, 41(1): 170-182. doi: 10.14027/j.issn.1000-0550.2021.076
引用本文: 贾永斌, 于文修, 温汉捷, 罗重光, 杨光树, 杨洋, 崔燚. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 沉积学报, 2023, 41(1): 170-182. doi: 10.14027/j.issn.1000-0550.2021.076
JIA YongBin, YU WenXiu, WEN HanJie, LUO ChongGuang, YANG GuangShu, YANG Yang, CUI Yi. Geochemical Characteristics and Sedimentary Environment of Li-rich Clay Rocks at the Southern Margin of the Central Yunnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 170-182. doi: 10.14027/j.issn.1000-0550.2021.076
Citation: JIA YongBin, YU WenXiu, WEN HanJie, LUO ChongGuang, YANG GuangShu, YANG Yang, CUI Yi. Geochemical Characteristics and Sedimentary Environment of Li-rich Clay Rocks at the Southern Margin of the Central Yunnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 170-182. doi: 10.14027/j.issn.1000-0550.2021.076

滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探

doi: 10.14027/j.issn.1000-0550.2021.076
基金项目: 

国家重点研发计划 2017YFC0602500

详细信息
    作者简介:

    贾永斌,男,1991年出生,硕士研究生,地球化学,E-mail: jiayongbin@mail.gyig.ac.cn

    通讯作者:

    于文修,男,讲师,矿床地球化学,E-mail: 284953733@qq.com

  • 云南省地质局第二区域地质测量大队七分队.1∶200 000云南地质玉溪幅.1969.
  • 中图分类号: P588.2

Geochemical Characteristics and Sedimentary Environment of Li-rich Clay Rocks at the Southern Margin of the Central Yunnan Basin

Funds: 

National Key Research and Development Project of China 2017YFC0602500

  • 摘要: 沉积岩中的微量元素对沉积环境变化有较高的敏感度,是研究古沉积环境的有效手段。滇中盆地倒石头组是一套富锂的黏土岩地层,其古环境的研究对恢复该时期盆地沉积格局和锂元素富集具有重要意义。基于滇中盆地倒石头组两个典型钻孔样品详细的地球化学研究,探讨了倒石头组富锂黏土岩形成时的沉积环境及其对锂元素富集的影响。研究结果表明:所有样品Sr、Ga元素含量及Sr/Ba值指示研究区古水体介质为淡水陆相沉积环境;其δU值介于0.51~1.63,U/Th值介于0.11~1.49,V/(V+Ni)值介于0.48~0.86,V/Cr值介于0.45~1.24,同时在U(EF)-Mo(EF)协变模式图中,样品数据均未落在缺氧和硫化区域,表明研究区富锂黏土岩的沉积环境为氧化—弱还原环境;且样品Sr/Cu比值介于0.69~4.87,CIA值介于86.3~99.66,XRD全岩黏土矿物分析显示高岭石为主要的黏土矿物,表明富锂黏土岩在形成过程中处于温暖潮湿的沉积环境并伴随较为强烈的化学风化作用。
    注释:
    1) 脚注:
    1)  云南省地质局第二区域地质测量大队七分队.1∶200 000云南地质玉溪幅.1969.
  • 图  1  滇中盆地南缘地质简图(底图据云南省地质局第二区域地质测量大队七分队,19691)和ZK05、ZK06钻孔剖面图

    Figure  1.  Geological sketch of southern margin of Central Yunnan (modified by Yunnan Geological Brigade,1969) and profiles of boreholes ZK05, ZK06

    Fig.1

    图  2  样品Li含量与Sr含量、Ga含量、Sr/Ba值的关系图解

    Figure  2.  Sample content of Li, Sr and Ga, and Sr/Ba relationship

    Fig.2

    图  3  滇中盆地南缘倒石头组黏土岩U和Mo富集系数(U(EF)⁃Mo(EF))协变模式图[43]

    Figure  3.  Crossplot of U(EF)⁃Mo(EF) in Daoshitou Formation clay rock at southern margin of Dianzhong Basin[43]

    Fig.3

    图  4  样品Li含量与U/Th值、V/Cr值、V/(V+Ni)值、δU的关系图解

    Figure  4.  Sample Li content, U/Th value, V/Cr value, V/(V+Ni)value, δU relationship diagram

    Fig.4

    图  5  样品Li含量与U/Th值、CIA值、Sr/Cu的关系图解

    Figure  5.  Sample content of Li, U/Th, CIA, and Sr/Cu relationship diagram

    Fig.5

    图  6  滇中盆地南缘倒石头组样品Th/Sc⁃Zr/Sc图解[54]

    Figure  6.  Th/Sc⁃Zr/Sc for samples from the Daoshitou Formation section, southern Dianzhong Basin[54]

    Fig.6

    图  7  样品的X射线衍射峰图谱

    M.白云母;K.高岭石;B.勃姆石;Mo.蒙脱石;D.白云石;Py.黄铁矿;A.锐钛矿

    Figure  7.  XRD diffraction peak patterns for samples

    Fig.7

    表  1  滇中盆地南缘倒石头组黏土岩微量元素(μg/g)分析及比值计算结果

    样号岩性LiMoScCoZrUThVCrNiSrGaBaCuSr/CuSr/BaδUU/ThV/CrV/(V+Ni)
    ZK05-H2炭质泥岩2 2807.7836.76.425714.825.816916056.81435.73509.61.460.041.260.571.060.75
    ZK05-H3炭质泥岩1 70012.235.311.421310.924.719516669.718.736.238017.51.070.051.140.441.170.74
    ZK05-H4深灰色煤岩3 22015.4526.66.73325.440.916935228.335.432.328011.23.160.130.570.130.480.86
    ZK05-H5浅灰色铝土质黏土岩3 13012.825.59.23504.923.726839089.636.152.327014.72.460.130.770.210.690.75
    ZK05-H6浅灰白色铝土质黏土岩1 6006.630.811.93234.52722330579.823.149.330013.41.720.080.670.170.730.74
    ZK05-H7浅灰白色铝土质黏土岩830532.124.83204.828.922926787.816.452.461082.050.030.670.170.860.72
    ZK05-H8浅灰白色铝土质黏土岩1 1004.8430.412.73114.624.422524672.115.851.342017.80.890.040.720.190.910.76
    ZK05-H9浅灰白色铝土质黏土岩3301.5731.224.92914.125.519518463.712.448.887018.10.690.010.650.161.060.75
    ZK06-H2浅灰色铝土质黏土岩3644.9424.252794.531.816431629.73.943.5801.72.290.050.600.140.520.85
    ZK06-H3深灰色薄—中层状炭质铝土黏土岩37316.22319.1216523.115326097.2835.9805.91.360.100.790.220.590.61
    ZK06-H4深灰色薄—中层状炭质铝土黏土岩1 0705.9628.710.43134.720.51432981096.239.9303.12.000.210.820.230.480.57
    ZK06-H5深灰色铝土质黏土岩9705.8925.612.12613.611.4151244108.5635.8302.12.860.200.970.320.620.58
    ZK06-H6灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩1 3606.76298.22794.714131253127.55.337.4202.81.890.271.000.340.520.51
    ZK06-H7灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩1 2906.5631.59.83344.713.91322561305.638.32022.800.281.010.340.520.50
    ZK06-H8灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩1 3007.173110.53204.711.25134243131.55.638.4302.62.150.191.110.420.550.50
    ZK06-H9灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩1 2909.2128.293004.610.51212661294.938.2302.81.750.161.140.440.450.48
    ZK06-H10浅灰色薄片状铝土质黏土岩1 27011.23311.22985.317.651352831416.342.3303.31.910.210.950.300.480.49
    ZK06-H11浅灰色薄片状铝土质黏土岩1 4109.4529.4102994.812.4142296135.55.639.6303.71.510.191.070.390.480.51
    ZK06-H12浅灰色薄片状铝土质黏土岩1 34010.829.411.12954.913.75138286138.56.339.8303.21.970.211.030.360.480.50
    ZK06-H13浅灰色薄片状铝土质黏土岩9705.2421.612.82833.914.1167247107.5537.1402.22.270.130.910.280.680.61
    ZK06-H14浅灰色薄片状铝土质黏土岩9507.592214.42703.810.25160260116.55.137.1303.11.650.171.050.370.620.58
    ZK06-H15浅灰色薄片状铝土质黏土岩7304.0126.310.72624.728.116322892.16.838.8501.64.250.140.670.170.710.64
    ZK06-H16深灰色中—厚层状铝土岩5705.722313.12205.923.714619575.911.434505.12.240.230.860.250.750.66
    ZK06-H17深灰色中—厚层状铝土岩1 22012.4528.513.4313513.65141280128.56.541.6303.12.100.221.050.370.500.52
    ZK06-H18深灰色中—厚层状铝土岩4493.722.912.92114.621.719817559.211.640.116033.870.070.780.211.130.77
    ZK06-H19深灰色中—厚层状铝土岩7507.7321.215.52464.412.8516523588.86.835.6604.11.660.111.010.340.700.65
    ZK06-H20深灰色层状铝土岩1 2605.0526.79.12624.49.04133239117.54.838.61022.400.481.190.490.560.53
    下载: 导出CSV

    表  2  滇中盆地南缘倒石头组黏土岩常量元素(%)分析及比值计算结果

    样号岩性Al2O3Na2OCaOK2OCIA
    ZK05-H2炭质泥岩29.570.510.221.9991.57
    ZK05-H3炭质泥岩26.360.390.281.6092.06
    ZK05-H4深灰色煤岩26.640.080.081.1395.37
    ZK05-H5浅灰色铝土质黏土岩33.820.050.050.3798.60
    ZK05-H6浅灰白色铝土质黏土岩32.500.090.091.3195.58
    ZK05-H7浅灰白色铝土质黏土岩31.560.120.122.7291.41
    ZK05-H8浅灰白色铝土质黏土岩31.930.130.132.4792.10
    ZK05-H9浅灰白色铝土质黏土岩29.670.180.184.3686.30
    ZK06-H2浅灰色铝土质黏土岩31.180.090.510.0397.59
    ZK06-H3深灰色薄—中层状炭质铝土黏土岩25.700.231.140.1096.26
    ZK06-H4深灰色薄—中层状炭质铝土黏土岩37.320.091.700.0598.97
    ZK06-H5深灰色铝土质黏土岩28.440.032.510.0399.56
    ZK06-H6灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩35.150.031.650.0299.61
    ZK06-H7灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩41.000.032.230.0399.58
    ZK06-H8灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩41.570.042.580.0399.55
    ZK06-H9灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩39.680.041.810.0399.53
    ZK06-H10浅灰色薄片状铝土质黏土岩34.770.041.700.0299.50
    ZK06-H11浅灰色薄片状铝土质黏土岩36.850.041.880.0399.52
    ZK06-H12浅灰色薄片状铝土质黏土岩36.940.042.120.0599.49
    ZK06-H13浅灰色薄片状铝土质黏土岩33.260.046.580.0599.47
    ZK06-H14浅灰色薄片状铝土质黏土岩29.570.034.790.0399.66
    ZK06-H15浅灰色薄片状铝土质黏土岩30.990.048.210.0599.28
    ZK06-H16深灰色中—厚层状铝土岩23.900.0313.020.0399.03
    ZK06-H17深灰色中—厚层状铝土岩39.110.042.510.0599.46
    ZK06-H18深灰色中—厚层状铝土岩24.280.0810.510.1095.31
    ZK06-H19深灰色中—厚层状铝土岩29.380.046.440.0598.68
    ZK06-H20深灰色层状铝土岩29.760.031.700.0399.66
    下载: 导出CSV
  • [1] 任方涛,张杰.黔中地区铝质岩中锂的化学分离富集研究[J].无机盐工业,2013,45(3):19-21.

    Ren Fangtao, Zhang Jie. Chemical separation and enrichment of lithium in aluminous rock in central Guizhou[J]. Inorganic Chemicals Industry, 2013,45(3):19-21.
    [2] 王珍珍,张福良,胡永达,等.世界锂资源开发利用形势分析与探讨[J].中国矿业,2014,23(增刊1):1-5.

    Wang Zhenzhen, Zhang Fuliang, Hu Yongda, et al .The global status of lithium resource and suggestions on its development and utilization in China[J]. China Mining Magazine. 2014,23(Suppl. 1):1-5.
    [3] 王学评,柴新夏,崔文娟.全球锂资源开发利用的现状与思考[J].中国矿业,2014,23(6):10-13.

    Wang Xueping, Chai Xinxia, Cui Wenjuan. Exploitation and utilization of global lithium resources:Trends and our responses[J], China Mining Magazine. 2014,23(6):10-13.
    [4] 吴荣庆.新能源材料锂:资源储量与供需形势分析[J].国土资源情报,2017 (1):4-9.

    Wu Rongqing. Lithium, new energy material: Analysis of resource reserves and supply-demand situation[J]. Land and Resources Information, 2017 (1):4-9.
    [5] 尹福光,蒲心纯,朱同兴,等.滇中特提斯侏罗纪盆地沉积特征及环境分析[J].特提斯地质,1994,18(18):74-87.

    Yin Fuguang, Pu Xinchun, Zhu Tongxing,et al. Sedimentology and environmental analysis of Jurassic basin in central Yunnan tethys[J]. Tethyan Geology,1994,18(18):74-87.
    [6] 王巨民,张永宏,朱绍兵.滇中(楚雄)晚三叠世盆地成因机制、聚煤古地理类型与找煤方向[J].中国煤田地质,2007,19(4):1-4.

    Wang Jumin, Zhang Yonghong, Zhu Shaobing. Central Yunnan(Chuxiong) Late Triassic basin genetic mechanism,coal-accumulating paleogeographic type and coal looking orientation[J]. Coal Geology of China,2007,19(4):1-4.
    [7] 谭秀民,张永兴,张利珍,等.能源金属锂资源开发利用现状及发展建议[J].矿产保护与利用,2017(05):87-92.

    Tan Xiumin, Zhang Yongxing, Zhang Lizhen,et al .Utilization status of lithium resources and development suggestions[J]. Conservation and Utilization of Mineral Resources, 2017(5):87-92.
    [8] 张驰,肖琳,张自生, 等.锂矿床主要类型、地质特征与成矿模式综述[J].低碳世界,2017(16):33-34.

    Zhang Chi, Xiao Lin, Zhang Zisheng,et al .Summary of main types, geological characteristics and metallogenic models of lithium deposits[J]. Low Carbon World, 2017(16):33-34.
    [9] 王秋舒,元春华,许虹.全球锂矿资源分布与潜力分析[J].中国矿业,2015,24(2):10-17.

    Wang Qiushu, Yuan Chunhua, Xu Hong. Analysis of the global lithium resource distribution and potential[J]. China Mining Magazine. 2015,24(2):10-17.
    [10] 温汉捷,罗重光,杜胜江,等.碳酸盐黏土型锂资源的发现及意义[J].科学通报,2020,65(1):53-59.

    Wen Hanjie, Luo Chongguang, Du Shengjiang,et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin,2020,65(1):53-59.
    [11] 王益友,吴萍 .江浙海岸带沉积物的地球化学标志[J]. 同济大学学报,1983 (4):79-87.

    Wang Yiyou, Wu Ping.Geochemical criteria of sediments in the coastal area of Jiangsu and Zhejiang provinces[J]. Journal of Tongji University, 1983 (4):79-87.
    [12] 王峰,刘玄春,邓秀芹,等 .鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J].沉积学报,2017,35(6):1265-1273.

    Wang Feng, Liu Xuanchun, Deng Xiuqin,et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica,2017,35(6):1265-1273.
    [13] 田景春,张翔 .沉积地球化学[M].北京:地质出版社,2016:63-77.

    Tian Jingchun, Zhang Xiang.Sedimentary geochemistry[M].Beijing: Geological Publishing House,2016:63-77.
    [14] 何庆,高键,董田,等.鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J].沉积学报,2021,39(3):686-703.

    He Qing, Gao Jian, Dong Tian,et al.Elemental geochemistry and paleo-environmental conditions of the Lower Cambrian Niutitang shale in western Hubei province[J].Acta Sedimentologica Sinica,2021,39(3):686-703.
    [15] 王健,彭捷,操应长,等.东营凹陷中晚始新世古气候演化特征及其意义:以HK1井为例[J].沉积学报,2022,40(4):1059-1072.

    Wang Jian, Peng Jie, Cao Yingchang,et al.Mid-late Eocene paleoclimate characteristics and significance in the Dongying Depression: An example from well HK1[J].Acta Sedimentologica Sinica,2022,40(4):1059-1072.
    [16] 潘世乐,蒋赟,康健,等.柴北缘冷湖七号下干柴沟组上段古气候及物源分析[J].沉积学报,2021,39(5):1292-1304.

    Pan Shile, Jiang Yun, Kang Jian,et al. Analysis of paleoclimate and source of the upper section, Lower Ganchaigou Formation,Lenghu No.7 region,north Qaidam Basin[J].Acta Sedimentologica Sinica,2021,39(5):1292-1304.
    [17] 邓宏文,钱凯 .沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993,1(1)95-104.

    Deng Hongwen, Qian Kai.Sedimentary geochemistry and environmental analysis[M].Lan zhou: Gansu Science and Technology Press,1993,1(1):95-104.
    [18] 李进龙,陈东敬 . 古盐度定量研究方法综述[J].油气地质与采收率,2003,10(5):1-3.

    Li Jinlong, Chen Dongjing. Summary of quanti-fied research method on paleosalinity[J]. Petroleum Geology and Recovery,2003,10(5):1-3
    [19] 陈会军,刘招君,柳蓉,等 . 银额盆地下白垩统巴音戈壁组油页岩特征及古环境[J].吉林大学学报(地球科学版),2009,39( 4) : 669-675.

    Chen Huijun, Liu Zhaojun, Liu Rong,et al .Characteristic of oil shale and paleoenvironment of the Bayingebi Formation in the Lower Cretaceous in Yin’e Basin[J]. Journal of JilinUniversity ( Earth Science Edition ),2009,39 ( 4 ):669-675.
    [20] 倪善芹,侯泉林,王安建,等 . 碳酸盐岩中锶元素地球化学特征及其指示意义:以北京下古生界碳酸盐岩为例[J].地质学报,2010,84( 10) : 1510-1516.

    Ni Shanqin, Hou Quanlin, Wang Anjian,et al.Geochemical characteristics of carbonate rocks and its geological implications:Taking the Lower Palaeozoic carbonate rock of Beijing area as an example[J].Acta Geologica Sinica,2010,84(10):1510-1516.
    [21] 王敏芳,焦养泉,王正海,等 . 沉积环境中古盐度的恢复:以吐哈盆地西南缘水西沟群泥岩为例[J]. 新疆石油地质,2005,26(6):719-722.

    Wang Minfang, Jiao Yangquan, Wang ZhengHai,et al. Recovery paleosalinity in sedimentary environment:An example of mudstone in Shuixigou Group, southwestern margin of Turpan-Hami Basin[J]. Xinjiang Petroleum Geology,2005,26(6):719-722.
    [22] 文华国,郑荣才,唐飞,等 .鄂尔多斯盆地耿湾地区长 6 段古盐度恢复与古环境分析[J].矿物岩石,2008,28(1):114-120.

    Wen Huaguo, Zheng Rongcai, Tang Fei, et al. Reconstruction and analysis of paleosalanity and paleoenvironment of the Chang 6 member in the Gengwan region, Ordos Basin[J].Journal of Mineralogy and Petrology,2008,28(1):114-120.
    [23] 钱利军,陈洪德,林良彪,等 . 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J].沉积学报,2012,30(6):1061-1071.

    Qian Lijun, Chen Hongde, Lin Liangbiao,et al. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation,western margin of Sichuan Basin[J].Acta Sedimentologica Sinica,2012,30(6):1061-1071.
    [24] 姚双秋,庞崇进,温淑女,等. 桂西上二叠统合山组富锂黏土岩的发现及意义[J].大地构造与成矿学,2021,45(5):951-962.

    Yao Shuangqiu, Pang Chongjin, Wen Shunü,et al. Li-rich claystone in the Upper Permian Heshan Formation in western Guangxi and its prospecting significance[J]. Geotectonica et Metallogenia,2021,45(5):951-962.
    [25] 钟海仁. 重庆南川铝土矿沉积物源及含矿岩系伴生锂赋存状态和富集机理研究[D]. 北京:中国地质大学(北京),2020.

    Zhong Hairen. Provenance of bauxite,and occurrence state,enrichment mechanism of associated lithium in ore-bearing rocks of deposits in Nanchuan district,Chongqing[D]. Beijing:China University of Geosciences,Beijing, 2020.
    [26] 王行军,王梓桐,王根厚,等.滇西北鹤庆县松桂铝土矿床地球化学特征及成矿环境分析[J].西北地质,2017,50(3):205-221.

    Wang Xingjun, Wang Zitong, Wang Genhou,et al. Geochemical characteristics and ore-forming environment of the Songgui bauxite deposit in Heqing county,northwest Yunnan province[J]. Northwestern Geology, 2017,50(3):205-221.
    [27] 莫光员,吴启美. 黔北地区浣溪铝土矿床地球化学特征及指示意义[J].矿产与地质,2020,34(2):228-235,246.

    Mo Guangyuan, Wu Qimei. Geochemical characteristics and indicative significance of Huanxi bauxite deposit in north Guizhou[J]. Mineral Resources and Geology, 2020,34(2):228-235,246.
    [28] Russell AD, Morford J L The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, Columbia British [J] Marine Geology, 2001, 174(1/2/3/4): 341-354.
    [29] 常华进,储雪蕾,冯连君,等 . 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99.

    Chang Huajin, Chu Xuelei, Feng Lianjun,et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review,2009,55(1):91-99.
    [30] 刘安,李旭兵,王传尚,等 . 湘鄂西寒武系烃源岩地球化学特征与沉积环境分析[J]. 沉积学报,2013,31(6):1122-1132.

    Liu An, Li XuBing, Wang Chuanshang,et al. Analysis of geochemical feature and sediment environment for hydrocarbon source rocks of Cambrian in west Hunan-Hubei area[J]. Acta Sedimentologica Sinica,2013,31(6):1122-1132.
    [31] 徐崇凯,刘池洋,郭佩,等 . 潜江凹陷古近系潜江组盐间泥岩地球化学特征及地质意义[J]. 沉积学报,2018,36(3):617-629.

    Xu Chongkai, Liu Chiyang, Guo Pei,et al. Geochemical characteristics and their geological significance of intrasalt mudstones from the Paleogene Qianjiang Formation in the Qianjiang Graben,Jianghan Basin,China[J]. Acta Sedimentologica Sinica,2018,36(3):617-629.
    [32] Dill H, Teschner M, Wehner H .Petrography, inorganic and organic geochemistry of Lower Permian carbonaceous fan sequences (“Brandschiefer Series”) — Federal Republic of Germany: Constraints to their paleogeography and assessment of their source rock potential[J].Chemical Geology,1988,67(3/4): 307-325.
    [33] 金明,李妩巍 . 乌兰花地区下白垩统、上新统岩石地球化学特征及其古气候演变[J]. 铀矿地质,2003,19(6):349-354.

    Jin Ming, Li Wuwei.Petrogeochemical characteristics of Lower Cretaceous and Pliocene rocks and paleoclimate evolution in Wulanhua region[J]. Uranium Geology,2003,19(6):349-354.
    [34] 李广之,胡斌,邓天龙,等 . 微量元素 V 和 Ni 的油气地质意义[J]. 天然气地球科学,2008,19(1):13-17.

    Li Guangzhi, Hu Bin, Deng Tianlong,et al. Petroleum geological significance of microelements V and Ni[J]. Natural Gas Geoscience,2008,19(1):13-17.
    [35] 刘江斌,李文厚,任战利,等. 鄂尔多斯盆地泾川地区三叠系延长组烃源岩特征及其沉积环境[J].地质科学,2020,55(4):989-1000.

    Liu Jiangbin, Li Wenhou, Ren Zhanli, et al. Characteristics and sedimentary environment of the hydrocarbon source rock of the Triassic Yanchang Formation in Jingchuan area, Ordos Basin[J]. Chinese Journal of Geology, 2020,55(4):989-1000.
    [36] 冯伟明,李嵘,赵瞻,等. 滇东北DD1井五峰组—龙马溪组地层界线划分及沉积环境演变[J].中国地质,2021,48(1):297-308.

    Feng Weiming, Li Rong, Zhao Zhan, et al. Boundary definition of Wufeng Formation and Longmaxi Formation in well DD1 and sedimentary environment evolution of northeastern Yunnan[J].Geology in China, 2021,48(1):297-308.
    [37] 陈平,林卫兵,龚大建,等. 贵州岑巩区块下寒武统变马冲组黑色页岩沉积地球化学特征及其沉积环境意义[J].地质科学,2020,55(4):1025-1043.

    Chen Ping, Lin Weibing, Gong Dajian, et al. Sedimentary geochemical characteristics and its sedimentary environment significance of the black shale of the Lower Cambrian Bianmachong Formation in the Cen’gong block, Guizhou province [J].Chinese Journal of Geology, 2020,55(4):1025-1043.
    [38] Zheng Y, Anderson R F, van Geen A, et al. Preservation of particulate non-lithogenic uranium in marine sediments[J]. Geochimica et Cosmochimica Acta,2002,66(17):3085-3092
    [39] Zheng Y, Anderson R F, van Geen A, et al. Remobilization of authigenic uranium in marine sediments by bioturbation[J] .Geochimica et Cosmochimica Acta,2002,66(10):1759-1772
    [40] Zheng Y, Anderson R F, van Geen A, et al. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin[J]. Geochimica et Cosmochimica Acta,2000,64(24):4165-4178.
    [41] Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica et Cosmochimica Acta,1996,60(19):3631-3642.
    [42] Algeo TJ, Tribovillard N, Environmental analysis of paleoceanographic systems based on molybdenum-uranium Covariation[J]. Chemical Geology,2009,268(3/4):211-225.
    [43] Tribovillard N, Algeo T J, Baudin F, et al. Analysis of marine environmental conditions based onmolybdenum-uranium covariation—Applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324-325:46-58.
    [44] 李星波,季军良,曹展铭,等. 柴达木盆地北缘古—新近纪河湖相沉积物颜色的气候意义[J].地球科学,2021,46(9):3278-3289.

    Li Xingbo, Ji Junliang, Cao Zhanming,et al. The climatic significance of the color of the Paleo-Neogene fluvial and lacustrine sediments in the northern Qaidam Basin[J]. Earth Science,2021,46(9):3278-3289.
    [45] 宋运红,刘凯,戴慧敏,等. 松嫩平原东部典型黑土剖面孢粉组合时代及其对古气候的指示[J].地质通报,2022,41(9):1528-1538.

    Song Yunhong, Liu Kai, Dai Huimin,et al. Palynological assemblages of typical black soil profile in the eastern Songliao Plain and their age and its implication for Paleoclimatic [J] Geological Bulletin of China,2022,41(9):1528-1538.
    [46] 肖春晖,王永红,林间. 近1 Ma以来帕里西维拉海盆沉积物物源和古气候:粒度和黏土矿物特征的指示[J].沉积学报,2022,40(2):508-524.

    Xiao Chunhui, Wang Yonghong, Lin Jian. Provenance and paleoclimate of sediments in the Parece Vela Basin in past 1 Ma: Inferences from grain-size and clay mineral distribution[J]. Acta Sedimentologica Sinica,2022,40(2):508-524.
    [47] 查理思,吴克宁,梁思源,等. 仰韶村遗址黏土矿物组成特征及古气候演变[J].土壤通报,2019,50(5):1026-1032.

    Zha Lisi, Wu Kening, Liang Siyuan, et al. Clay mineral composition and paleoclimate evolution in Yangshao Village Site[J]. Chinese Journal of Soil Science, 2019,50(5):1026-1032.
    [48] 何龙,王云鹏,陈多福. 川南地区晚奥陶—早志留世沉积环境与古气候的地球化学特征[J].地球化学,2019,48(6):555-566.

    He Long, Wang Yunpeng, Chen Duofu. Geochemical features of sedimentary environment and paleoclimate during Late Ordovician to Early Silurian in southern Sichuan Basin[J]. Geochimica, 2019,48(6):555-566.
    [49] 范玉海,屈红军,王辉,等 . 微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J].中国地质,2012,39(2):382-389.

    Fan Yuhai, Qu Hongjun, Wang Hui, et al. The application of trace elements analysis to identifying sedimentary media environment: A case study of Late Triassic strata in the middle part of western Ordos Basin[J].Geology in China,2012,39(2):382-389.
    [50] 莱尔曼. 湖泊的化学地质学和物理学[M].王苏民译.北京:地质出版社,1989.[

    Lerman A.Chemical geology and physics of lakes[M].Wang Sumin trans. Beijing: Geological Publishing House,1989.]
    [51] Adams J S, Kraus M J, Wing S L. Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011,309(3/4): 358-366.
    [52] 张涛,季宏兵,温月花,等. 昆明石林碳酸盐岩红色风化壳元素地球化学特征[J].高校地质学报,2017,23(3):465-477.

    Zhang Tao, Ji Hongbing, Wen Yuehua,et al. Geochemical characteristics of red weathering cruston carbonate rocks in Shilin county,Kunming[J]. Geological Journal of China Universities, 2017,23(3):465-477.
    [53] Cox R, Lower D R and Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States [J]. Geochimica et Cosmochimica Acta 1995, 59(14):2919-2940.
    [54] McLennan S M, Hemming S, McDaniel D K, et al. 1993. Geochemical approaches to sedimentation, provenance, and tectonics [J]. Special Paper of the Geological Society of America, 284: 21-40.
    [55] 董红梅,宋友桂. 黏土矿物在古环境重建中的应用[J].海洋地质与第四纪地质,2009,29(6):119-130.

    Dong Hongmei, Song Yougui. Clay mineralogy and its application to paleo-environmental reconstruction[J] Marine Geology & Quaternary Geology, 2009, 29(6): 119-130.
    [56] 张立强,罗晓容,刘楼军,等. 准噶尔盆地南缘新生界黏土矿物分布及影响因素.地质科学,2005, 40(3): 363-375.

    Zhang Liqiang, Luo Xiaorong, Liu Loujun,et al. Controls on clay mineral distribution in the Cenozoic sediments of the southern Junggar Basin, NW China[J]. Chinese Journal of Geology,2005, 40(3): 363-375.
    [57] 金章东. 湖泊沉积物的矿物组成、成因、环境指示及研究进展[J]. 地球科学与环境学报,2011,33(1):34-44,77.

    Jin Zhangdong. Composition, origin and environmental interpretation of minerals in lake sediments and recent progress[J]. Journal of Earth Sciences and Environment, 2011, 33(1): 34-44, 77.
    [58] 王英华. 沉积环境与岩矿、地球化学指相标志[J]. 石油实验地质,1980(4):18-26.

    Wang Yinghua. Sedimentary environment and petrographic and geochemical index signs[J]. Petroleum Geology & Experiment, 1980(4): 18-26.
  • [1] 周敏, 李祥辉, 王旌羽.  四川盆地东北部中—晚侏罗世沉积环境与古气候 . 沉积学报, 2024, 42(3): 1003-1015. doi: 10.14027/j.issn.1000-0550.2022.079
    [2] 古恒, 王剑, 韦恒叶, 付修根.  四川盆地城口地区下寒武统水井沱组有机质富集控制因素 . 沉积学报, 2024, 42(3): 1073-1091. doi: 10.14027/j.issn.1000-0550.2022.091
    [3] 谢巍, 李一凡, 刘旺威.  塔里木盆地东北缘下寒武统泥页岩古气候与物源背景研究 . 沉积学报, 2023, 41(4): 1240-1256. doi: 10.14027/j.issn.1000-0550.2021.159
    [4] 郑伟, 许欣, 齐永安, 邢智峰, 刘云龙, 李婉颖, 吴盼盼, 张湘赟.  古环境、古气候分析对P⁃T之交灭绝事件的启示 . 沉积学报, 2023, 41(2): 392-408. doi: 10.14027/j.issn.1000-0550.2021.122
    [5] 肖春晖, 王永红, 林间.  近1 Ma以来帕里西维拉海盆沉积物物源和古气候:粒度和黏土矿物特征的指示 . 沉积学报, 2022, 40(2): 508-524. doi: 10.14027/j.issn.1000-0550.2020.091
    [6] 张力, 马向贤, 马勇, 胥旺, 邵媛媛, 胡国艺, 郑国东.  基于硫元素化学种等指标的页岩氧化还原条件判识 . 沉积学报, 2022, 40(5): 1427-1438. doi: 10.14027/j.issn.1000-0550.2022.002
    [7] 吴劲宣, 夏国清, 陈云, 徐为鹏, 伊海生.  西藏伦坡拉盆地渐新世——中新世之交黏土矿物特征及其古气候意义 . 沉积学报, 2022, 40(5): 1265-1279. doi: 10.14027/j.issn.1000-0550.2021.032
    [8] 魏巍, Algeo Thomas J., 陆永潮, 刘惠民, 张守鹏, 张靖宇, 杜远生.  古盐度指标与渤海湾盆地古近系海侵事件初探 . 沉积学报, 2021, 39(3): 571-592. doi: 10.14027/j.issn.1000-0550.2021.004
    [9] 张璇, 韦恒叶.  湖北秭归吴家坪组—长兴组界线氧化还原条件及其意义 . 沉积学报, 2020, 38(3): 476-484. doi: 10.14027/j.issn.1000-0550.2020.008
    [10] 陈留勤, 李鹏程, 郭福生, 刘鑫, 李馨敏.  粤北丹霞盆地晚白垩世丹霞组沉积相及古气候意义 . 沉积学报, 2019, 37(1): 17-29. doi: 10.14027/j.issn.1000-0550.2018.118
    [11] 常吟善, 赵洪, 覃军, 李帅, 张建培.  古近纪气候变化在东海盆地内的化石记录 . 沉积学报, 2019, 37(2): 320-329. doi: 10.14027/j.issn.1000-0550.2018.133
    [12] 王峰, 刘玄春, 邓秀芹, 李元昊, 田景春, 李士祥, 尤靖茜.  鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义 . 沉积学报, 2017, 35(6): 1265-1273. doi: 10.14027/j.cnki.cjxb.2017.06.017
    [13] 张守鹏, 李保利, 贺振建, 张存霞.  渤海湾盆地古近纪沙三、四段沉积期古盐度不均衡性研究 . 沉积学报, 2016, 34(2): 397-403. doi: 10.14027/j.cnki.cjxb.2016.02.018
    [14] 王尹, 李祥辉, 周勇, 刘玲.  南雄盆地晚白垩世—古新世陆源沉积组份变化的古气候指示 . 沉积学报, 2015, 33(1): 116-123. doi: 10.14027/j.cnki.cjxb.2015.01.012
    [15] 李智超, 李文厚, 赖绍聪, 李永项, 李玉宏, 尚婷.  渭河盆地古近系细屑岩的古盐度分析 . 沉积学报, 2015, 33(3): 480-485. doi: 10.14027/j.cnki.cjxb.2015.03.006
    [16] 鄂尔多斯盆地陇东地区长9油层组古盐度特征及其地质意义 . 沉积学报, 2014, 32(1): 159-165.
    [17] 张哲 杜远生 毛治超 李瑞 原小杰.  湘东南桂阳莲塘上泥盆系风暴岩特征及其古地理、古气候意义 . 沉积学报, 2008, 26(3): 369-375.
    [18] 吉利明.  甘肃民和盆地早白垩世孢粉植物群的古气候环境和地理分区位置 . 沉积学报, 1994, 12(2): 133-142.
    [19] 费富安.  对苏北含油盆地下第三系古环境和古气候的探讨 . 沉积学报, 1988, 6(1): 21-28.
    [20] 李成凤, 肖继风.  用微量元素研究胜利油田东营盆地沙河街组的古盐度 . 沉积学报, 1988, 6(4): 100-107.
  • 加载中
图(7) / 表 (2)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  156
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-05
  • 修回日期:  2021-05-24
  • 录用日期:  2021-07-26
  • 网络出版日期:  2021-07-26
  • 刊出日期:  2023-02-10

目录

    滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探

    doi: 10.14027/j.issn.1000-0550.2021.076
      基金项目:

      国家重点研发计划 2017YFC0602500

      作者简介:

      贾永斌,男,1991年出生,硕士研究生,地球化学,E-mail: jiayongbin@mail.gyig.ac.cn

      通讯作者: 于文修,男,讲师,矿床地球化学,E-mail: 284953733@qq.com
    • 云南省地质局第二区域地质测量大队七分队.1∶200 000云南地质玉溪幅.1969.
    • 中图分类号: P588.2

    摘要: 沉积岩中的微量元素对沉积环境变化有较高的敏感度,是研究古沉积环境的有效手段。滇中盆地倒石头组是一套富锂的黏土岩地层,其古环境的研究对恢复该时期盆地沉积格局和锂元素富集具有重要意义。基于滇中盆地倒石头组两个典型钻孔样品详细的地球化学研究,探讨了倒石头组富锂黏土岩形成时的沉积环境及其对锂元素富集的影响。研究结果表明:所有样品Sr、Ga元素含量及Sr/Ba值指示研究区古水体介质为淡水陆相沉积环境;其δU值介于0.51~1.63,U/Th值介于0.11~1.49,V/(V+Ni)值介于0.48~0.86,V/Cr值介于0.45~1.24,同时在U(EF)-Mo(EF)协变模式图中,样品数据均未落在缺氧和硫化区域,表明研究区富锂黏土岩的沉积环境为氧化—弱还原环境;且样品Sr/Cu比值介于0.69~4.87,CIA值介于86.3~99.66,XRD全岩黏土矿物分析显示高岭石为主要的黏土矿物,表明富锂黏土岩在形成过程中处于温暖潮湿的沉积环境并伴随较为强烈的化学风化作用。

    注释:
    1) 脚注:
    1)  云南省地质局第二区域地质测量大队七分队.1∶200 000云南地质玉溪幅.1969.

    English Abstract

    贾永斌, 于文修, 温汉捷, 罗重光, 杨光树, 杨洋, 崔燚. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 沉积学报, 2023, 41(1): 170-182. doi: 10.14027/j.issn.1000-0550.2021.076
    引用本文: 贾永斌, 于文修, 温汉捷, 罗重光, 杨光树, 杨洋, 崔燚. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 沉积学报, 2023, 41(1): 170-182. doi: 10.14027/j.issn.1000-0550.2021.076
    JIA YongBin, YU WenXiu, WEN HanJie, LUO ChongGuang, YANG GuangShu, YANG Yang, CUI Yi. Geochemical Characteristics and Sedimentary Environment of Li-rich Clay Rocks at the Southern Margin of the Central Yunnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 170-182. doi: 10.14027/j.issn.1000-0550.2021.076
    Citation: JIA YongBin, YU WenXiu, WEN HanJie, LUO ChongGuang, YANG GuangShu, YANG Yang, CUI Yi. Geochemical Characteristics and Sedimentary Environment of Li-rich Clay Rocks at the Southern Margin of the Central Yunnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 170-182. doi: 10.14027/j.issn.1000-0550.2021.076
      • 锂作为一种重要的战略性矿产资源,被广泛的应用于电池、航空航天、核反应、医药、农业等方面[1-4]。全球锂矿床主要有盐湖型、伟晶岩型和沉积型三大类,其资源量分别为66%、26%和8%[5-6]。与盐湖型和伟晶岩型锂矿资源储量最丰富的国家智利、玻利维亚等国[7-9]相比,我国并不占优势。近年来,一类新的黏土型锂资源在我国西南地区被逐渐发现和认识[10]。研究人员在滇中盆地发现下二叠统倒石头组黏土岩中具有锂的超常富集现象,其锂含量超过铝土岩中锂的综合利用指标(Li2O≥500 μg/g)[10],形成了潜在巨量锂资源。

        滇中盆地是在长期隆起的川滇古陆核(习称康滇古陆)于印支晚期经剧烈沉降形成的中、新生代沉积盆地,位于康滇裂谷带中南段。盆地以近南北方向为长轴,近东西向为短轴的中、新生代沉积—构造盆地,南北长约300 km,东西平均宽107 km,面积约32 100 km2。盆地北西向以小金河断裂为界,与盐源—丽江凹陷带相邻;南西向以金沙江—苍山—哀牢山断裂为界。区内地层发育齐全,从前震旦系至第四系均有分布。研究区位于盆地南缘(图1),其中赋矿地层倒石头组(P1d)分布较为广泛,在昆明市郊、晋宁二街、曲靖以北、玉溪东部小石桥、江川西部和通海县以南均有出露。由于区域沉积环境的不同,不同区域倒石头组(P1d)地层岩性略有不同。在昆明市郊、晋宁二街等地区,倒石头组地层的岩性自下而上主要为石英砂岩、页岩、含碳质泥岩、铝土岩、铝土质页岩等。在曲靖以北,地层岩性下部主要为紫红色中细粒石英砂岩,中部主要为黑色页岩和含碳质泥岩,上部为青灰色夹杂灰白色铝土岩。在玉溪东部小石桥、江川西部和通海县以南等地区,倒石头组(P1d)地层岩性自下而上为铝土岩、铝土页岩、碳质页岩等。

        图  1  滇中盆地南缘地质简图(底图据云南省地质局第二区域地质测量大队七分队,19691)和ZK05、ZK06钻孔剖面图

        Figure 1.  Geological sketch of southern margin of Central Yunnan (modified by Yunnan Geological Brigade,1969) and profiles of boreholes ZK05, ZK06

        本研究选取滇中盆地南缘地区的两条典型钻孔剖面(ZK05、ZK06)作为研究对象,拟通过富锂黏土岩中各元素的富集变化情况,系统讨论其变化规律,指示沉积环境(古盐度、古气候、氧化还原条件)对锂超常富集的制约作用,为后续滇中盆地的锂资源勘察提供参考。

      • 本次研究样品采自滇中盆地南缘ZK-05号、ZK-06号钻孔岩心。共采集倒石头组样品27件,详细钻孔位置见图1。样品岩性主要包括泥页岩、铝土岩和黏土岩。样品元素含量测定在广州澳实分析检测有限公司完成,采用四酸消解法,质谱/光谱仪综合定量。测试仪器分别为美国Agilent 7700x型电感耦合等离子体发射质谱仪和美国Agilent VISTA型电感耦合等离子体发射光谱仪。测试结果相对偏差RD≤10%,相对误差RE≤10%。黏土岩矿物成分在中国科学院地球化学研究所矿床地球化学国家重点实验室测试。分析仪器为日本理学公司产D/Max-2200型X射线衍射仪,CuKα辐射、石墨单色器滤波、管电压40 kV、管电流30 mA。XRD测试在中国科学院地球化学研究所完成,样品研磨成粉末至200目,使用背压制样法,将研磨好的样品装入铝制样品架,再将铝制样品架放入综合型多功能水平高分辨X射线衍射仪(日本理学公司)样品台的插槽,进行测试。

      • 古盐度是古沉积物对水体盐度的记录,可作为分析地质历史中沉积环境特征的一个重要指标[11]。对于古盐度的判别主要有古生物、常量同位素和微量元素地球化学方法[12-16]。本文主要采用微量元素含量及比值法对倒石头组沉积期盆地古盐度进行分析。Sr、Ga元素的含量对水体盐度变化具有良好的指示作用。前人研究指出咸水环境中Sr的含量大于800 μg/g,Ga小于8 μg/g;淡水环境中Sr小于500 μg/g,Ga大于17 μg/g[17-18]。研究区27件样品中,Sr含量为3.9~36.1 μg/g,平均为10.87 μg/g,所有值均小于500 μg/g;Ga含量为32.3~51.3 μg/g,平均为40.38 μg/g,所有值均大于17 μg/g(表1)。Sr、Ga含量指示盆地南缘倒石头组总体属于淡水沉积环境。

        表 1  滇中盆地南缘倒石头组黏土岩微量元素(μg/g)分析及比值计算结果

        样号岩性LiMoScCoZrUThVCrNiSrGaBaCuSr/CuSr/BaδUU/ThV/CrV/(V+Ni)
        ZK05-H2炭质泥岩2 2807.7836.76.425714.825.816916056.81435.73509.61.460.041.260.571.060.75
        ZK05-H3炭质泥岩1 70012.235.311.421310.924.719516669.718.736.238017.51.070.051.140.441.170.74
        ZK05-H4深灰色煤岩3 22015.4526.66.73325.440.916935228.335.432.328011.23.160.130.570.130.480.86
        ZK05-H5浅灰色铝土质黏土岩3 13012.825.59.23504.923.726839089.636.152.327014.72.460.130.770.210.690.75
        ZK05-H6浅灰白色铝土质黏土岩1 6006.630.811.93234.52722330579.823.149.330013.41.720.080.670.170.730.74
        ZK05-H7浅灰白色铝土质黏土岩830532.124.83204.828.922926787.816.452.461082.050.030.670.170.860.72
        ZK05-H8浅灰白色铝土质黏土岩1 1004.8430.412.73114.624.422524672.115.851.342017.80.890.040.720.190.910.76
        ZK05-H9浅灰白色铝土质黏土岩3301.5731.224.92914.125.519518463.712.448.887018.10.690.010.650.161.060.75
        ZK06-H2浅灰色铝土质黏土岩3644.9424.252794.531.816431629.73.943.5801.72.290.050.600.140.520.85
        ZK06-H3深灰色薄—中层状炭质铝土黏土岩37316.22319.1216523.115326097.2835.9805.91.360.100.790.220.590.61
        ZK06-H4深灰色薄—中层状炭质铝土黏土岩1 0705.9628.710.43134.720.51432981096.239.9303.12.000.210.820.230.480.57
        ZK06-H5深灰色铝土质黏土岩9705.8925.612.12613.611.4151244108.5635.8302.12.860.200.970.320.620.58
        ZK06-H6灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩1 3606.76298.22794.714131253127.55.337.4202.81.890.271.000.340.520.51
        ZK06-H7灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩1 2906.5631.59.83344.713.91322561305.638.32022.800.281.010.340.520.50
        ZK06-H8灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩1 3007.173110.53204.711.25134243131.55.638.4302.62.150.191.110.420.550.50
        ZK06-H9灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩1 2909.2128.293004.610.51212661294.938.2302.81.750.161.140.440.450.48
        ZK06-H10浅灰色薄片状铝土质黏土岩1 27011.23311.22985.317.651352831416.342.3303.31.910.210.950.300.480.49
        ZK06-H11浅灰色薄片状铝土质黏土岩1 4109.4529.4102994.812.4142296135.55.639.6303.71.510.191.070.390.480.51
        ZK06-H12浅灰色薄片状铝土质黏土岩1 34010.829.411.12954.913.75138286138.56.339.8303.21.970.211.030.360.480.50
        ZK06-H13浅灰色薄片状铝土质黏土岩9705.2421.612.82833.914.1167247107.5537.1402.22.270.130.910.280.680.61
        ZK06-H14浅灰色薄片状铝土质黏土岩9507.592214.42703.810.25160260116.55.137.1303.11.650.171.050.370.620.58
        ZK06-H15浅灰色薄片状铝土质黏土岩7304.0126.310.72624.728.116322892.16.838.8501.64.250.140.670.170.710.64
        ZK06-H16深灰色中—厚层状铝土岩5705.722313.12205.923.714619575.911.434505.12.240.230.860.250.750.66
        ZK06-H17深灰色中—厚层状铝土岩1 22012.4528.513.4313513.65141280128.56.541.6303.12.100.221.050.370.500.52
        ZK06-H18深灰色中—厚层状铝土岩4493.722.912.92114.621.719817559.211.640.116033.870.070.780.211.130.77
        ZK06-H19深灰色中—厚层状铝土岩7507.7321.215.52464.412.8516523588.86.835.6604.11.660.111.010.340.700.65
        ZK06-H20深灰色层状铝土岩1 2605.0526.79.12624.49.04133239117.54.838.61022.400.481.190.490.560.53

        Ba2+在水体的迁移能力比较弱,溶解度较小,当水体盐度逐渐升高时会和咸水中的SO42-结合,以BaSO4的形式沉淀下来。相反,Sr元素的溶解度更大,即使水体盐度升高,Sr元素仍能以离子的形式在水体中保存一段时间[19-20]。因此,Sr/Ba比值可以作为地层在沉积过程中水体盐度变化的判别指标[21-23]。一般认为Sr/Ba比值大于1.0为海相咸水,小于0.6为陆相淡水,介于0.6~1为半咸水相[11]。研究区所有样品Sr/Ba值介于0.01~0.48,平均值为0.15,数据均小于0.6(表1),由此推断研究区倒石头组沉积期主要为淡水陆相沉积环境。

        沉积环境古盐度的变化对锂元素在黏土岩中的富集具有重要控制作用(图2)。当水体盐度逐渐升高,黏土岩中锂的含量呈现先下降,后上升的趋势(图2c)。ZK-05和ZK-06样品Sr/Ba比值显示水体盐度升高,黏土岩中锂的含量呈现上升趋势(图2f,g)。姚双秋等[24]对桂西地区上二叠统合山组黏土岩进行研究时发现锂的超常富集现象,其锂含量介于3.56~2 460 μg/g。钟海仁[25]在重庆南川铝土矿中发现伴生Li元素富集程度较高,含量介于5.2~1 542 μg/g。王行军等[26]在滇西北鹤庆县松桂铝土矿中发现Li元素含量介于19~1 290 μg/g。莫光员等[27]在黔北地区浣溪铝土矿中发现锂元素含量较高,含量介于25~1 000 μg/g。以上不同区域铝土矿(黏土岩)成矿时代虽不同,但均有一个共性,即下伏地层均为碳酸盐岩。结合不同区域古盐度与锂元素在地层中的含量变化关系(图2h),表明当古水体的盐度逐渐升高时,地层中锂元素的含量呈现出下降的趋势。

        图  2  样品Li含量与Sr含量、Ga含量、Sr/Ba值的关系图解

        Figure 2.  Sample content of Li, Sr and Ga, and Sr/Ba relationship

      • 利用微量元素的比值可以很好地指示沉积环境的氧化—还原条件这一特性[28],本次通过U/Th值、δU值、V/(V+Ni)值、V/Cr值和U(EF)-Mo(EF)协变模式图来综合分析研究区倒石头组地层形成时的氧化—还原条件。

        U元素化学性质活泼,迁移能力较强,往往被氧化和淋滤丢失。而Th元素有较强的惰性,在成岩作用中基本上不发生迁移。因此,U/Th比值和δU值可以判断沉积环境的氧化—还原状态。一般来说,氧化环境中U/Th比值小于0.75,还原环境中U/Th比值大于1.25;δU值的关系式为δU=2U/(Th/3+U),还原环境中δU>1,正常环境中δU<1[29-31]。样品微量元素分析结果表明U/Th值介于0.13~0.57,比值均小于0.75,δU值介于0.57~1.26,平均值为0.91,大部分值小于1(表1)。根据判别指标,倒石头组沉积环境总体为氧化—弱还原的环境。

        V元素在沉积环境中表现出氧化条件时易溶,而Cr、Ni元素在还原环境中常以硫化物形式沉淀。因此,V/(V+Ni)比值、V/Cr比值可指示沉积水体的氧化还原环境。前人研究表明在氧化环境中V/(V+Ni)<0.6,V/Cr<2;氧化还原过渡环境中V/(V+Ni)比值介于0.6~0.84,V/Cr比值介于2.0~4.25;还原环境中V/(V+Ni)>0.84,V/Cr>4.25[32-37]。27件样品微量元素结果分析表明V/(V+Ni)值介于0.48~0.86,平均值为0.63,V/Cr值介于0.45~1.17,平均值为0.68,比值均小于2(表1),指示研究区倒石头组沉积水体为氧化—弱还原的过渡环境。Mo和U元素作为对氧化还原敏感的元素,能够准确地反映沉积时期的环境特征。缺氧环境虽然都能使U和Mo富集,但是他们的地球化学行为有较大差异。在氧化—还原沉积环境附近,U首先在沉积物中富集[38-39],而Mo在沉积物中富集的条件比较苛刻,需要H2S的参与[40-41]。因此,在含氧量较少的环境中,U元素优先在沉积物中富集,Mo元素次之;当海水中存在Fe、Mn等的氧化物时,则会加速沉积物中Mo元素的富集,而U元素在这个过程中不受影响[42]。基于U、Mo元素对沉积环境氧化还原性的敏感以及在沉积过程中表现出的元素特性,Tribovillard et al.[43]提出了U(EF)-Mo(EF)协变模式图来指示盆地在沉积过程中的氧化—还原环境和盆地的受限程度,其中U(EF)表示U的富集系数,Mo(EF)表示Mo的富集系数。富集系数X(EF)的计算公式为X(EF)=(X/Al)样品/(X/Al)平均页岩。研究区样品在U(EF)-Mo(EF)协变模式图中的数据落点均未在缺氧和硫化的区域(图3),表明滇中二叠系倒石头组地层在沉积过程中环境的含氧量较高。同时绝大多数样品点落在1倍正常海水盐度之下,指示倒石头组在沉积过程中处于弱—中等的局限滞留环境,可能是因为在局限滞留的沉积环境下缺少来自开大洋Mo和U的持续补给,导致沉积物中Mo/U比值降低。对于少数样品落点在现代正常海水盐度之上,可能为研究区二叠系倒石头组地层在沉积晚期与大洋连通,导致大洋中的Mo和U持续补给,使得Mo/U比值升高。

        图  3  滇中盆地南缘倒石头组黏土岩U和Mo富集系数(U(EF)⁃Mo(EF))协变模式图[43]

        Figure 3.  Crossplot of U(EF)⁃Mo(EF) in Daoshitou Formation clay rock at southern margin of Dianzhong Basin[43]

        沉积环境的氧化还原性,对锂元素在黏土岩(铝土矿)中的富集具有较为明显的控制作用(图4)。对比研究区黏土岩(铝土矿)伴生Li含量与氧化还原指标的关联性,当δU值和U/Th比值增大时,地层中锂含量有增加的趋势(图4a,d)。结合桂西、重庆和滇西北黏土岩(铝土矿)形成时的氧化还原条件与锂含量的变化关系[28-31],表明当沉积环境在氧化范围内变化时,环境含氧量的减少有利于Li元素在黏土岩(铝土矿)中富集(图5a);当沉积环境演化到氧化还原过渡区间时,由于环境中含氧量进一步减少,黏土岩(铝土矿)中Li元素富集呈现下降趋势;当沉积环境为还原环境时,黏土岩(铝土矿)的Li元素含量最低。

        图  4  样品Li含量与U/Th值、V/Cr值、V/(V+Ni)值、δU的关系图解

        Figure 4.  Sample Li content, U/Th value, V/Cr value, V/(V+Ni)value, δU relationship diagram

        图  5  样品Li含量与U/Th值、CIA值、Sr/Cu的关系图解

        Figure 5.  Sample content of Li, U/Th, CIA, and Sr/Cu relationship diagram

      • 古气候的研究方法主要有古地磁学、碳氧同位素[44]、古生物化石、微量元素比值法[45]、黏土矿物分析法和CIA值[46-48]等。本研究主要采用微量元素比值法、CIA值和XRD全岩黏土矿物分析法综合判断倒石头组沉积期古气候特征。

        沉积岩中的微量元素受古气候影响,可以在特定的环境下保存[25]。其中喜湿型元素为Cr、Ni、Mn、Cu、Fe、Ba、Br、Co、Cs、Hf、Rb、Sc、Th;喜干型元素为Sr、Pb、Au、As、Ca、Na、Ta、U、Zn、Mg、Mo、B,喜干型元素(Sr)与喜湿型元素(Cu)的比值可以反映古气候[37,49]。Sr/Cu>10指示干旱气候,Sr/Cu<5.0指示潮湿的气候[45]。研究区27件样品Sr/Cu比值为0.69~4.25,平均值为2.09,全部小于5(表1),反映倒石头组沉积期为温暖潮湿的古气候。

        沉积岩中易迁移元素与不易迁移元素的比值在重建古风化历史的研究中是十分有效的指标[50],其变化趋势可以定性反映风化作用强度的改变。依据主量元素计算建立多种类型的化学风化指数,可以定量反映化学风化作用的强度和古气候环境[51],其中化学蚀变指数(CIA)可以判断沉积区的化学风化程度和古气候环境[52]。蚀变指数计算公式为CIA=Al2O3/(Al2O3+CaO*+Na2O+K2O)×100%[53]。式中各元素含量通过摩尔分数来计算(表2),CaO*表示硅酸盐中CaO摩尔分数。本文采用McLennan et al.[54]提出的方法对CaO进行校正,若CaO摩尔数小于Na2O摩尔数,则CaO*摩尔数用CaO摩尔数代替;相反,则采用Na2O摩尔数作为CaO*的摩尔分数。利用CIA值对古气候进行研究时需要判断研究区所取样品是否发生了沉积再循环。McLennan et al.[54]指出Th/Sc-Zr/Sc图解可以指示样品是否发生沉积再循环。Th/Sc-Zr/Sc图解分析显示,研究区样品均未落在沉积再循环指示区域(图6),表明本次研究的样品均为原地沉积,其化学蚀变指数(CIA)可以准确指示原始沉积的气候条件。前人研究指出,CIA值为80~100反映炎热潮湿的热带气候条件下的强烈风化,60~80代表温暖湿润气候条件下的中等风化,50~60代表寒冷、干燥气候条件下的低等化学风化[53]。研究区样品的CIA值在86.30~99.66之间,平均值为97.14,反映倒石头组沉积期为温暖潮湿的古气候。

        表 2  滇中盆地南缘倒石头组黏土岩常量元素(%)分析及比值计算结果

        样号岩性Al2O3Na2OCaOK2OCIA
        ZK05-H2炭质泥岩29.570.510.221.9991.57
        ZK05-H3炭质泥岩26.360.390.281.6092.06
        ZK05-H4深灰色煤岩26.640.080.081.1395.37
        ZK05-H5浅灰色铝土质黏土岩33.820.050.050.3798.60
        ZK05-H6浅灰白色铝土质黏土岩32.500.090.091.3195.58
        ZK05-H7浅灰白色铝土质黏土岩31.560.120.122.7291.41
        ZK05-H8浅灰白色铝土质黏土岩31.930.130.132.4792.10
        ZK05-H9浅灰白色铝土质黏土岩29.670.180.184.3686.30
        ZK06-H2浅灰色铝土质黏土岩31.180.090.510.0397.59
        ZK06-H3深灰色薄—中层状炭质铝土黏土岩25.700.231.140.1096.26
        ZK06-H4深灰色薄—中层状炭质铝土黏土岩37.320.091.700.0598.97
        ZK06-H5深灰色铝土质黏土岩28.440.032.510.0399.56
        ZK06-H6灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩35.150.031.650.0299.61
        ZK06-H7灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩41.000.032.230.0399.58
        ZK06-H8灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩41.570.042.580.0399.55
        ZK06-H9灰—深灰色夹黑色夹杂少量黄铁矿铝土质黏土岩39.680.041.810.0399.53
        ZK06-H10浅灰色薄片状铝土质黏土岩34.770.041.700.0299.50
        ZK06-H11浅灰色薄片状铝土质黏土岩36.850.041.880.0399.52
        ZK06-H12浅灰色薄片状铝土质黏土岩36.940.042.120.0599.49
        ZK06-H13浅灰色薄片状铝土质黏土岩33.260.046.580.0599.47
        ZK06-H14浅灰色薄片状铝土质黏土岩29.570.034.790.0399.66
        ZK06-H15浅灰色薄片状铝土质黏土岩30.990.048.210.0599.28
        ZK06-H16深灰色中—厚层状铝土岩23.900.0313.020.0399.03
        ZK06-H17深灰色中—厚层状铝土岩39.110.042.510.0599.46
        ZK06-H18深灰色中—厚层状铝土岩24.280.0810.510.1095.31
        ZK06-H19深灰色中—厚层状铝土岩29.380.046.440.0598.68
        ZK06-H20深灰色层状铝土岩29.760.031.700.0399.66

        图  6  滇中盆地南缘倒石头组样品Th/Sc⁃Zr/Sc图解[54]

        Figure 6.  Th/Sc⁃Zr/Sc for samples from the Daoshitou Formation section, southern Dianzhong Basin[54]

        黏土矿物晶粒微小,成分结构等在周围环境发生变化时容易发生改变,研究表明黏土矿物的成分和组合是研究古气候和古环境的重要手段[47,54-56]。控制黏土矿物的形成和转化因素有很多,如果在一定时间尺度上没有发生大构造运动,气候条件就是最主要的因素。因此,用黏土矿物研究古气候的变化是可行的。前人研究指出,高岭石的存在指示矿物曾经历了温暖潮湿环境下的强化学风化作用,伊利石、蒙脱石是干燥环境指示矿物[57]。研究区样品全岩黏土矿物分析结果显示,黏土矿物主要为高岭石,其次含有少量的蒙脱石(图7),表明倒石头组黏土岩的沉积环境为温暖潮湿,但在局部一些区域可能表现出相对干燥的特性。

        图  7  样品的X射线衍射峰图谱

        Figure 7.  XRD diffraction peak patterns for samples

        原岩经风化形成的Li元素通常以Li+的形式与卤族元素结合形成可溶性的盐随水溶液迁移[58]。研究区样品CIA值与锂含量呈正相关关系,且当风化程度(CIA值)不断增大,Li元素含量表现出上升趋势(图5d)。这可能是因为Li+在迁移过程中极易被吸附于黏土矿物层间或类质同象置换Mg2+等元素进入黏土矿物晶格,从而导致Li在黏土岩中富集。

      • (1) 元素Sr、Ga和Sr/Ba及U/Th、δU、V/(V+Ni)、V/Cr、U(EF)-Mo(EF)协变模式图指示滇中盆地南缘倒石头组(P1d)富锂黏土岩沉积环境为氧化—弱还原、淡水陆相。Sr/Cu、CIA和全岩黏土矿物XRD分析结果指示富锂黏土岩在形成的过程中,古气候以温暖潮湿为主,且伴随着较为强烈的化学风化作用。

        (2) Li元素含量变化与各沉积环境指示参数表明,当沉积环境表现出淡水陆相、氧化、温暖潮湿等特性时,在黏土岩中有利于锂元素的富集。

    参考文献 (58)

    目录

      /

      返回文章
      返回